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ABSTRACT

Penasive micro-sensingandactuationmay revolutionizethe way
in which we understandand managecomplex physicalsystems:
from airplanewingsto complex ecosystemsThe capabilitiesfor
detailedphysicalmonitoringandmanipulatioroffer enormousp-
portunitiesfor almostevery scientificdiscipline,andit will alter
thefeasiblegranularityof engineering.

We identify opportunitiesand challengedor distributed sig-
nal processingn networks of thesesensingelementsandinvesti-
gatesomeof thearchitecturathallengeposedy systemghatare
massiely distributed, physically-coupledwirelessly networked,
andenegy limited.

1. INTRODUCTION

Theavailability of low-power micro-sensorsactuatorsembedded
processorsand radiosis enablingthe applicationof distributed
wirelesssensingto a wide rangeof applications,including en-
vironmentalmonitoring, smartspacesmedicalapplications,and
precisionagriculture[1][2]. Most deploed sensometworks in-
volve relatively smallnumbersof sensorswired to a centralpro-
cessingunit whereall of the signalprocessings performed3]. In
contrast this paperfocuseson distrib uted, wir eless sensornet-
works in whichthesignalprocessings distrib uted alongwith the
sensing.

e Why distrib uted sensing? Whenthe preciselocation of
a signalof interestis unknawvn in a monitoredregion, dis-
tributed sensingallows oneto placethe sensorscloserto
the phenomendeing monitoredthanif only a singlesen-
sorwereused. This yields higher SNR, andimproved op-
portunitiesfor line of sight. While SNR canbe addressed
in mary casesby deplg/ing one very large sensitve sen-
sor, line of sight,andmore generallyobstructionscannot
beaddressetly deploying onesensoregardlesf its sen-
sitivity. Thus, distributed sensingprovides robustnessto
ernvironmentalobstacles.

e Why wir elessAWhenwired networking of distributedsen-
sorscanbe easily achieved, it is often the more adwanta-
geousapproachMoreover, whennodescanbewiredto re-
newable(relatively infinite) enegy sourcesthistoo greatly
simplifies the systemdesignand operation. However, in
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mary ervisionedapplicationsthe ervironmentbeingmon-
itoreddoesnot have installedinfrastructureor eithercom-
municationsor enegy, andthereforeuntetherechodesmust
rely onlocal, finite, andrelatively smallenegy sourcesas
well aswirelesscommunicatiorchannels.

Why distrib uted processing? Finally, althoughsensors
aredistributedto becloseto thephenomenagnemightstill
consideran architecturan which sensoroutputscould be
communicatedbackto a centralprocessinginit. However,
in the contet of untetheredodesthefinite enegy budget
is aprimarydesignconstraintCommunicationss akey en-
ergy consumenstheradiosignalpowerin sensonetworks
dropsoff with 7%[4] dueto groundreflectionsfrom short
antennaheights. Therefore,one wantsto processdataas
muchaspossibleinside the network to reducethe number
of bits transmittedparticularlyover longerdistances.

2. MOTIVATING APPLICATION

The potentialapplicationsof wirelesssensometworks are highly
varied: e.g.,Physiologicaimonitoring; Ervironmentalmonitoring
(air, water soil chemistry);Condition basedmaintenanceSmart
spacesMilitary; Precisiomagriculture;TransportationFactoryin-
strumentatiorandinventorytracking

Habitatmonitoring[Cerpa-etal01iHamilton,Steere-etal0Qjro-
vides a rich collection of sensingmodalitiesand ervironmental
conditionsandwe useit to motivateourtechnicaldiscussionCon-
siderthegoalof supportingdatacollectionandmodeldevelopment
of complex ecosystemsScientistsandervironmentaimpactmon-
itoring authoritieswould lik e to monitor soil andair chemistry as
well as plant and animal speciespopulationsand behaior. For
the latter, the primary modalitiesareimagingandacousticgo lo-
calize,identify andtrack speciesor phenomendasedon implicit
signals(acousticandseismic),or explicit signals(RF tags).These
facilitiesmustbedeplo/ablein remotelocationsthatlackinstalled
enegy andcommunicationinfrastructuresmotivatingtheneedfor
low-pawer wirelesscommunication.

