
IM PLEM ENTATI ON OF FIXED DSP FUNCTI ONS USI NG THE REDUCED
COEFFICI ENT MUL TIPLI ER

R. H. Turner, T Courtney and R Woods

School of Electrical and Electronic Engineering, The Queen's University of Belfast,
Ashby Building, Stranmillis Road, Belfast, BT9 5AH, Northern Ireland

ABSTRACT

Distributed Arithmetic (DA) has been successfully applied
to the design of area efficient multipliers on FPGAs for
DSP applications. Whilst DA is efficient in applications
where coefficients are fixed, there is little option for
applications with a limited range of coefficient values.
This paper describes a technique for developing area-
efficient multipliers for a range of DSP applications that
fall into this category. This is accomplished by employing
multiplexers at no extra cost to increase the functionality
of existing fixed coefficient multipliers. The technique has
been applied to a DCT FPGA implementation where an
area decrease of up to 50% and speed increase of 33%
was achieved over the conventional route.

1. INTRODUCTION

FPGAs are an attractive platform for DSP implementation
as they provide concurrency in the form of parallelism and
pipelining and programmability. Research has centred
around the efficient use of the on-board Look Up Tables
(LUTs) common on many FPGAs such as the Xilinx
Virtex FPGA series. High performance DA-based DSP
implementations have been demonstrated for the FFT,
digital filters [1], and the DCT [2].

DA exploits the feature of some DSP functions where
fixed multiplication occurs by performing pre-
computation of the possible results and storing them in the
LUTs of the FPGA. It is highly attractive in applications
where the coefficient or transform values do not change.
For applications where the coefficient values are updated,
fully programmable multipliers are typically required
which are relatively expensive. To date, no method has
been presented for low area structures that only need to
multiply a limited range of coefficients. An efficient
mechanism for achieving this objective, is presented here.

2. RECONFIGURATION M UX PRESPECTIVE

The use of fully programmable multipliers in DSP
applications is expensive in FPGA area. Alternatively,
some applications only require a fixed number of
computations such as the multipliers used in computing
the DCT where only a limited number of coefficients are

required. Other examples include poly-phase filters used
in up- or down-sampling and other fixed transforms such
as the FFT. One solution is to derive highly efficient,
fixed coefficient implementation for each case and swap
these fixed circuits into the circuit as required. This is
demonstrated in fig. 1 which shows how four separate
processors computing a1, a2, a3 and a4 can be swapped
in as required. The attraction of this approach is that the
fixed processors will be smaller and faster than the fully
programmable versions but the problem is the time
required to swap in these separate functions, known as the
reconfiguration time which can be prohibitive. This
process only becomes efficient if the reconfiguration is
not frequent which is not typical in DSP. Reference [3]
suggests that hundreds if not thousands of samples need to
be processed between reconfigurations to make this
process worthwhile.

FPGA FPGA

a0

a3

a1

a2

(a) Fully Programmable (b) Re-configurable processors

Fig. 1. General purpose versus fixed processors.

The design of re-configurable systems has been explored
by Shirazi et al. [4] who presents a method for identifying
parts of the circuit that can be reconfigured. This is
achieved by transforming the circuit in such a manner that
parts of the circuit, A and B, can be placed between a
MUX and DEMUX as shown in fig. 2. Circuits A and B
can be reconfigured as only one is required at any time.
The MUX and DEMUX are conceptual and represent
reconfiguration, hence the term reconfigurations MUXes.

A

B

Fig. 2. Reconfiguration MUX and DEMUX.

In our approach, the reconfiguration MUXes have been
implemented in the FPGA in a highly efficient manner by
exploiting the redundant hardware on the FPGA that has
occurred as a result of the normal mapping process. The
availability of these muxes allows the efficient
implementation of multipliers.

3. M UL TIPLIER IM PLEMENTATION ON L UT-
BASED FPGAS

Consider the implementation of a bit addition in the
Virtex FPGA ½ slice shown in fig. 3 (The term “cell” is
used for this figure in the paper). The implementation of
an adder that adds a, b, ci and produces so and co is
shown in fig. 4. The most efficient implementation uses
the dedicated fast carry logic, labeled CY XOR and CY
which means that two inputs of the LUTs are used to
implement the ba⊕ function.

4
I/P

0
1

1

Carry in
from
previous cell

From
previous cell

D Q

Carry out

Carry

Asynchronous output

Synchronous output
output

CY
XOR

CY

Indicates a configuration bit

D type
f lip-f lop

Fig. 3. One half of the Virtex slice (simplified diagram).

This can be extended to a single bit multiplication and
addition as shown in fig. 5 which needs three inputs of the
LUT. In cases where the coefficients are fixed, the circuit
reduces to the form of fig. 4 where the wiring of the inputs
defines the functionality. Connection of bit a in figure 4
implies s=1 whereas connection to 0 for one bit of the
exor gate implies s=0.

1

2
3

1

2
3

3

4 5

4 I/p LUT

CY Xor

CY

a
b

co

ci

so

Fig. 4. Adder implementation in the Xilinx Virtex FPGA.

