
GIGAOP DSP ON FPGA

Brad L. Hutchings and Brent E. Nelson

Brigham Young University
Dept. of Electrical and Computer Eng.

459 CB
Provo, UT 84602

hutch@ee.byu.edu, nelson@ee.byu.edu

ABSTRACT

DSP algorithms such as sonar beamforming and automated
target recognition, are a good match for FPGA technology
due to their regular structure, available parallelism, pipeline-
ability, and modest data word sizes. FPGA implementations
of these applications outperformed their DSP and micropro-
cessor counterparts by factors ranging from 10X on up with
an equivalent sustained computational rate of more than 2
GOps/second per FPGA. This paper first describes each ap-
plication and derives its computational requirements. The
mapping process for each is then described followed by an
analysis of the relative contributions to performance from
pipelining, data parallelism, and memory usage.

1. INTRODUCTION

FPGA technology provides attractive solutions for a range
of applications areas. With their inherent reprogrammabil-
ity, FPGA’s exhibit characteristics normally associated with
programmable processors. At the same time, they often pro-
vide solutions with order-of-magnitude performance advan-
tages over programmable processors. This combination of
flexibility and performance puts them in a unique place be-
tween processors and ASIC’s.

Like all semiconductor products, FPGA’s have histori-
cally followed Moore’s Law where the number of compo-
nents on a chip is doubling every 18 months. This is shown
in Figure 1 for Xilinx devices. Similar density increases have
been demonstrated by other vendors as well. The rightmost
data point is the recently-announcedVirtex-II, containing the
equivalent of more than10, 000, 000 gates.

Until a few years ago it was difficult to contemplate the
use of FPGA’s for many DSP computations due to the need
for wide-word arithmetic and floating point computations.
However, as FPGA’s continue to grow in density this is now
feasible. Put another way — while FPGA’s are notcatch-
ing upwith ASIC’s in terms of raw performance, they have
crossed the density threshold required for use in many ad-
vanced DSP applications. As such, factors like time-to-market

140,000

120,000

100,000

80,000

60,000

40,000

20,000

Year of Introduction

# 
of

 L
og

ic
 E

le
m

en
ts

(4
-in

pu
t L

U
T

s)

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

XC40250

XCV1000

XC2V1000

0

Fig. 1. FPGA Density

and NRE costs are combining to make FPGA’s competitive
in many cases with ASIC’s for application-specific DSP so-
lutions.

Algorithms typically implemented on DSPs generally have
the following characteristics: very large amounts of exploitable
parallelism, modest data word sizes (16-32 bits) and rela-
tively simple control algorithms that can often be statically
scheduled. Such algorithms are also well suited to modern
FPGA devices. The sheer size of modern FPGA devices makes
it feasible to exploit much of that available parallelism. Small,
fixed data word sizes make it feasible to implement high-
performance data paths that can be customized to specific
phases of computation. The simple control schemes used in
these algorithms can be directly implemented as fast, cus-
tomized state machines of moderate complexity. Finally, con-
trol and data-path circuitry can be implemented with distinct
circuitry specifically developed for these separate purposes.
This allows the data-path to operate at100% efficiency with
no interference from control. This is in contrast to DSPs where
control instructions interfere with the data-path operation.
For example, in the applications described in this paper, cus-
tom data-paths which consist of deeply pipelined chains of
operations are constructed in FPGA’s. The result is that rel-



atively complex inner loop computations can be computed
at a throughput of one per cycle without interference from
concurrently executing control circuitry.

To demonstrate these principles the body of this paper
describes two very different DSP applications implemented
in FPGA’s. The first is an image processing application where
a thresholded binary image is manipulated using morpho-
logical operations such as dilation and erosion to identify re-
gions of interest in an automated target recognition system.
The second is a matched-field frequency-domain sonar beam-
former. The first is dominated by bit-level operations and
contains a minimum of control circuitry (it is implemented
by a pipeline of morphological operators). The second is
dominated by complex arithmetic and a nested-loop control
structure. In spite of the differences between the two algo-
rithms they combine to illustrate the principles from above
and provide examples of the high computational rates achiev-
able with FPGA technology.