Thestratgy for nodecooperatiorstratgy hassignificantcon-
sequences termsof communicatiorbandwidthandenegy con-
sumption.For example considethetaskof identifying bird species
in view of several cameras.If it is to be accomplishedhrough
image analysis,we could streamall the video backto a human
operatora very costly approach. Alternatively, we could stream
audioto a centrallocation,which thenperformssignalprocessing
to identify andstreambackonly thosestreamghataremostlik ely
to containa target species. While this reducescommunications



overheadgreatly it still suffersfrom communicationsateny and
lacksscalabilitydueto theneedto streamaudiothorougha central
processingoint. Finally, we might distributethe problemfurther,
hostingtheaudiosignalprocessingoftwareonthenodesandde-
velopingalgorithmsthatrequireonly local cooperatiorto malke a
decisionto captureimages. This approachs scalablein thatno
long-rangestreamingof audioor video is necessaryresultingin
more efficient useof communicationdandwidthandlimited en-
ergy resources.

In the remainderof this paperwe identify someof the tech-
nical challengesssociateavith the designof wirelesssensomet-
worksanddiscussseveralalgorithmicapproaches.

3. TECHNICAL CHALLENGES

Mostervisionedsensonetwork applicationsencountebneor more
of thefollowing challenges:

e Untetheredfor enegy andcommunicatiorrequiringmax-
imal focuson enepy efficiengy.

e Ad hoc deployment, requiring that the systemidentifies
and copeswith the resultingdistribution and connectvity
of nodes.

e Dynamic ervironmentalconditionsrequiringthe systenmto
adaptover time to changingconnectyity andsystemstim-
uli.

e Unattended operationrequiring configurationand recon-
figurationbe automati(self-configuration)

To addresghesechallengingernvironments several stratgies
arelikely to bekey building blocks/techniqueor wirelesssensor
networks:

e Collaborative signal processingamongnodesthat have
experienceda commonstimuluswill greatly enhancethe
efficiengy (information per bit transmitted)of thesesys-
tems. Develop both coherent signal processingon small
clustersby a centralizedentity within the cluster andnon-
coherent processingvith muchlessstringentsynchroniza-
tion requirementsand applicableacrosdarger numbersof
morelooselycoupledelements.

e Exploiting redundancyof hardware elementgo compen-
satefor ad hoc deploymentof systems.If elementannot
be carefully positionedrelative to eachotherandthe ervi-
ronment,then an alternatestrateyy to achieve “coverage”
is to deploy a greaterdensityof elementsso that one can
male useof somesubsethathave thedesiredabsoluteand
relative position. In somecontets, evenif elementscan
be uniformly placedin 3-spacegernvironmentalconditions
might be suchthatcoverages not uniform dueto obstacles
andother sourcesf noise. Anotherapplicationof redun-
dang is whentheincrementakostof a nodeduringinitial
deplgymentis much smallerthan the incrementalcost of
deplgying new nodesor renaving noderesourcege.g.,en-
emy). In this case,onecanexploit redundang to extend
systenlifetime by adjustingduty cycle basedn local den-
sity andlocaldemand.

e Adaptivefidelity signal processings anotheistrateyy that
canbe exploitedin sensometworksto make trade-ofs be-
tweenenepy, accurag, andrapidity of results. Recogniz-
ing thatoneis trying to detectnon-deterministipphenom-

enain the presencef communicatiomoiseandsensodi-
versity, thefidelity andtimelinessof thesignalprocessingt
individual sensonodescanbe adaptedo enegy resources
andlateng requirements.

e A hierarchical, tiered architecture cangreatlycontritute
to overall systemlifetime and capability Wheneer pos-
sible, higher capacitysystemelementscan be usedto of-
fload drain on small form factorelementswhile the latter
canbeexploitedto obtainthedesiredphysicalproximity to
stimuli. Moreover, evenamongelementwith homogenous
capabilities, creating clustersand assigningspecialcom-
bining functionsto clusterheadscan contrikute to overall
systemscalability However, to avoid compromisingro-
bustnesssuchclusters/hierarchynust be self-configuring
andreconfiguringin the faceof ernvironmentalor network
changes.