The implementation means that two available LUT inputs
can be used to implement the some functionality, in our
case, the MUX of fig. 2. This not only provides a

mechanism for implementing the reconfiguration MUX
but also increases the functionality of the cell as shown in
fig. 6. Various functions can be implemented with this
same logic without having to increase the area of the
design or reconfigure the cell. The values A1, B1, B2 and
S are the four inputs to the LUTs. This form represents the
general case for circuits of the type shown in figure 5. In
most cases, the circuit area used for multiplication by one
coefficient can be used to perform multiplication by a
number of coefficients.

1

2
3

1

2
3

1

2
3

3

4 5

4 I/p LUT

CY Xor

CY

a
s

si

ci

co

co

Fig. 5. Implementation of a single bit multiplication and addition

This basic concept of sharing terms has been described by
Potkonjak et al. [5] and applied to filter design. However,
their approach is to produce constant coefficient
(multiplier-less) blocks for a fixed set of coefficients. Our
approach is different in that it allows the coefficients to
change during operation. This allows the cells to have
more than one mode of operation and improves the FPGA
utilization by using hardware that is already available on
the FPGA as a consequence of the mapping process. Thus,
there are a limited number of functions that can be
implemented on the FPGA when the dedicated logic is
fully utilized, as described in table 1.

B1
B2

S

+

B1
B2

S

-/+
+/-

B1
B2

S

-

-/+
-

AAA A
+/-

Fig. 6. Examples implementations using MUX-based technique.

A simple example of this technique is shown in fig. 7.
This shows how multiplication by either 15 or 45 can be
carried out using 2 cells by selecting different shifted
partial products. The multiplexer in the second cell can
also be used to add a shifted value of product (P* 23),
thereby providing multiplication by 23 (fig. 8). This
technique provides a mechanism for implementing
efficient multipliers that operate on a limited range of
input values.

* 21

+

* 22

 * 20 * 20

* 23

45/15

+

* 5 = 1012
* 9 = 10012

 OR *3 = 112

45 = 1011012

 OR 15 = 11112

Fig. 7. Multiplication by either 45 or 15

S=0
S=1

A+B1
A+B2

A-B1
A-B2

A+B1
A-B2

A-B1
A+B2

S=0
S=1

B1
A+B2

-B1
A-B2

B1
A-B2

B1
A+B2

Table 1. Eight function combinations possible with a 4
input LUT with 2 available inputs.

* 15 = 11112
45 = 1011012

 OR 23 = 101112

-

P * 24

 P * 20 * 20

P * 23

* 21

45/23

+

-

Fig. 8. Multiplication by either 45 or 23

4. PARAM ETERISABL E DCT DESIGN

The technique has been applied to the Virtex FPGA
implementation of an existing DCT IP core [6]. The 2D
DCT is an important transform in many image based
applications such as JPEG and MPEG video standards and
is given as:

)k,m(c).k,n(c.)m,n(x)l()k()l,k(DCT
1N

0n

1N

0m
d2

���−
=

−

=
αα= (1)

where x(n,m) is the input data and the values c(n,k)=
cos(2n+1)πk/2N and c(m,k)=cos(2m+1)πk/2N, (k, l=
0,..,N-1) are the coefficients. The values α(k) and α(l) are
scaling variables. The 2D DCT is separable and can
decomposed into two 1D DCTs. Whilst efficient 1D DCT
implementations based on matrix-vector representations
are possible, Hunter [6] uses an alternative strategy based
on a recursive implementation of the DCT that allows a
parameterisable core to be developed. The 1D DCT for a
sequence of input values, x(n), is shown in equation (2)

)2(
N2

k)1n2(
cos)n(x)k()k(DCT

1N

0n

� π+α=
−

=

where 0≤k≤N-1 and α(k)=1/ N , except for α(0)

(2 / N). The computation with a sampled datastream

[])1(),...1(),()(−++= Ntxtxtxnx and k mapped between

0 and N-1 inclusive, is given as follows :

)3(
2

1
.cos)(

2
)(),(

1� −+

= �
����
	��

+−=

Nt

tn
t N

k
tnnx

N
kCnky

π

Using the z transform, equation (3) can be manipulated
into a finite difference equation:

[]

)4(]2n[y]1n[y
N2

k
cos2

]1n[x]n[x
N2

k
cos

N

2
)k()1(]n[y k

−−−�
����� π+

−−����� πα−=

The equation above is equivalent to a 2nd order direct form
realisation of an IIR filter with a time varying amplitude.
This schematic for this representation is given in Fig. 9.
The original DCT implementation is based on the
specification in [6] and processes monochrome images.
The M1 and M2 coefficients are 12 and 10 bits and given

as �
�
�
�

π−
N

k
cos2 and �

�
�
�

πα
N2

k
cos

N

2
)k(respectively.

+ +

X
M1

-

+
X

M2

+

-

First Stage Second Stage

x(n) y(n)

16 16

16

16

16

16

16

Fig. 9. Canonical DCT Core Block

Four configurations were investigated. The first represents
a modular design approach. In the implementation of
figure 9, eight samples are required before any data is
produced. Thus, the previous 7 output samples are ignored
and means that the second stage is only used once every 8
cycles in the implementation. Thus, it is possible to time-
share the second stage as shown in figure 11.