2. BINARY MORPHOLOGY

Binary morphology consists of a set of operations used to
find, enhance and/or remove certain geometric features in
binary images [1]. In our case, binary morphology imple-
ments a Focus of Attention (FOA) algorithm that serves as
the first data-filter stage in an automated target recognition
(ATR) algorithm to find and pass on only those regions of
the image most likely to contain a potential target. Binary
morphology can be used this way because it can be used to
detect image regions that contain shapes that are a certain
size, or that have a certain aspect ratio, etc. Prefiltering the
data this way improves performance by dramatically reduc-
ing the amount of image data that need to be processed by the
computationally demanding target recognition algorithms.

The most important operations for our purposes are dila-
tion, erosion, and the hit-and-miss transform; all these oper-
ations can be computed using a computational process akin
to image convolution. The inputs to this process are all bi-
nary: the image to be transformed (the input image), and a
small image kernel (referred to hereafter as thestructuring
element) that for our purposes is3 x 3 pixels in size. The out-
put of this process is a transformed image of approximately
the same size as the input image. Pixels in the output image
are computed by “placing” the structuring element at each
pixel location in the input image and logically comparing
all pixel values of the structuring element against the corre-
sponding pixel values in the input image. Figure 2 depicts
simple examples of dilation, erosion, and the hit-and-miss
transform: on-pixels are black, off-pixels are white.

Implementing the FOA algorithm is done by “chaining
together” many binary morphological operators, one after
the other. When implemented in software, FOA is imple-
mented as a succession of function calls, where each func-
tion call implements one morphological operation. In FPGA

Dilation

Erosion

Hit-and-Miss

Input Structuring Element Output

Fig. 2. Morphology Examples

hardware, FOA is implemented by creating a deep image-
processing pipeline which consists of many hardware mod-
ules (each performing a single morphological operation) chained
together. To ease programming complexity, a generic hard-
ware module has been developed that can implement dila-
tion, erosion, or hit-and-miss operations. This module is shown
in Figure 3. This hardware module consists of delay lines
and registers that align the incoming serial image data stream
into a spatial form where3 x 3 neighborhoods can be oper-
ated on. Also shown in the figure are the Template Matcher
and Final Calc blocks that actually compute the value of the
output pixel; these contain programmable ROM locations that
determine which morphology operation is performed.

n

n

Center
Pixel

n

8Delay Lines

Plane
Decoders

Template
Matcher

Final

Calc

Neighborhood

Fig. 3. Generic Morphology Operator Module

2.1. Performance Comparisons

In this section, FOA performance of the FPGA implementa-
tion described above will be compared against a highly op-
timized software implementation currently in use at Sandia



Device Clock Rate Clock Count Time BOPC
G4 400 MHz 108,000,000 .24s 22.1

XCV2000 50 MHz 1,181,053 .023s 2219.8

Table 1. FPGA and Software Performance Comparison

National Labs. This comparison will use bit-ops per clock
cycle (BOPC) as the figure of merit. For this comparison,
a bit-op is defined to be a single binary, boolean operation
(AND, OR, etc). In this analysis, the effective BOPC rate
is computed by: 1) carefully examining the source software
and counting the total number of bit-ops, 2) counting the to-
tal number of clocks required by each implementation (FPGA
and software) by running the applications and measuring run-
times, and 3) dividing the total bit-op count by the total num-
ber of clocks. The final value represents the number of ef-
fective bit-ops that are computed per clock cycle. A typical
FOA application requires 2275 bit-ops per pixel with the to-
tal bit-ops for a (1024 x 1024) image being 2,385,510,400.
Note that this bit-op count only takes into consideration bit-
ops that contribute directly to the computation of morpho-
logical operations. Overhead due to address computation,
branching, etc., is not considered in this bit-op count.