4. TECHNICAL APPROACHES

We now describethreegenerictechniqueghat would enabledis-
tributedsignalprocessindasksin wirelesssensomnetworks.

4.1. Coherent processingalgorithms

Coherensignalprocessinglgorithmsaredistinguishedrom non-
coherenmethodsn thatinformationaboutthe phaseof thewave-
front impinging on the nodesmust be corveyed. Beamforming
techniquesallow localizationof signalsthat originatewithin the
corvex hull of the participatingnodes,higher SNR estimateof
the signalscomparedo non-coherentnethodsanddetermination
of bearinganglesfor signalsthatoriginateoutsidethe convex hull
of the participatingnodes.The priceis a higherlevel of synchro-
nization (to within a smallfraction of one oscillation),andcom-
municationof relatively high bit rate datastreamsconsistingof
sampledwaveforms. Givenits high resourcecost, we shouldre-
sortto coherentprocessingnly whenwe cannotattainadequate
accurag in theresultwith non-coherenmethodssuchascombi-
nationof likelihoodfunctions.

Oneway to organizethe operationgeadingto coherenbeam-
formingis asfollows. Nodesgothroughasequencef internallev-
els of signalprocessindgeforedeterminingthat neighborsshould
be involved in a detection/localizatiomecision. An ad hoc net-
work is constructedior non-coherentlecision-makingusing for
examplethe single winner electionalgorithm of [2]. The algo-
rithm is optimizedto minimize the overheadin finding a fusion
center sincerelatively little datamustactuallybe communicated.
However, if the decisionhasinsufiicient certaintyor resolution,
the samesetof nodesbecomeinvolved in a new network set-up
thatseekgo minimizethe enegy consumptiorin conveying sam-
pled waveformsto a commoncentral processingpoint. To this
endsignificantoverheads acceptablsincelargeamountsof data
will becorveyedin thelocal neighborhoodA multi-winnerelec-
tion algorithmto accomplisithisis alsodescribedn [2]. Standard
beamformingtechniquescan now be appliedusingthe datacol-
lectedfrom theclusterof nodes.

Thereis no requirementfor uniform lay-davn of nodesto
achieve beamforming[5]. To track distantsourcesiwo or more
clustersof nodescan be used,and with the intersectionof the
bearinglines usedto establishlocation. Note that simply using
all nodesin the network to do onemassive beamformingpperation



couldaccomplistthis end,but excessve communicationgndsig-
nal processingcompleity would be required. Rathey for a scal-
able solution a signal processingstepis requiredthat recognizes
whethernearor far objectsarebeingtracked. A crudetechnique
is to considerthe SNR variationsamongnodesin a clusterandto
neighboringclusters.If the SNRis similar, thenthe signalsource
is likely to be distant. Having madethis determination clusters
maydecideto estimatdinesof bearingor not, whethemprobabilis-
tically or accordingto a predeterminedchedule Theinformation
onthebearinglinesis thencorveyedto a centralnodedesignated
to performthe (noncoherentjusion. Thus,thereis never acasen
which sampledvaveformsmustbe cornveyed over alargenumber
of hops.

Achieving therequiredevel of synchronisnior coherenbeam-
forming is in principle relatively straightforvard for systemsin
which every node possessea radio. Sincethe propagationve-
locity of seismicand acousticsignalsis six ordersof magnitude
slower thanthat of radio waves, achieving datalock for RF com-
municationswould seemto alreadybe muchbettersynchroniza-
tion thanis requiredfor beamforming. However, particularcare
mustbepaidto thenodearchitectureo take advantageof thistim-
ing information. The typical interruptcycles of general-purpose
processorganbe tensof milliseconds an eternitywith respecto
even acousticsignals. Thus,embeddedeal-timecomponentsare
requiredin the nodesto dealwith time-stampingf thedata.