Second
Stage

First
Stage

Transform
Circuitry

First
1D DCT

x(n)
Second
Stage

First
Stage

Second
1D DCT

y(n)

8 8 8 8

Fig. 10. First configuration

Another two implementations to allow the 8 point DCT to
be split into two 4 point DCTs based on the Hou
algorithm [7], were also explored (fig. 12). In this figure,

two samples (one odd, one even) are supplied in parallel
and two outputs are generated, the first and second 4
outputs respectively. This means that the multipliers are
only required to cover 4 rather than 8 coefficients. The
disadvantage of this approach is the extra circuit required.

First
Stage

Second
Stage

First
Stage

Transform
Circuitry

x(n)

y(n)

8

8

8

 Fig. 11. Second configuration

The technique was applied to a number of 8 point 2D
DCT implementations and compared to same
implementation achieved using the standard Xilinx tools.
Table 2 gives the performance comparison (No of slices
are given in brackets for the last two designs). Our
approach (KCM) consistently gives an area decrease of
either 33% or 50% and speed increase of 33%.

Design Area
(LUTs)

Speed
(ns)

Xil 734 67.3 1. 8 point DCT (fig 10) with 8
dual port memories KCM 485 51.5

Xil 670 64.6 2. 8 point DCT (fig 11) with 8
dual port memories (second stage,
time-shared)

KCM 435 47.0

Xil 1701
(1052)

70.2 3. 8 point HOU DCT using two 4
point DCT with 16 dual port
memories KCM 852

(531)
51.0

Xil 1452
(952)

76.1 4. 8 point HOU DCT using two 4
point DCT with 16 dual port
memories (second stage, time-
shared)

KCM 758
(505)

54.4

Table 2. Performance of various DCT circuits
implemented on a Xilinx XVC50 Virtex FPGA

5. CONCLUSIONS

A technique for reducing the size of fixed point
multipliers for DSP applications has been given. The
technique uses spare capacity in the LUT to implement a
MUX and thereby increase the functionality of the slice in
the Virtex. The application of the approach to the DCT
has been demonstrated in this paper but can also be
applied to some types of filtering e.g. poly-phase filtering
and other transforms such as the FFT, DHT and Wavelet
transforms. Similar hardware reductions have been
achieved with the poly-phase filter [8]. Currently,
software is being developed to automatically produce

efficient multipliers for a required set of coefficients.
The impact of using only 4 as opposed to 8 coefficients in
designs 3 and 4 gave a 12-16% relative gain in area.

-

Pre-

Scaler

Q

First stage

Second
stage

First stage

Second
stage

0 -

Four point DCT

Four point DCT

 z-1

+

- -

x(n)
y(n)

9

9

8

8

9

11

11

11

12

11

Fig. 12. Hou’s 8 point DCT implementation

6. ACK NOWLEDGEM ENTS

The authors gratefully acknowledge financial support
from the DHFETE, IRTU, Nortel Networks and the
Engineering and Physical Sciences Research Council.

7. REFERENCES

[1] G. R. Goslin, “Using Xilinx FPGAs to design custom
Digital Signal Processing Devices”, Proc. of the DSPX
1995, pp565-604, Jan 1995.
[2] R. Woods, D. Trainor, and J. P. Heron, “Real-time
Image Processing using the Xilinx XC6200”, IEEE
Design and Test of Computers, pp30-38, Jan-Mar 1998.
[3] T. Courtney, R. H. Turner, and R. Woods, “An
Investigation of Reconfigurable Multipliers for use in
Adaptive Signal Processing”, IEEE Symp. on FPGAs for
Custom Computing Machines (FCCM), Napa, USA,
pp341-343, May 2000.
[4] N. Shirazi, W. Luk, P. Cheung, “Automating
Production of Run-Time Reconfigurable Designs”, Proc.
IEEE Symp. on FCCM, USA, pp. 147-156, April 1998.
[5] M. Potkonjak, M. B. Srivastava and A. P.
Chandrakasan, “Multiple constant multiplications:
efficient and versatile framework and algorithms for
exploring common subexpression elimination” , IEEE
Trans. On CAD of Integrated Circuits and Systems” , Vol.
15., No. 2, pp. 151-165, 1996.
[6] J. Hunter and J. V. McCanny, “Discrete Cosine
Transform Generator for VLSI Synthesis”, IEEE ICASSP,
Vol. 5, pp. 2997–3000, 1998.
[7] H.S.Hou, “The fast Hartley transform algorithm”,
IEEE Transactions on Computers, Vol. C-36, No.2,
pp.147-156, Feb. 1987.
[8] C. N. Ang, R. H. Turner, T. Courtney and R. Woods,
“Virtex FPGA implementation of a polyphase filter for
sample rate conversion”, 34th Asilomar Conf. on Signals,
Systems and Computers, Asilomar, USA, to be published,
IEEE Computer Society, Oct. 2000.