Table 1 compares the performance of the software and
FPGA implementations. The FPGA implementation achieves
a very high BOPC count because it is organized as a very
deep pipeline of concurrently operating hardware modules
(see Figure 3). This organization minimizes control over-
head by using line delays to address pixels to allow each hard-
ware module in the pipeline to perform a morphological op-
eration on a single pixel every clock cycle. This is in contrast
to the G4 which must share computational resources for both
control (address calculation, branching, etc.) and computa-
tion of the morphological operations. Although the FPGA
implementation achieves a 100x higher BOPC count than
the G4, it achieves a clock rate that is about 1/10 that of the
G4, resulting in an overall throughput that is approximately
10x that of the G4. In the end, this application achieves high
performance because it uses static scheduling (which is a re-
sult of connection of line delays) and many customized func-
tional units (the generic hardware modules) which when com-
bined allow the hardware to exploit data-level parallelism to
compute at a very high rate.

3. PASSIVE BEAMFORMING

Beamforming is used to determine the direction-of-arrival
(DOA) of a signal and has use in RADAR, SONAR, and
acoustic applications. It takes advantage of the fact that a
signal arriving at an array of sensors will arrive at each sen-
sor with a different phase. Knowledge of the array geome-
try makes it possible to test for a signal arriving from a par-
ticular direction by appropriately delaying each sensor’s re-
sponse (to bring each received copy of the signal into phase

with all the others) and summing. Since the signals of inter-
est are periodic, maximum power will result when the de-
layed sensor responses are in phase.

the
the sensor number,
Frequency domain techniques are commonly used to beam-

form selected frequencies of received signals. To do this, an
FFT of the sensor data is first computed and the following
algorithm executed:

for d = 0 to numDirections
for f = 0 to numFrequencies {
for (k=0;k<numSensors;k++)
sum[d, f] += fftData[d, f] *

steeringWeights[d, f];
}

where thefftData andsteeringWeightsare complex values.
A full treatment of beamforming techniques can be found in
[2].

A problem with the above computation is the storage of
the steering weights. Consider a typical problem with2, 500
directions,256 frequencies, and400 sensors. The storage re-
quired for steering weights in this case would be1GB. A
key observation is that the frequency domain computation
outlined above is essentially equivalent to a time-delay com-
putation — the signals of interest are delayed prior to sum-
ming. However, in the frequency domain approach, the steer-
ing weight accomplishes this by phase rotating the FFT data.

The approach taken in our design is to store time delays
for each direction and sensor. Steering weights (phase ad-
justment terms) are formed on-the-fly via a multiplication of
the time delay with the frequency of interest. This phase ad-
justment is then added to the phase term of the FFT data (the
FFT data has been pre-converted to polar form), the rotated
data is then converted to rectangular form and summed. This
is shown in the following:

for d = 0 to numDirections
for f = 0 to numFrequencies {
for (k=0;k<numSensors;k++) {
phaseAdjust = delay(d,k) * f;
phase = fftPhase[k, f] + phaseAdjust;
mag = fftMag[k, f];
sum[d, f] +=
polarToRectangular(mag, phase);

}

This reduces the storage required for steering weights from
1GB to 4MB. The complex multiply required in the origi-
nal computation is replaced by a scalar multiply, a scalar ad-
dition, and thepolarToRectangular()function (implemented
as a hardware CORDIC rotation). The result is approximately
a 2X area reduction. The data-path for this computation is
shown in Figure 4.

The above computational kernels have been employed
in the construction of a number of beamformers including



Accum

∆ t x
freq

+
ph ase

mag Polar-

Rect

Φ

Φ í

Rect -

Pola r

re im

FFT Data

Fig. 4. Frequency-Domain Beamformer data-path

those for both SONAR and air-acoustic environments. The
latest is a two-stage matched-field SONAR beamformer de-
signed for shallow water environments. The first stage is
a k-ω beamformer which beamforms multiple rays (direct
path and those bouncing off the bottom and surface). The
first stage localizes the target to an ocean voxel and the sec-
ond stage then does a sub-voxel interpolation beamformer
computation to determine the precise 3-D location of the tar-
get. Both stages employ algorithms with inner loop compu-
tations similar to the design shown in Figure 4.

