GIGAOP DSP ON FPGA
Brad L. Hutchings and Brent E. Nelson

Brigham Young University
Dept. of Electrical and Computer Eng.
459 CB
Provo, UT 84602
hutch@ee.byu.edu, nelson@ee.byu.edu

ABSTRACT 140,000
DSP algorithms such as sonar beamforming and automated 120,000 XC2v1000g
target recognition, are a good match for FPGA technology
due to their regular structure, available parallelism, pipeline- | £ ™
ability, and modest data word sizes. FPGA implementations | £5 400
of these applications outperformed their DSP and micropro- | o =
cessor counterparts by factors ranging from 10X on up with 5 § eo.00
an equivalent sustained computational rate of more than 2| =~ ;.
GOps/second per FPGA. This paper first describes each aprt @ XCV1000
plication and derives its computational requirements. The 20000 XCa0250®
mapping process for each is_thelj described followed by an . o ___ee_ ‘ ‘ ‘
analysis of the relative contributions to performance from 1995 1987 1989 1991 1993 1095 1997 1999 2001 2003
pipelining, data parallelism, and memory usage. Year of Introduction

1. INTRODUCTION Fig. 1. FPGA Density

FPGA technology provides attractive solutions for a range and NRE costs are combining to make FPGA's competitive
of applications areas. With their inherent reprogrammabil- in many cases with ASIC'’s for application-specific DSP so-
ity, FPGA's exhibit characteristics normally associated with lutions.
programmable processors. At the same time, they often pro- Algorithms typically implemented on DSPs generally have
vide solutions with order-of-magnitude performance advan- the following characteristics: very large amounts of exploitable
tages over programmable processors. This combination ofparallelism, modest data word sizes (16-32 bits) and rela-
flexibility and performance puts them in a unique place be- tively simple control algorithms that can often be statically
tween processors and ASIC’s. scheduled. Such algorithms are also well suited to modern
Like all semiconductor products, FPGAs have histori- FPGA devices. The sheer size of modern FPGA devices makes
cally followed Moore’s Law where the number of compo- itfeasible to exploit much of that available parallelism. Small,
nents on a chip is doubling every 18 months. This is shown fixed data word sizes make it feasible to implement high-
in Figure 1 for Xilinx devices. Similar density increases have performance data paths that can be customized to specific
been demonstrated by other vendors as well. The rightmosphases of computation. The simple control schemes used in
data pointis the recently-announdédex-1l, containingthe these algorithms can be directly implemented as fast, cus-
equivalent of more thah0, 000, 000 gates. tomized state machines of moderate complexity. Finally, con-
Until a few years ago it was difficult to contemplate the trol and data-path circuitry can be implemented with distinct
use of FPGA's for many DSP computations due to the needcircuitry specifically developed for these separate purposes.
for wide-word arithmetic and floating point computations. This allows the data-path to operate 66% efficiency with
However, as FPGA's continue to grow in density this is now no interference from control. Thisisin contrastto DSPs where
feasible. Put another way — while FPGA's are watch- control instructions interfere with the data-path operation.
ing upwith ASIC’s in terms of raw performance, they have For example, inthe applications described in this paper, cus-
crossed the density threshold required for use in many ad-tom data-paths which consist of deeply pipelined chains of
vanced DSP applications. As such, factors like time-to-marketperations are constructed in FPGAs. The result is that rel-

atively complex inner loop computations can be computed Input Structuring Element Output
at a throughput of one per cycle without interference from
concurrently executing control circuitry. Dilation

To demonstrate these principles the body of this paper
describes two very different DSP applications implemented = (]
in FPGA's. The firstis animage processing application where
a thresholded binary image is manipulated using morpho-
logical operations such as dilation and erosion to identify re-
gions of interest in an automated target recognition system.
The second is a matched-field frequency-domain sonar beam- | |
former. The first is dominated by bit-level operations and
contains a minimum of control circuitry (it is implemented
by a pipeline of morphological operators). The second is
dominated by complex arithmetic and a nested-loop control
structure. In spite of the differences between the two algo-
rithms they combine to illustrate the principles from above
and provide examples of the high computational rates achiev-
able with FPGA technology.

