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ABSTRACT 
 
Distributed Arithmetic (DA) has been successfully applied 
to the design of area efficient multipliers on FPGAs for 
DSP applications. Whilst DA is efficient in applications 
where coefficients are fixed, there is little option for 
applications with a limited range of coefficient values. 
This paper describes a technique for developing area-
efficient multipliers for a range of DSP applications that 
fall into this category. This is accomplished by employing 
multiplexers at no extra cost to increase the functionality 
of existing fixed coefficient multipliers. The technique has 
been applied to a DCT FPGA implementation where an 
area decrease of up to 50% and speed increase of 33% 
was achieved over the conventional route. 
 

1.  INTRODUCTION 
 
FPGAs are an attractive platform for DSP implementation 
as they provide concurrency in the form of parallelism and 
pipelining and programmability. Research has centred 
around the efficient use of the on-board Look Up Tables 
(LUTs) common on many FPGAs such as the Xilinx 
Virtex FPGA series. High performance DA-based DSP 
implementations have been demonstrated for the FFT, 
digital filters [1], and the DCT [2]. 
 
DA exploits the feature of some DSP functions where 
fixed multiplication occurs by performing pre-
computation of the possible results and storing them in the 
LUTs of the FPGA. It is highly attractive in applications 
where the coefficient or transform values do not change. 
For applications where the coefficient values are updated, 
fully programmable multipliers are typically required 
which are relatively expensive. To date, no method has 
been presented for low area structures that only need to 
multiply a limited range of coefficients. An efficient 
mechanism for achieving this objective, is presented here.  
 

2.  RECONFIGURATION M UX PRESPECTIVE 
 
The use of fully programmable multipliers in DSP 
applications is expensive in FPGA area. Alternatively, 
some applications only require a fixed number of 
computations such as the multipliers used in computing 
the DCT where only a limited number of coefficients are 

required. Other examples include poly-phase filters used 
in up- or down-sampling and other fixed transforms such 
as the FFT. One solution is to derive highly efficient, 
fixed coefficient implementation for each case and swap 
these fixed circuits into the circuit as required. This is 
demonstrated in fig. 1 which shows how four separate 
processors computing a1, a2, a3 and a4 can be swapped 
in as required. The attraction of this approach is that the 
fixed processors will be smaller and faster than the fully 
programmable versions but the problem is the time 
required to swap in these separate functions, known as the 
reconfiguration time which can be prohibitive. This 
process only becomes efficient if the reconfiguration is 
not frequent which is not typical in DSP. Reference [3] 
suggests that hundreds if not thousands of samples need to 
be processed between reconfigurations to make this 
process worthwhile.   
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(a) Fully Programmable (b) Re-configurable processors 

Fig. 1. General purpose versus fixed processors. 
 
The design of re-configurable systems has been explored 
by Shirazi et al. [4] who presents a method for identifying 
parts of the circuit that can be reconfigured. This is 
achieved by transforming the circuit in such a manner that 
parts of the circuit, A and B, can be placed between a 
MUX and DEMUX as shown in fig. 2. Circuits A and B 
can be reconfigured as only one is required at any time. 
The MUX and DEMUX are conceptual and represent 
reconfiguration, hence the term reconfigurations MUXes.    
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Fig. 2. Reconfiguration MUX and DEMUX. 



In our approach, the reconfiguration MUXes have been 
implemented in the FPGA in a highly efficient manner by 
exploiting the redundant hardware on the FPGA that has 
occurred as a result of the normal mapping process. The 
availability of these muxes allows the efficient 
implementation of multipliers. 
 
3. M UL TIPLIER IM PLEMENTATION ON L UT-
BASED FPGAS  
 

Consider the implementation of a bit addition in the 
Virtex FPGA ½ slice shown in fig. 3 (The term “cell”  is 
used for this figure in the paper). The implementation of 
an adder that adds a, b, ci and produces so and co is 
shown in fig. 4. The most efficient implementation uses 
the dedicated fast carry logic, labeled CY XOR and CY  
which means that two inputs of the LUTs are used to 
implement the ba⊕ function. 
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Fig. 3. One half of the Virtex slice (simplified diagram).  

 

This can be extended to a single bit multiplication and 
addition as shown in fig. 5 which needs three inputs of the 
LUT. In cases where the coefficients are fixed, the circuit 
reduces to the form of fig. 4 where the wiring of the inputs 
defines the functionality. Connection of bit a in figure 4 
implies s=1 whereas connection to 0 for one bit of the 
exor gate implies s=0. 
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Fig. 4. Adder implementation in the Xilinx Virtex FPGA. 

The implementation means that two available LUT inputs 
can be used to implement the some functionality, in our 
case, the MUX of fig. 2. This not only provides a 

mechanism for implementing the reconfiguration MUX 
but also increases the functionality of the cell as shown in 
fig. 6. Various functions can be implemented with this 
same logic without having to increase the area of the 
design or reconfigure the cell. The values A1, B1, B2 and 
S are the four inputs to the LUTs. This form represents the 
general case for circuits of the type shown in figure 5. In 
most cases, the circuit area used for multiplication by one 
coefficient can be used to perform multiplication by a 
number of coefficients. 
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Fig. 5. Implementation of a single bit multiplication and addition  

 
This basic concept of sharing terms has been described by 
Potkonjak et al. [5] and applied to filter design. However, 
their approach is to produce constant coefficient 
(multiplier-less) blocks for a fixed set of coefficients. Our 
approach is different in that it allows the coefficients to 
change during operation. This allows the cells to have 
more than one mode of operation and improves the FPGA 
utilization by using hardware that is already available on 
the FPGA as a consequence of the mapping process. Thus, 
there are a limited number of functions that can be 
implemented on the FPGA when the dedicated logic is 
fully utilized, as described in table 1.  
 

