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ABSTRACT 

 
Low-energy protocol processing is a crucial issue in next -
generation wireless systems. In modern wireless system 
design, this problem is tightly coupled with the signal 
processing needs. Fierce market competition and 
inventive wireless applic ations are imposing stricter 
design requirements in energy consumption, cost, size, 
and flexibility. To deal with these unique constraints, we 
incorporate the platform -based design methodology to 
deal with these constraints by advocating reusability. This 
paper presents this methodology, and its application on 
PicoRadio, a cutting -edge wireless system. In particular, 
we describe the design of a reconfigurable architecture 
optimized for protocol processing. 
 

1. INTRODUCTION 
                                                                                                                        

Communication protocol processing is an increasingly 
important problem in the design of next -generation, 
wireless systems. The real -time nature of the protocol 
stack, and it s tight coupling to the base -band processing, 
make this problem very relevant and applicable to digital 
communication signal processing. This paper focuses on 
reconfigurable protocol processor design for low -power 
wireless embedded systems. 

Due to applicat ion requirements and severe market 
demand, the protocol processor has become a bottleneck 
in the design of today’s communication systems. In recent 
years, a number of wireless standards, such as Bluetooth 
[1], 802.11 [2], and HomeRF [3], have emerged. These 
standards will soon become prevalent in embedded 
systems for numerous applications, such as cellular 
phones, home automation, and digital audio players. A 
common problem shared by all the standards is the need 
for low -energy, high -throughput protocol processing. 
Similar problems are seen in the network processor 
community, where the demand for high -speed Internet 
calls for the design of complex protocol processing 
engines [4]. 

At UC Berkeley, we are building an ultra -low energy, 
sensor-based, ad hoc network called PicoRadio [5]. The 

targeted power consumption for each node in the network is 
under 100µW to enable self -powering via energy scavenging 
[6]. The node must be smaller than 100mm 3, weigh less than 
100g, and cost less than one dollar. Consequently, the 
protocol processor must be extremely energy efficient, small, 
and low-cost. Furthermore, the processor should provide the 
flexibility to accommodate different protocol designs, which 
is necessary for testing purposes as well as adapting to 
changing network traffic. 

Using traditional design methodologies, meeting such tight 
constraints would require a very lengthy design process, 
which would damage the product’s marketability. 
Consequently, a new design methodology is needed to design 
highly optimized communication protocol processors in a 
short period of time. We believ e that platform -based design 
methodology [7] is a promising solution. 

Section 2 will describe the concept of platform -based 
design in the context of protocol processor design in detail. 
The central part of the paper presents ou r application of 
platform-based design methodology in the design of a low -
power reconfigurable architecture for processing the lower 
layers of PicoRadio protocol stack. In Section 3, we will 
present profiling of the protocol stack to identify its key 
functionalities and properties. In Section 4, we present the 
architecture design in the scope of platform-based design. 

 

2. PLATFORM-BASED DESIGN 
 

The need for shorter design time and greater design 
complexity has made it necessary to look to new design 
methodologies that support design reuse. Platform -based 
design supports design reuse by abstracting hardware to a 
higher level, or the system platform. Its three -phase flow is 
illustrated in Figure 1. The first step is the identification of  a 
system platform . A system platform consists of a family of 
parameterizable architectural modules for computations and 
interconnects. The system platform is visible to the 
application software, allowing application programming to be 
done in software. The  second step is platform instantiation. 
Given a system platform, to derive a system that supports the 
application, the designer would instantiate a particular 
platform by choosing a subset of system platform that best 



supports the application.  The final s tep is implementation 
of the system, which integrates and programs these 
architectural modules to perform the desired functions.  

The challenges in making effective use of platform -
based design methodology involve exploration of the 
architectures to see which best support the applications. 
This process involves two façades: First, we need to 
identify the key functions (kernels) in the target 
application set. Using profiling techniques, we  can extract 
a set of kernel functions that represent the most costly - 
either computationally intensive or energy consuming - 
portion of the applications. A good platform must 
effectively support the key functions of the application; 
therefore, understand ing these functions is crucial to 
designing a good system using platform-based design. 