4.2. Localization

Nodelocationis emplo/edby routingprotocolsthatusespatialad-
dressesandby signalprocessingalgorithms(e.g. beamforming)
thatareusedfor taskssuchastargettracking. The underlyingal-
gorithm problemis that of localizationwherebythe nodesin the
network discover their spatialcoordinatesiponnetwork boot-up.
When the sensomodesare deplg/ed in an unplannediopology
thereis no a priori knowledge of location. The useof GPSin
sensonodess ruledoutin mary scenariodecaus®f pover con-
sumption,antennasize, and overheadobstructionssuchasdense
foliage. The ad hoc natureof deploymentrulesoutinfrastructure
for mary scenarioof localization. It is critical that sensomet-
work nodesbe ableto estimatetheir relative positionswithout as-
sistanceusingmeanghatcanbe built-in.

Thelocalizationproblemin itselfis agoodexampleof asignal-
processingaskthat the sensometwork needsto solve. The ba-
sic approachwould be for sensomodesto gathersuficient num-
ber of pairwise distanceestimatesiia somesuitablemechanism,
andthenusemultilaterationalgorithmsto estimatepositionsof the
nodes.To begin with, a few nodesmight know their positionvia
othermeangbeacomodes) but attheendof thelocalizationpro-
cessevery nodewould hopefullyknaow its position.

A key problemhowever is thatin corventionalformulations
of multilateration[6][7] one needsto estimatethe locationof an
entity given estimatef its distanceto 3 or more beaconswith
known positions. In sensometworks a very high densityof bea-
consnodeswould be neededTo keeptherequiredbeacordensity
andenepgieslow, a preferredmethodwould beto jointly estimate
positionsof all thenon-beacomodesvia a collaboratve multilat-
erationformulation basedon criterion suchas least-squarerror
minimization. Besidesbeingcomputationallyhardfor large num-
berof nodesdoingthis would requireacentralizechodewhereall
the distanceestimatesvould be collectedat significantcommu-
nicationand associate@&negy cost. A morescalablesolutionis

locally distributediterative multilateration[8] wherebyanodecal-
culatesits positionandis promotedto a beacorassoonasenough
of its 1-hopneighborsarebeaconsStartingwith acritical density
of beaconsa percolation-like phenomenonvould resultin grad-
ually all the nodesdiscorering their position. With a suficient
beacordensity asmallnumberof successie multilaterationsteps
leadto rapid convergenceof location estimates. The communi-
cationoverheads muchlower thanin centralizedapproactasall

messagexchangeis strictly local andis easily piggybacled on

routingmessages.

Anotherchallengen localizationis estimationof distancebe-
tweena pair of nodes.Usingtime-of-flight of radio signals(asin
GPS)is ruled out whenthe distancesaretoo tiny andradio fre-
guenciesnot very high. A readily available methodwould be to
usetherecevedsignalstrengthindication(RSSI)provided be the
radio. TheRSSldatacanbe cheaplypiggybacled onregularrout-
ing anddata. The accuray of this approachcanbe improved by
usinga parameterizedhannel pathlossmodelwhoseparameters
arealsoestimatedogethemwith position[8]. However, in practice,
the RSSIbasedapproachworksonly in the absencef significant
multipath effects. In mostervironmentsotherthan openspaces
multipathis anissue.A promisingalternatve technologyis to es-
timatedistanceby time of flight of acousticor ultrasoundsignals,
andusingthe muchfasterradio signalto establishtime reference
[91[10][11].

4.3. Distrib uted power management

Dynamic power managementechniquessuch as shutdevn and
dynamicvoltage scalinghave emeged as powverful methodsfor
powver-awarecomputing.Pover-awareoperations evenmoreim-
portantfor wirelesssensometworks, andrequiresdistributedver
sionsof pover managemertechniques.

As an example,considershutdavn, which is widely usedin
portablecomputingsystemssuchas laptops. In sensometsone
could exploit redundannodesby turning on only a time- varying
subsebf nodeswherethesubsets selectedor desiredsensoand
radiocoverage.Theremainingnodescanbe shutdavn, only to be
wokenupto provide additionalsensorreadingor communication
routeswhensomethingnterestinghappeng12].

A key problemin sucha distributedshutdevn schemes the
stratgy to selectwhich nodeto shutdevn andwhich to turn on
atary giveninstant. A goodway to modelthis problemis to op-
timally divide the sensomodesinto several subsetsuchthatary
givensubseprovidesa baselindevel of sensingandcommunica-
tion coverage.Thedifferentsubsetsanthenbe turnedon andoff
accordingto a duty cycle determinedoy a repetitve schedule As
nodegdie by depletingtheir batteriesthe subsetarechanged.