Erosion

Hit-and-Miss LI
O

Fig. 2. Morphology Examples

2. BINARY MORPHOLOGY hardware, FOA is implemented by creating a deep image-

Binary morphology consists of a set of operations used to Processing pipeline which consists of many hardware mod-

find, enhance and/or remove certain geometric features in!l€S (éach performing asingle morphological operation) chained

binary images [1]. In our case, binary morphology imple- together. To ease programming complexity, a generic hard-

ments a Focus of Attention (FOA) algorithm that serves as Ware module has been developed that can implement dila-
the first data-filter stage in an automated target recognitionion: €rosion, or hit-and-miss operations. This module is shown

(ATR) algorithm to find and pass on only those regions of !N Figure 3. This hardware module consists of delay lines
the image most likely to contain a potential target. Binary and registers that align the incoming serial image data stream

morphology can be used this way because it can be used tdt0 @ spatial form wher8 x 3 neghborhoods can be oper-

detect image regions that contain shapes that are a certaift€d On- Also shown in the figure are the Template Matcher

size, or that have a certain aspect ratio, etc. Prefiltering the2nd Final Calc blocks that actually compute the value of the

data this way improves performance by dramatically reduc- OUtPUt pixel; these contain programmable ROM locations that
ing the amount of image data that need to be processed by thd€termine which morphology operation is performed.
computationally demanding target recognition algorithms.

The most important operations for our purposes are dila- Plane

. . . A Decoders Neighborhood
tion, erosion, and the hit-and-miss transform; all these oper- N)
ations can be computed using a computational process akin | IDJ’@
to image convolution. The inputs to this process are all bi- L D@
nary: the image to be transformed (the input image), and a ‘
small image kernel (referred to hereafter asstracturing Dﬁ
elemen)that for our purposes Bx 3 pixels in &e. The out- Delay Lines —
put of this process is a transformed image of approximately 1
the same size as the input image. Pixels in the output image Center Template

w . . pixel [TT] Matcher
are computed by “placing” the structuring element at each
pixe_l location in the input imgge and Iogically comparing L Fnal | n
all pixel values of the structuring element against the corre- % calc |~

sponding pixel values in the input image. Figure 2 depicts
simple examples of dilation, erosion, and the hit-and-miss
transform: on-pixels are black, off-pixels are white.
Implementing the FOA algorithm is done by “chaining

together” many binary morphological operators, one after
the other. When implemented in software, FOA is imple- In this section, FOA performance of the FPGA implementa-
mented as a succession of function calls, where each function described above will be compared against a highly op-
tion callimplements one morphological operation. In FPGA timized software implementation currently in use at Sandia

Fig. 3. Generic Morphology Operator Module

2.1. Performance Comparisons

Device | Clock Rate| Clock Count| Time | BOPC with all the others) and summing. Since the signals of inter-
G4 400 MHz | 108,000,000 .24s | 22.1 est are periodic, maximum power will result when the de-
XCV2000 | 50 MHz | 1,181,053 | .023s| 2219.8 layed sensor responses are in phase.
the

Table 1. FPGA and Software Performance Comparison
the sensor number,

National Labs. This comparison will use bit-ops per clock Frequency domain techniques are commonly used to beam-
cycle (BOPC) as the figure of merit. For this comparison, form selected frequencies of received signals. To do this, an

a bit-op is defined to be a single binary, boolean operation ~FT Of the sensor data is first computed and the following
(AND, OR, etc). In this analysis, the effective BOPC rate algorithm executed:

is computed by: 1) carefully examining the source software tor d = 0 to nunDirecti ons

and counting the total number of bit-ops, 2) counting the to- for f = 0 to nunFrequencies {

tal number of clocks required by each implementation (FPGA for (k=0; k<nunBensor s; k++)

and software) by running the applications and measuring run- sunfd, f] += fftData[d, f] *

times, and 3) dividing the total bit-op count by the total num- steeringVeights[d, f];
ber of clocks. The final value represents the number of ef- }

fective bit-ops that are computed per clock cycle. A typical
FOA application requires 2275 bit-ops per pixel with the to-
tal bit-ops for a (1024 x 1024) image being 2,385,510,400.