The second façade is the exploration of architectural 
modules to gain insight on which modules best suit which 
functions. In phase I, we identify a set of possible 
architectures for the target applications. This may include 
both existing architectures as well as possibly new 
architectures. The architectures should be parameterizable 
to provide some degrees of freedom when system 
integration takes place. In phase II, we ex plore how 
effectively the kernel functions are supported by these 
architectures. To assist in performance evaluation, each 
architecture should have estimation models that provide 
first-order performance numbers for a given function. To 
allow final implementation of the system, characterization 
of the architectures should include means of 
programming. 

 

3. FUNCTIONAL KERNELS OF WIRELESS 
PROTOCOL STACKS 

 

Functional profiling te chniques [8] are applied to obtain 
the key operations in protocol processing (see Figure 2). 
The operations are loosely classified as either control or 
data processing dominated operati ons according to the 

nature of the algorithm. It should be emphasized this 
classification is implementation oriented and is quite different 
from the more traditional classification. In the latter case, 
“data plane” operations are directly on the feedforwar d path 
through the communication pipeline and have demanding 
real-time performance constraints, while control operations 
are not on this direct path and hence have looser timing 
constraints. Our classification is more relevant in the context 
of this paper since we are mostly concerned with 
implementation perspective of the protocols.  

Based on our classification, an operation is data dominated 
if its complexity mostly comes from data processing. An 
appropriate model of computation for data processing is 
Dataflow [9]. On the other hand, an operation is control 
dominated if its complexity mostly comes from control 
structures. An appropriate model of computation in this case 
is finite state machine (FSM). It is apparent from Figure 2 that 
protocol processing is heavily control dominated and hence is 
described in some FSM based model. PicoRadio protocol 
stacks are described in the extended FSMs (EFSM), which 
are large networks of interacting FSMs with datapat h 
elements [10]. 

The classification of the functional kernels into control 
and data processing operations is very important for the 
realization of an efficient implementation. The different 
nature of control and data processing  operations intuitively 
leads to different “optimal” implementation structures. An 
efficient architecture for protocol implementation should 
contain a mixture of these different implementation 
structures. The exact proportion of the different structures 
depends on the ratio between control and data in the 
application. In the following section, we will introduce a 
“hybrid architecture” that is based on this concept. 
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Figure 1: Three-phase Design Methodology. 
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Figure 2: Control/data kernels in wireless protocol stacks. 



4. RECONFIGURABLE ARCHITECTURE 
 

Before looking at specific architectures, we must first 
identify the key requirements of the applications. For 
PicoRadio, they are ultra -low energy consumption, small 
in area, low cost, and flexibility to design changes. 
Traditional computing architectures range from 
microprocessors to ASICs, but most fail to meet the  
energy requirement or the flexibility requirement. There 
also exist configurable processors [11] [12], but too often 
they are designed to specialize for applications other than 
communication protoc ol processing. This leaves us with 
the family of reconfigurable logic architectures, which are 
sufficiently low -level to allow low -energy circuit 
techniques, while providing some degree of flexibility 
through reconfiguration. Also, they are not limited to 
certain application sets. 
  
4.1. Traditional Reconfigurable Architectures 
 
Traditional reconfigurable architectures come in two 
flavors: field -programmable gate array (FPGA) and 
programmable logic device (PLD) [13]. FPGA and PLD 
architectures differ significantly in granularity. Using 
look-up table (LUT) technology, FPGAs can efficiently 
implement any arbitrary logic with few inputs. Since the 
LUTs are easily chained together to implement multilevel 
logic, this architecture is well suited for complex 
operations such as arithmetic and signal processing. On 
the other hand, the PLDs use programmable array logic 
(PAL) blocks that can each implement sum -of-product 
logic of many inputs but limited output. Thus, PLD 
structures are suitable for control FSMs. We performed 
experiments mapping benchmarks from the Two -Chip 
Intercom project [14] to commercial FPGA and PLD 
chips, and measured their utilization based on equivalent 
gate count. The results, shown in Figure  3, are consistent 
with the theoretical claims. 