The computation was mapped to a SLAAC1b PCI board
consisting of a Xilinx 4085 (PE0), two Xilinx 40150 FPGA’s
(PE1 and PE2), and 10 SRAMs. The system runs at a50
MHz clock rate. The width of the majority of the arithmetic
operations performed is between12 and16 bits. PE0 inter-
faces with the host and does the k-ω beamforming once a
second. It sends its results to PE1 and PE2 which perform
the subvoxel beamforming. A total of eight subvoxel beam-
formers fit into the combination of PE1 and PE2 and operate
in parallel. Thus, PE1 and PE2 perform 400M inner loops
per second. The inner loop calculation represents about 10
operations giving a total delivered computation of about 4
GOp/second. The FPGA implementation was compared to
that running on a variety of machines including Pentium-II
and Pentium-III machines, HP PA-RISC workstations, and
G4 Power PC’s. The fastest performing machine was a552
MHz PA-RISC workstation and its runtime was18 times as
long as the FPGA. The slowest machine was a 400MHz
Pentium-II machine with a runtime83 times as long as the
FPGA.

3.1. Beamformer Analysis

The above beamformer design is typical of our experience
— an order-of-magnitude board count advantage of FPGAs
over processors has been typical when considering embed-
ded systems packaging options. This is mainly due to two
factors. First, the amount of parallelism available in beam-
forming is very, very high. Our design places four process-
ing pipelines on each Xilinx 40150 part. However, the de-

sign has adequate parallelism to directly scalewithout mod-
ification to FPGA parts which would hold two hundred pro-
cessing pipelines each — a50× increase. Second, the con-
trol structures required in beamforming implement simple
statically-scheduled nested-loop computations. The lack of
data-dependent control makes pipelining of the entire design
possible down to the LUT level resulting in a high system
clock rate.

4. CONCLUSIONS

Amongst all the important algorithm characteristics listed in
the introduction, the two most important by far are unbounded
parallelism and pipelineability (the lack of cyclic data de-
pendencies). Unbounded parallelism is important because
FPGAs typically achieve a clock rate about 1/10th that of
a microprocessor implemented in the same technology; this
means that an FPGA implementation must exploit about 10x
more parallelism just to break even with a high-performance
microprocessor. Achieving a 10xthroughputincrease over a
microprocessor requires that the FPGA implementation ex-
ploit about 100x more parallelism as shown in the applica-
tions discussed above. Lack of cyclic data dependencies is
also essential because the relatively slow, programmable in-
terconnect used in FPGAs demands the use of pipelining to
achieve high clock rates. In addition, such pipelining pro-
vides an effective way to exploit much of the parallelism avail-
able in applications.

These results demonstrate the feasibility of Giga-Op DSP
on FPGAs. Design effort was not herculean and was simi-
lar to writing high performance embedded software. High
performance was possible because both applications exhib-
ited unbounded parallelism and a lack of cyclic dependen-
cies. Moreover, the relatively simple control schemes used
in these applications could be implemented with dedicated,
statically-scheduled circuitry (fast, simple finite state machines)
that could operate at the same rate as the highly customized
data-path circuitry enabling 100% utilization of the data-path.

Finally, note that many important applications in image
and signal processing exhibit both unbounded parallelism and
few or no cyclic dependencies (either in their entirety or for
some important kernels) making them feasible candidates for
FPGA implementation. Because of this, we can expect to
see the use of FPGAs in DSP applications to grow signifi-
cantly.

5. REFERENCES

[1] Milan Sonka, Vaclav Hlavac, and Roger Boyle,Image
Processing, Analysis, and Machine Vision, PWS Pub-
lishing, 1999.

[2] N. L. Owlsey, Array Signal Processing, Prentice-Hall,
1985.