Unfortunately modelingthe problemin this fashionrequires
oneto gatherglobal informationto find the subsets.Sincecom-
municationis expensve in enegy, the costof the pover manage-
ment algorithm would swamp the savings from power manage-
ment! This illustrates the dilemma that sooften arisesin prob-
lems in sensornets: the seeminglyoptimal way of solving a
problem often resultsin algorithms whosecommunication en-
ergy costsexceedtheir benefits. Therefore,a betterstratgy is
to usealgorithmsthat only shootfor goodthoughsuboptimalre-
sultsbut requireonly locally distributed processingvith minimal
communicatiorcosts.

This suggestghat the decisionregardingwhento shutdevn
andwakeupa nodeshouldbe madeusinginformationin thelocal



neighborhoodA simpleschemas to turnthenodeson anoff with
a certainduty cycle with randomphasedifferencesWhenoff, the
nodepower consumptiorcanbereducedo microvatts. However,
the power savings comeat the costof reductionin detectionand
classificationaccurag asthe sensorwould miss a phenomenon
whenoff. The costof suchmissedeventsis very applicationspe-
cific: it maybe okayto missa frequentevent, but very crucialto
detectarareevent. In general sucha goalmightbequantifiedasa
quality of servicerequiremensuchasthefollowing in thecaseof a
sensomnetfor suneillance:“a targetwith 20 mphspeedollowing
thistrackwill notpassundetected”.

More sophisticatedocally distributedschemedor shutdevn
would coordinatethe on andoff periodsof neighboringnodesto
improve enegy efficiengy for the samelevel of detectionperfor
manceandperhapsadaptheduty cycle parameterbasednevent
activity. A crucial problemhereis that of waking up the node.
In shutdavn in PCsandlaptopsexternaleventssuchaskeyboard
pressesr arrival of network paclet resultin the restof the sys-
temwaking up. However, in sensomodesit is highly desirableto
turn off the radio, which is usually more power-hungry thanthe
processornd the sensors. Turning off the radio, unfortunately
meansthat a neighboringnodethat detectedan interestingevent
cannotwake anodeup. Thiscanleadto missedeventsandpaclets.
Therefore,onetechnologicalchallengefor effective pover man-
agemenbf sensometworksis to have an ultra low-power paging
communicatiorchanneto wake up neighboringhodesondemand.
An alternatve is for low-power sensorgo be constantlyvigilant,
with radiowake-upaccordingto signalprocessingesults.

The proposedorm of adaptve duty cycle appliesat multiple
levelsin the system.At shortrangesradioswill consumenearly
asmuchenegy whethertransmittingor receving. Consequently
it makessensdo arrangeor atime-division structurefor commu-
nications.In [2] analgorithmis describedor enablingdistributed
boot-upof thenetwork, establishindbothchannebhssignmentand
synchronismin an enepgy-eficient fashion. It assumeshat suffi-
cientsignal processings donein eachnodeto resulton average
with traffic occupying avery smallfraction of the availableband-
width. Nodesregularly communicatavith their neighborgo keep
synchronisnandto indicatewhethedargerslotsareto beresered
for bulk datatransfersjn effectalertingthe neighborto turnonits
recever for somespecifiedtime period.

Maintaininga constantevel of synchronisms helpful in re-
ducing network lateng andfor health-leeping,but it is not the
mostenepy efficient stratgy in all traffic scenarios.Whenthe
signal sourcesof interesthave a very low duty cycle, it may be
betterto periodicallyexchangepacletsto re-synchonly to within
somevery coarseaccurayg, andthenspendsignificantenegy in
achieving tighter synchronisnwhenthereis somethingof interest
to send[13].

5. CONCLUSIONS

In conclusion,wirelesssensometworks presentfascinatingchal-
lengedfor the applicationof distributedsignalprocessing@nddis-
tributedcontrol. Thesesystemswill challengeusto apply appro-
priatetechniqguesndmetricsin light of thetechnologyopportuni-
ties (cheapprocessingandsensingnodes)andchallengegenegy
constraints).
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