
RECONFIGURABLE PLATFORM DESIGN FOR WIRELESS PROTOCOL PROCESSORS

Tim Tuan, Suet-Fei Li, Jan Rabaey

Berkeley Wireless Research Center

University of California at Berkeley

{timt, suetfei, jan}@eecs.berkeley.edu

ABSTRACT

Low-energy protocol processing is a crucial issue in next -
generation wireless systems. In modern wireless system
design, this problem is tightly coupled with the signal
processing needs. Fierce market competition and
inventive wireless applic ations are imposing stricter
design requirements in energy consumption, cost, size,
and flexibility. To deal with these unique constraints, we
incorporate the platform -based design methodology to
deal with these constraints by advocating reusability. This
paper presents this methodology, and its application on
PicoRadio, a cutting -edge wireless system. In particular,
we describe the design of a reconfigurable architecture
optimized for protocol processing.

1. INTRODUCTION

Communication protocol processing is an increasingly
important problem in the design of next -generation,
wireless systems. The real -time nature of the protocol
stack, and it s tight coupling to the base -band processing,
make this problem very relevant and applicable to digital
communication signal processing. This paper focuses on
reconfigurable protocol processor design for low -power
wireless embedded systems.

Due to applicat ion requirements and severe market
demand, the protocol processor has become a bottleneck
in the design of today’s communication systems. In recent
years, a number of wireless standards, such as Bluetooth
[1], 802.11 [2], and HomeRF [3], have emerged. These
standards will soon become prevalent in embedded
systems for numerous applications, such as cellular
phones, home automation, and digital audio players. A
common problem shared by all the standards is the need
for low -energy, high -throughput protocol processing.
Similar problems are seen in the network processor
community, where the demand for high -speed Internet
calls for the design of complex protocol processing
engines [4].

At UC Berkeley, we are building an ultra -low energy,
sensor-based, ad hoc network called PicoRadio [5]. The

targeted power consumption for each node in the network is
under 100µW to enable self -powering via energy scavenging
[6]. The node must be smaller than 100mm 3, weigh less than
100g, and cost less than one dollar. Consequently, the
protocol processor must be extremely energy efficient, small,
and low-cost. Furthermore, the processor should provide the
flexibility to accommodate different protocol designs, which
is necessary for testing purposes as well as adapting to
changing network traffic.

Using traditional design methodologies, meeting such tight
constraints would require a very lengthy design process,
which would damage the product’s marketability.
Consequently, a new design methodology is needed to design
highly optimized communication protocol processors in a
short period of time. We believ e that platform -based design
methodology [7] is a promising solution.

Section 2 will describe the concept of platform -based
design in the context of protocol processor design in detail.
The central part of the paper presents ou r application of
platform-based design methodology in the design of a low -
power reconfigurable architecture for processing the lower
layers of PicoRadio protocol stack. In Section 3, we will
present profiling of the protocol stack to identify its key
functionalities and properties. In Section 4, we present the
architecture design in the scope of platform-based design.

2. PLATFORM-BASED DESIGN

The need for shorter design time and greater design
complexity has made it necessary to look to new design
methodologies that support design reuse. Platform -based
design supports design reuse by abstracting hardware to a
higher level, or the system platform. Its three -phase flow is
illustrated in Figure 1. The first step is the identification of a
system platform . A system platform consists of a family of
parameterizable architectural modules for computations and
interconnects. The system platform is visible to the
application software, allowing application programming to be
done in software. The second step is platform instantiation.
Given a system platform, to derive a system that supports the
application, the designer would instantiate a particular
platform by choosing a subset of system platform that best

supports the application. The final s tep is implementation
of the system, which integrates and programs these
architectural modules to perform the desired functions.

The challenges in making effective use of platform -
based design methodology involve exploration of the
architectures to see which best support the applications.
This process involves two façades: First, we need to
identify the key functions (kernels) in the target
application set. Using profiling techniques, we can extract
a set of kernel functions that represent the most costly -
either computationally intensive or energy consuming -
portion of the applications. A good platform must
effectively support the key functions of the application;
therefore, understand ing these functions is crucial to
designing a good system using platform-based design.