Note that this bit- t only takes int i ti it- . L
ote that this bit-op count only takes into consideration bi A problem with the above computation is the storage of

ops that contribute directly to the computation of morpho- the steering weights. Consider a typical problem @its00

logical operations. Overhead due to address computation,,.” ™ .
branching, etc., is not considered in this bit-op count, directions 256 frequencies, andll0 sensors. The storage re-

quired for steering weights in this case would li&B. A
Table 1 compares the performance of the software and L . .
: . : X .~ "“Kkey observation is that the frequency domain computation
FPGA implementations. The FPGA implementation achieves 7.
. o . outlined above is essentially equivalent to a time-delay com-
a very high BOPC count because it is organized as a very

deep pipeline of concurrently operating hardware modulesEnl::]atm'_r']o;etcsrsilr??ﬁelsfg |S;ir§s;§:ﬁa?§zyeg§£|ﬁ rtthoessliergr_
(see Figure 3). This organization minimizes control over- 9 ’ 9 y bp .

o . ing weight accomplishes this by phase rotating the FFT data.
head by usmg_lme del_ays_ to address pixels to allow e_ach hard"9 Thegapproachptaken in our)égsign is to st(?re time delays
ware module in the pipeline to perform a morphological 0p- for each direction and sensor. Steering weights (phase ad-

eration onasingle pixel every clock cycle. Thisis in contrast j,stment terms) are formed on-the-fly via a multiplication of
to the G4 which must share computational resources for boththe time delay with the frequency of interest. This phase ad-
control (address calculation, branching, etc.) and computa-justment is then added to the phase term of the FFT data (the
tion of the morphological operations. Although the FPGA FFT data has been pre-converted to polar form), the rotated
implementation achieves a 100x higher BOPC count thandata is then converted to rectangular form and summed. This
the G4, it achieves a clock rate that is about 1/10 that of theis shown in the following:

G4, resulting in an overall throughput that is approximately
10x that of the G4. In the end, this application achieves high

where thefftData andsteeringWeightare complex values.
A full treatment of beamforming techniques can be found in

2].

for d = 0 to nunDirections
for f = 0 to nunfrequencies {

performance because it uses static scheduling (which is are- for (k=0;k<nunSensors; k++) {

sult of connection of line delays) and many customized func- phaseAdj ust = del ay(d, k) * f:

tional units (the generic hardware modules) which when com- phase = fftPhase[k, f] + phaseAdj ust;
bined allow the hardware to exploit data-level parallelism to mag = fftMag[k, f];

compute at a very high rate. sun{d, f] +=

pol ar ToRect angul ar (nmag, phase);

}

This reduces the storage required for steering weights from
Beamforming is used to determine the direction-of-arrival 1GB to 4M B. The complex multiply required in the origi-
(DOA) of a signal and has use in RADAR, SONAR, and nal computation is replaced by a scalar multiply, a scalar ad-
acoustic applications. It takes advantage of the fact that adition, and thepolarToRectangular(unction (implemented
signal arriving at an array of sensors will arrive at each sen-as a hardware CORDIC rotation). The resultis approximately
sor with a different phase. Knowledge of the array geome- a2X area reduction. The data-path for this computation is
try makes it possible to test for a signal arriving from a par- shown in Figure 4.
ticular direction by appropriately delaying each sensor'sre- The above computational kernels have been employed
sponse (to bring each received copy of the signal into phasdn the construction of a number of beamformers including

3. PASSIVE BEAMFORMING

freq

At > X

Yo
4_
Y oi

Polar-
Rect

r@+ ~+ im

Accum

phase

—>
FFT Data

Rect -
Polar

Fig. 4. Frequency-Domain Beamformer data-path

those for both SONAR and air-acoustic environments. The
latest is a two-stage matched-field SONAR beamformer de-
signed for shallow water environments. The first stage is
a kw beamformer which beamforms multiple rays (direct

path and those bouncing off the bottom and surface). The

first stage localizes the target to an ocean voxel and the sec-

P

ond stage then does a sub-voxel interpolation beamforme
computation to determine the precise 3-D location of the tar-
get. Both stages employ algorithms with inner loop compu-
tations similar to the design shown in Figure 4.