 
B1
B2

S

+ 

 
B1
B2

S

-/+ 
+/- 

 
B1
B2

S

- 

-/+ 
- 

AAA A
+/- 

Fig. 6. Examples implementations using MUX-based technique. 

 
A simple example of this technique is shown in fig. 7. 
This shows how multiplication by either 15 or 45 can be 
carried out using 2 cells by selecting different shifted 
partial products. The multiplexer in the second cell can 
also be used to add a shifted value of product (P* 23), 
thereby providing multiplication by 23 (fig. 8). This 
technique provides a mechanism for implementing 
efficient multipliers that operate on a limited range of 
input values.  
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Fig. 7. Multiplication by either 45 or 15 
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Table 1. Eight function combinations possible with a 4 
input LUT with 2 available inputs.   
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Fig. 8. Multiplication by either 45 or 23 

 
4.  PARAM ETERISABL E DCT DESIGN 

 
The technique has been applied to the Virtex FPGA 
implementation of an existing DCT IP core [6]. The 2D 
DCT is an important transform in many image based 
applications such as JPEG and MPEG video standards and 
is given as:  
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where x(n,m) is the input data and the values c(n,k)= 
cos(2n+1)πk/2N and c(m,k)=cos(2m+1)πk/2N, (k, l=  
0,..,N-1) are the coefficients. The values α(k) and α(l) are 
scaling variables. The 2D DCT is separable and can 
decomposed into two 1D DCTs. Whilst efficient 1D DCT 
implementations based on matrix-vector representations 
are possible, Hunter [6] uses an alternative strategy based 
on a recursive implementation of the DCT that allows a 
parameterisable core to be developed. The 1D DCT for a 
sequence of input values, x(n), is shown in equation (2) 
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where 0≤k≤N-1 and α(k)=1/ N , except for α(0) 

( 2 / N ). The computation with a sampled datastream 
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Using the z transform, equation (3) can be manipulated 
into a finite difference equation:  
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The equation above is equivalent to a 2nd order direct form 
realisation of an IIR filter with a time varying amplitude. 
This schematic for this representation is given in Fig. 9. 
The original DCT implementation is based on the 
specification in [6] and processes monochrome images. 
The M1 and M2 coefficients are 12 and 10 bits and given 

as �
�
�
�

π−
N

k
cos2 and �

�
�
�

πα
N2

k
cos

N

2
)k(  respectively. 

 

+ + 

X 
M1 

- 

+ 
X 

M2 

+ 

- 

First Stage Second Stage 

x(n) y(n) 

16 16 

16 

16 

16 

16 

16 

Fig. 9. Canonical DCT Core Block 

Four configurations were investigated. The first represents 
a modular design approach. In the implementation of 
figure 9, eight samples are required before any data is 
produced. Thus, the previous 7 output samples are ignored 
and means that the second stage is only used once every 8 
cycles in the implementation. Thus, it is possible to time-
share the second stage as shown in figure 11.  
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Fig. 10. First configuration 
 
Another two implementations to allow the 8 point DCT to 
be split into two 4 point DCTs based on the Hou 
algorithm [7], were also explored (fig. 12). In this figure, 



two samples (one odd, one even) are supplied in parallel 
and two outputs are generated, the first and second 4 
outputs respectively. This means that the multipliers are 
only required to cover 4 rather than 8 coefficients. The 
disadvantage of this approach is the extra circuit required.   
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 Fig. 11. Second configuration 
 
The technique was applied to a number of 8 point 2D 
DCT implementations and compared to same 
implementation achieved using the standard Xilinx tools. 
Table 2 gives the performance comparison (No of slices 
are given in brackets for the last two designs). Our 
approach (KCM) consistently gives an area decrease of 
either 33% or 50% and speed increase of 33%. 
 

Design  Area 
(LUTs) 

Speed 
(ns) 

Xil 734 67.3 1. 8 point DCT (fig 10) with 8 
dual port memories KCM 485 51.5 

Xil 670 64.6 2. 8 point DCT (fig 11) with 8 
dual port memories (second stage, 
time-shared) 

KCM 435 47.0 

Xil 1701 
(1052) 

70.2 3. 8 point HOU DCT using two 4 
point DCT with 16 dual port 
memories KCM 852 

(531) 
51.0 

Xil 1452 
(952) 

76.1 4. 8 point HOU DCT using two 4 
point DCT with 16 dual port 
memories (second stage, time-
shared) 

KCM 758 
(505) 

54.4 

 
Table 2. Performance of various DCT circuits 
implemented on a Xilinx XVC50 Virtex FPGA 
 

5. CONCLUSIONS 
 

A technique for reducing the size of fixed point 
multipliers for DSP applications has been given. The 
technique uses spare capacity in the LUT to implement a 
MUX and thereby increase the functionality of the slice in 
the Virtex. The application of the approach to the DCT 
has been demonstrated in this paper but can also be 
applied to some types of filtering e.g. poly-phase filtering 
and other transforms such as the FFT, DHT and Wavelet 
transforms. Similar hardware reductions have been 
achieved with the poly-phase filter [8]. Currently, 
software is being developed to automatically produce 

efficient multipliers for a required set of coefficients.   
The impact of using only 4 as opposed to 8 coefficients in 
designs 3 and 4 gave a 12-16% relative gain in area.   
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Fig. 12. Hou’s 8 point DCT implementation 
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