The second façade is the exploration of architectural
modules to gain insight on which modules best suit which
functions. In phase I, we identify a set of possible
architectures for the target applications. This may include
both existing architectures as well as possibly new
architectures. The architectures should be parameterizable
to provide some degrees of freedom when system
integration takes place. In phase II, we ex plore how
effectively the kernel functions are supported by these
architectures. To assist in performance evaluation, each
architecture should have estimation models that provide
first-order performance numbers for a given function. To
allow final implementation of the system, characterization
of the architectures should include means of
programming.

3. FUNCTIONAL KERNELS OF WIRELESS
PROTOCOL STACKS

Functional profiling te chniques [8] are applied to obtain
the key operations in protocol processing (see Figure 2).
The operations are loosely classified as either control or
data processing dominated operati ons according to the

nature of the algorithm. It should be emphasized this
classification is implementation oriented and is quite different
from the more traditional classification. In the latter case,
“data plane” operations are directly on the feedforwar d path
through the communication pipeline and have demanding
real-time performance constraints, while control operations
are not on this direct path and hence have looser timing
constraints. Our classification is more relevant in the context
of this paper since we are mostly concerned with
implementation perspective of the protocols.

Based on our classification, an operation is data dominated
if its complexity mostly comes from data processing. An
appropriate model of computation for data processing is
Dataflow [9]. On the other hand, an operation is control
dominated if its complexity mostly comes from control
structures. An appropriate model of computation in this case
is finite state machine (FSM). It is apparent from Figure 2 that
protocol processing is heavily control dominated and hence is
described in some FSM based model. PicoRadio protocol
stacks are described in the extended FSMs (EFSM), which
are large networks of interacting FSMs with datapat h
elements [10].

The classification of the functional kernels into control
and data processing operations is very important for the
realization of an efficient implementation. The different
nature of control and data processing operations intuitively
leads to different “optimal” implementation structures. An
efficient architecture for protocol implementation should
contain a mixture of these different implementation
structures. The exact proportion of the different structures
depends on the ratio between control and data in the
application. In the following section, we will introduce a
“hybrid architecture” that is based on this concept.

Phase I

Kernel

Extraction via
Functional

Profiling

Reconfigurable

Fabric

Exploration

Configurable

Platform

Mapping

Performance

Evaluation

Phase II

Implementation

Phase III

Functional

Specification.

Phase I

Kernel

Extraction via
Functional

Profiling

Reconfigurable

Fabric

Exploration

Configurable

Platform

Mapping

Performance

Evaluation

Phase II

Implementation

Phase III

Functional

Specification.

Figure 1: Three-phase Design Methodology.

CRC/verification;

Encryption; Decryption;

Compression;
Decompression

Data Dominated

Synchronization;

Timers;

Segmentation;

Reassembly

Physical

Queue management;

Channel assignment;

Scheduling;

Table lookup

MAC

Topology management;

Routing & forwarding table
lookup;

Classification (Pattern
matching; Parsing;
Modification)

Network

Localization AlgorithmsApplication

Transport

Control DominatedLayers

CRC/verification;

Encryption; Decryption;

Compression;
Decompression

Data Dominated

Synchronization;

Timers;

Segmentation;

Reassembly

Physical

Queue management;

Channel assignment;

Scheduling;

Table lookup

MAC

Topology management;

Routing & forwarding table
lookup;

Classification (Pattern
matching; Parsing;
Modification)

Network

Localization AlgorithmsApplication

Transport

Control DominatedLayers

Figure 2: Control/data kernels in wireless protocol stacks.

4. RECONFIGURABLE ARCHITECTURE

Before looking at specific architectures, we must first
identify the key requirements of the applications. For
PicoRadio, they are ultra -low energy consumption, small
in area, low cost, and flexibility to design changes.
Traditional computing architectures range from
microprocessors to ASICs, but most fail to meet the
energy requirement or the flexibility requirement. There
also exist configurable processors [11] [12], but too often
they are designed to specialize for applications other than
communication protoc ol processing. This leaves us with
the family of reconfigurable logic architectures, which are
sufficiently low -level to allow low -energy circuit
techniques, while providing some degree of flexibility
through reconfiguration. Also, they are not limited to
certain application sets.