The computation was mapped to a SLAAC1b PCI board
consisting of a Xilinx 4085 (PEO), two Xilinx 40150 FPGA's
(PE1 and PE2), and 10 SRAMs. The system runs i a
MHz clock rate. The width of the majority of the arithmetic
operations performed is betwegn and16 bits. PEO inter-
faces with the host and does theskbeamforming once a
second. It sends its results to PE1 and PE2 which perform
the subvoxel beamforming. A total of eight subvoxel beam-
formers fit into the combination of PE1 and PE2 and operate
in parallel. Thus, PE1 and PE2 perform 400M inner loops
per second. The inner loop calculation represents about 1
operations giving a total delivered computation of about 4
GOp/second. The FPGA implementation was compared to
that running on a variety of machines including Pentium-II
and Pentium-1ll machines, HP PA-RISC workstations, and
G4 Power PC’s. The fastest performing machine was2a
MHz PA-RISC workstation and its runtime wa8 times as
long as the FPGA. The slowest machine was a A0H -
Pentium-Il machine with a runtim&3 times as long as the
FPGA.

3.1. Beamformer Analysis

The above beamformer design is typical of our experience
— an order-of-magnitude board count advantage of FPGAs
over processors has been typical when considering embed
ded systems packaging options. This is mainly due to two
factors. First, the amount of parallelism available in beam-
forming is very, very high. Our design places four process-
ing pipelines on each Xilinx 40150 part. However, the de-

sign has adequate parallelism to directly seeithout mod-
ificationto FPGA parts which would hold two hundred pro-
cessing pipelines each —5fx increase. Second, the con-
trol structures required in beamforming implement simple
statically-scheduled nested-loop computations. The lack of
data-dependent control makes pipelining of the entire design
possible down to the LUT level resulting in a high system
clock rate.

4. CONCLUSIONS

Amongst all the important algorithm characteristics listed in
the introduction, the two mostimportant by far are unbounded
parallelism and pipelineability (the lack of cyclic data de-
pendencies). Unbounded parallelism is important because
FPGAs typically achieve a clock rate about 1/10th that of
a microprocessor implemented in the same technology; this
means that an FPGA implementation must exploit about 10x
more parallelism just to break even with a high-performance
icroprocessor. Achieving a 1@xroughputincrease over a
microprocessor requires that the FPGA implementation ex-
ploit about 100x more parallelism as shown in the applica-
tions discussed above. Lack of cyclic data dependencies is
also essential because the relatively slow, programmable in-
terconnect used in FPGAs demands the use of pipelining to
achieve high clock rates. In addition, such pipelining pro-
vides an effective way to exploit much of the parallelism avail-
able in applications.

These results demonstrate the feasibility of Giga-Op DSP
on FPGAs. Design effort was not herculean and was simi-
lar to writing high performance embedded software. High
performance was possible because both applications exhib-
ited unbounded parallelism and a lack of cyclic dependen-

d:ies. Moreover, the relatively simple control schemes used

In these applications could be implemented with dedicated,
statically-scheduled circuitry (fast, simple finite state machines)
that could operate at the same rate as the highly customized
data-path circuitry enabling 100% utilization of the data-path.

Finally, note that many important applications in image
and signal processing exhibit both unbounded parallelism and
few or no cyclic dependencies (either in their entirety or for
some important kernels) making them feasible candidates for
FPGA implementation. Because of this, we can expect to
see the use of FPGAs in DSP applications to grow signifi-
cantly.

5. REFERENCES

[1] Milan Sonka, Vaclav Hlavac, and Roger Boylenage
Processing, Analysis, and Machine VisioRWS Pub-
lishing, 1999.

[2] N. L. Owlsey, Array Signal ProcessingPrentice-Hall,
1985.