 

4.2. Hybrid Architecture for Protocol Processing 
 

As mentioned in Section 3, PicoRadio protocol stack takes 
the form of EFSMs. Consequently, we are constructing a 
reconfigurable architecture using both PAL and LU T blocks 
for control and datapath respectively. By utilizing each 
structure on functions that they are best suited for, we can 
achieve the best performance in the combined structure. 

The architecture uses hybrid cells, each consisting of a 
small PAL block  for control, and a small array of LUTs and 
flip-flops (FFs) for data processing. Figure 4 shows a block 
diagram of this architecture. Each cell in this structure 
comprises a PAL block and a small array of LUTs and FFs; 
thus, each cell corresponds to a sma ll FSM. Since protocols 
have many interacting FSMs, the architecture shall have an 
array of these hybrid cells. 

 

4.2.1. Architecture Description 
 

Figure 4 shows a detailed block diagram of a hybrid cell. 
Since the data processing elements are isolated in the LUT 
portion of the cell, the FSM must generate control signals that 
feed into the LUTs. The data inputs go directly to the LUTs, 
and the control inputs go directly to the PAL. Similarly, the 
data outputs come from the LUTs, and the control outputs 
come from the PAL. 
 Since control and data outputs, as well as any internal 
control signals may be used in the control plane, these signals 
must be fed back into the PAL block. Layout of the block 
should be considered carefully to minimize the lengths of 
these feedback signals. 
 
4.2.2. Estimation Models 
 

As mentioned in Section 2, to simplify performance 
evaluation of the architectures, an architecture should have 
estimation models that provide first -order performance 
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Figure 3: Implementation results of wireless protocol blocks. 
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Figure 4: Basic block diagram of the hybrid architecture. 



numbers for a given function. Having estimation models 
greatly expedites the exploration process by preventing 
the need to physically map designs to the structures. For 
our hybrid architecture, we mapped basic designs to our 
LUT and PAL Spice models and monitored the amount of 
power used by each part of the archi tecture. Based on 
these results, we created first -order power models for 
LUT and PAL implementations. Although the accuracy of 
first-order estimations is limited, they are acceptable in 
the early stages of the design process. 

From simulation of benchmarks , we obtained cost 
estimates and deduced a set of prediction equations for the 
power costs of FPGA and PAL structure for our 
benchmarks. Figure 5 shows these equations. The 
estimates are based on 0.25 µm technology on a 1.0V 
supply. Estimation of the data p ortion is based on the 
energy consumed by LUTs and FFs. Estimation of the 
control processor is based on a dynamic logic PAL 
implementation, which has significantly lower energy 
consumption than a traditional sense amp based 
implementation. Note that interc onnect power is not 
included, which is a degree of error that we allow for the 
sake of simplicity. 
 

4.2.3. Performance Analysis 
 

Using the power models, we can obtain first -order 
performance results to see how well the architecture works 
for our applications. The power models allow us to do this 
at an early stage, before any detailed implementation has 
taken place. 

Using the mac_a design from the TCI project as 
benchmark, we estimated its power consumption under 
three different scenarios: purely FPGA implementatio n, 
purely PAL implementation and the proposed hybrid 
approach. The results, shown in Figure 6, suggest that the 
hybrid architecture out -performs the other two scenarios. 
We can expect even greater gain when the power 
dissipation of the PAL reduces as our r esearch in low -
energy PAL matures. 
 

5. CONCLUSION 
 

We have introduced a design methodology for wireless 
protocol processor design using PicoRadio as the driver 

application. Our  main focus is the exploration of a 
reconfigurable platform. A hybrid cell architecture is 
presented to implement the intertwinement of control and 
data processing in the protocol stacks. Further study is 
required to devise the optimal hybrid architecture based on 
the share of control and data processing in the application 
specification. 
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Figure 6: Power comparison of different architectures. 

LUT Power Estimation 
 

LUT Power = (LUTs * 2.2uW) + (FF * 0.5uW) 
 

PAL Power Estimation 
 

PAL Power = (P-terms * Inputs * 0.05uW) + (Outputs * 0.7uW)  

Figure 5: Power estimation equations for LUT and PAL 
implementations. 