4.1. Traditional Reconfigurable Architectures

Traditional reconfigurable architectures come in two
flavors: field -programmable gate array (FPGA) and
programmable logic device (PLD) [13]. FPGA and PLD
architectures differ significantly in granularity. Using
look-up table (LUT) technology, FPGAs can efficiently
implement any arbitrary logic with few inputs. Since the
LUTs are easily chained together to implement multilevel
logic, this architecture is well suited for complex
operations such as arithmetic and signal processing. On
the other hand, the PLDs use programmable array logic
(PAL) blocks that can each implement sum -of-product
logic of many inputs but limited output. Thus, PLD
structures are suitable for control FSMs. We performed
experiments mapping benchmarks from the Two -Chip
Intercom project [14] to commercial FPGA and PLD
chips, and measured their utilization based on equivalent
gate count. The results, shown in Figure 3, are consistent
with the theoretical claims.

4.2. Hybrid Architecture for Protocol Processing

As mentioned in Section 3, PicoRadio protocol stack takes
the form of EFSMs. Consequently, we are constructing a
reconfigurable architecture using both PAL and LU T blocks
for control and datapath respectively. By utilizing each
structure on functions that they are best suited for, we can
achieve the best performance in the combined structure.

The architecture uses hybrid cells, each consisting of a
small PAL block for control, and a small array of LUTs and
flip-flops (FFs) for data processing. Figure 4 shows a block
diagram of this architecture. Each cell in this structure
comprises a PAL block and a small array of LUTs and FFs;
thus, each cell corresponds to a sma ll FSM. Since protocols
have many interacting FSMs, the architecture shall have an
array of these hybrid cells.

4.2.1. Architecture Description

Figure 4 shows a detailed block diagram of a hybrid cell.
Since the data processing elements are isolated in the LUT
portion of the cell, the FSM must generate control signals that
feed into the LUTs. The data inputs go directly to the LUTs,
and the control inputs go directly to the PAL. Similarly, the
data outputs come from the LUTs, and the control outputs
come from the PAL.
 Since control and data outputs, as well as any internal
control signals may be used in the control plane, these signals
must be fed back into the PAL block. Layout of the block
should be considered carefully to minimize the lengths of
these feedback signals.

4.2.2. Estimation Models

As mentioned in Section 2, to simplify performance
evaluation of the architectures, an architecture should have
estimation models that provide first -order performance

0

0.2

0.4

0.6

0.8

1

1.2

PhysSend
(FSM)

Remote (FSM) GenSync (Data) MergeInteger
(Data)

N
o

rm
al

iz
ed

 U
ti

liz
at

io
n

FPGA

PLD

Figure 3: Implementation results of wireless protocol blocks.

� � � � � � 	 �

 	

� � � � � � � � � � � � � � �

� �

 " $ &

() +) - / 0 1 +

() +)

3 1 + 0 1 +

4 + 5 6

7 8 9 /) 6 ;

4 + 5 6

- / 0 1 +

4 + 5 6 3 1 + 0 1 + ;

Figure 4: Basic block diagram of the hybrid architecture.

numbers for a given function. Having estimation models
greatly expedites the exploration process by preventing
the need to physically map designs to the structures. For
our hybrid architecture, we mapped basic designs to our
LUT and PAL Spice models and monitored the amount of
power used by each part of the archi tecture. Based on
these results, we created first -order power models for
LUT and PAL implementations. Although the accuracy of
first-order estimations is limited, they are acceptable in
the early stages of the design process.

From simulation of benchmarks , we obtained cost
estimates and deduced a set of prediction equations for the
power costs of FPGA and PAL structure for our
benchmarks. Figure 5 shows these equations. The
estimates are based on 0.25 µm technology on a 1.0V
supply. Estimation of the data p ortion is based on the
energy consumed by LUTs and FFs. Estimation of the
control processor is based on a dynamic logic PAL
implementation, which has significantly lower energy
consumption than a traditional sense amp based
implementation. Note that interc onnect power is not
included, which is a degree of error that we allow for the
sake of simplicity.

4.2.3. Performance Analysis

Using the power models, we can obtain first -order
performance results to see how well the architecture works
for our applications. The power models allow us to do this
at an early stage, before any detailed implementation has
taken place.

Using the mac_a design from the TCI project as
benchmark, we estimated its power consumption under
three different scenarios: purely FPGA implementatio n,
purely PAL implementation and the proposed hybrid
approach. The results, shown in Figure 6, suggest that the
hybrid architecture out -performs the other two scenarios.
We can expect even greater gain when the power
dissipation of the PAL reduces as our r esearch in low -
energy PAL matures.

5. CONCLUSION

We have introduced a design methodology for wireless
protocol processor design using PicoRadio as the driver

application. Our main focus is the exploration of a
reconfigurable platform. A hybrid cell architecture is
presented to implement the intertwinement of control and
data processing in the protocol stacks. Further study is
required to devise the optimal hybrid architecture based on
the share of control and data processing in the application
specification.

6. REFERENCES

[1] The Bluetooth Special Interest Group http://www.bluetooth.
com/.
[2] IEEE 802.11 Working Group for WLAN http://www.manta.
ieee.org/groups/802/11/
[3] The HomeRF Working Group http://www.homerf.org/.
[4] M. Hathaway, “Building Next Generation Network Processors,”
Proceedings of Gigabit Ethernet Conference, pp. 310-319, 2000
[5] J. Rabaey et al. “PicoRadio Supports Ad Hoc Ultra -Low Power
Wireless Networking,” IEEE Computer , vol. 33, no. 7, pp. 42 -48,
July 2000.
[6] R. Amirtharajah, A. P. Chandrakasan, “Self -Powered Signal
Processing Using Vibration -based Power Generation”, IEEE
Journal of Solid State Circuits, vol. 33, no. 5, pp. 687-95, 1998.
[7] A. Ferrari and A. Sangiovanni -Vincentelli, “System Design:
Traditional Concepts and New Paradigms,” Proceedings of the Int.
Conf. on Computer Design, Austin, Oct. 1999.
[8] J. Rabaey et al. “Challenges and Opportunities in Broadband
and Wireless Communication Designs”, Proceedings of ICCAD,
San Jose, Nov 2000.
[9] E. Lee and T. Parks, “Dataflow Process Networks”, Proceedings
of the IEEE, vol. 83, no. 5, pp. 773-801, May 1995.
[10] L. Lavagno, A. Sangiovanni -Vincentelli & E. Sentovich,
“Models of Computation for Embedded System Design”, NATO
ASI Proceedings on System Synthesis, Il Ciocco, Italy, 1998.
[11] H. Zhang et al, “1V Heterogeneous Reconfigurable
Processor IC for Baseband Wireless Applications,” Proceedings of
ISSCC, pp. 68-69, 2000.
[12] Darren C. Cronquist et al, "Architecture Design of
Reconfigurable Pipelined Datapaths," Twentieth Anniversary
Conference on Advanced Research in VLSI, 1999.
[13] M. Smith, Application Specific Integrated Circuits: Chapter
5.4. Altera MAX, Addison-Wesley, 1997.
[14] Two Chip Intercom Project, http://bwrc.eecs.berkeley.
edu/Research/Two Chip Intercom/.

0

500

1000

1500

2000

FPGA PAL Hybrid
Architectures

P
o

w
er

 D
is

s.
 (

u
W

)

P(PAL)

P(FPGA)

Figure 6: Power comparison of different architectures.

LUT Power Estimation

LUT Power = (LUTs * 2.2uW) + (FF * 0.5uW)

PAL Power Estimation

PAL Power = (P-terms * Inputs * 0.05uW) + (Outputs * 0.7uW)

Figure 5: Power estimation equations for LUT and PAL
implementations.

