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ABSTRACT

Pervasive micro-sensingandactuationmayrevolutionizetheway
in which we understandandmanagecomplex physicalsystems:
from airplanewings to complex ecosystems.Thecapabilitiesfor
detailedphysicalmonitoringandmanipulationoffer enormousop-
portunitiesfor almostevery scientificdiscipline,andit will alter
thefeasiblegranularityof engineering.

We identify opportunitiesandchallengesfor distributedsig-
nal processingin networksof thesesensingelementsandinvesti-
gatesomeof thearchitecturalchallengesposedby systemsthatare
massively distributed, physically-coupled,wirelesslynetworked,
andenergy limited.

1. INTR ODUCTION

Theavailability of low-power micro-sensors,actuators,embedded
processors,and radios is enablingthe applicationof distributed
wirelesssensingto a wide rangeof applications,including en-
vironmentalmonitoring,smartspaces,medicalapplications,and
precisionagriculture[1][2]. Most deployed sensornetworks in-
volve relatively smallnumbersof sensors,wired to a centralpro-
cessingunit whereall of thesignalprocessingis performed[3]. In
contrast,this paperfocuseson distrib uted, wir eless,sensornet-
works in whichthesignalprocessingis distrib utedalongwith the
sensing.�

Why distrib uted sensing? Whenthe preciselocationof
a signalof interestis unknown in a monitoredregion, dis-
tributedsensingallows one to placethe sensorscloserto
thephenomenabeingmonitoredthanif only a singlesen-
sorwereused.This yieldshigherSNR,andimproved op-
portunitiesfor line of sight. While SNR canbe addressed
in many casesby deploying onevery large sensitive sen-
sor, line of sight, andmoregenerallyobstructions,cannot
beaddressedby deploying onesensorregardlessof its sen-
sitivity. Thus, distributed sensingprovides robustnessto
environmentalobstacles.�
Why wir eless?Whenwirednetworking of distributedsen-
sorscanbe easilyachieved, it is often the moreadvanta-
geousapproach.Moreover, whennodescanbewired to re-
newable(relatively infinite) energy sources,this toogreatly
simplifies the systemdesignand operation. However, in�
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many envisionedapplications,theenvironmentbeingmon-
itoreddoesnothave installedinfrastructurefor eithercom-
municationsor energy, andthereforeuntetherednodesmust
rely on local, finite, andrelatively smallenergy sources,as
well aswirelesscommunicationchannels.�
Why distrib uted processing? Finally, althoughsensors
aredistributedto becloseto thephenomena,onemightstill
consideran architecturein which sensoroutputscould be
communicatedbackto a centralprocessingunit. However,
in thecontext of untetherednodes,thefinite energy budget
is aprimarydesignconstraint.Communicationsis akey en-
ergy consumerastheradiosignalpower in sensornetworks
dropsoff with �	� [4] due to groundreflectionsfrom short
antennaheights. Therefore,onewantsto processdataas
muchaspossibleinsidethenetwork to reducethenumber
of bits transmitted,particularlyover longerdistances.

2. MOTIVATING APPLICATION

Thepotentialapplicationsof wirelesssensornetworks arehighly
varied:e.g.,Physiologicalmonitoring;Environmentalmonitoring
(air, water, soil chemistry);Conditionbasedmaintenance;Smart
spaces;Military; Precisionagriculture;Transportation;Factoryin-
strumentationandinventorytracking

Habitatmonitoring[Cerpa-etal01,Hamilton,Steere-etal00]pro-
vides a rich collection of sensingmodalitiesand environmental
conditionsandweuseit to motivateourtechnicaldiscussion.Con-
siderthegoalof supportingdatacollectionandmodeldevelopment
of complex ecosystems.Scientistsandenvironmentalimpactmon-
itoring authoritieswould like to monitorsoil andair chemistry, as
well as plant andanimal speciespopulationsand behavior. For
the latter, theprimarymodalitiesareimagingandacousticsto lo-
calize,identify andtrackspeciesor phenomenabasedon implicit
signals(acousticandseismic),or explicit signals(RF tags).These
facilitiesmustbedeployablein remotelocationsthatlack installed
energy andcommunicationinfrastructures,motivatingtheneedfor
low-power wirelesscommunication.

Thestrategy for nodecooperationstrategy hassignificantcon-
sequencesin termsof communicationbandwidthandenergy con-
sumption.Forexample,considerthetaskof identifyingbirdspecies
in view of several cameras.If it is to be accomplishedthrough
imageanalysis,we could streamall the video back to a human
operator-a very costly approach.Alternatively, we could stream
audioto a centrallocation,which thenperformssignalprocessing
to identify andstreambackonly thosestreamsthataremostlikely
to containa target species. While this reducescommunications



overheadgreatly, it still suffers from communicationslatency and
lacksscalabilitydueto theneedto streamaudiothoroughacentral
processingpoint. Finally, we mightdistributetheproblemfurther,
hostingtheaudiosignalprocessingsoftwareonthenodes,andde-
velopingalgorithmsthat requireonly local cooperationto make a
decisionto captureimages. This approachis scalablein that no
long-rangestreamingof audioor video is necessary, resultingin
moreefficient useof communicationsbandwidthandlimited en-
ergy resources.

In the remainderof this paperwe identify someof the tech-
nical challengesassociatedwith thedesignof wirelesssensornet-
worksanddiscussseveralalgorithmicapproaches.

3. TECHNICAL CHALLENGES

Mostenvisionedsensornetworkapplicationsencounteroneor more
of thefollowing challenges:�

Untethered for energy andcommunicationrequiringmax-
imal focusonenergy efficiency.�
Ad hoc deployment, requiring that the systemidentifies
andcopeswith the resultingdistribution andconnectivity
of nodes.�
Dynamic environmentalconditionsrequiringthesystemto
adaptover time to changingconnectivity andsystemstim-
uli.�
Unattended operationrequiringconfigurationand recon-
figurationbeautomatic(self-configuration)

To addressthesechallengingenvironments,severalstrategies
arelikely to bekey building blocks/techniquesfor wirelesssensor
networks:�

Collaborative signal processingamongnodesthat have
experienceda commonstimuluswill greatly enhancethe
efficiency (information per bit transmitted)of thesesys-
tems. Develop both coherent signalprocessingon small
clustersby a centralizedentity within thecluster, andnon-
coherent processingwith muchlessstringentsynchroniza-
tion requirementsandapplicableacrosslargernumbersof
morelooselycoupledelements.�
Exploiting redundancyof hardwareelementsto compen-
satefor adhocdeploymentof systems.If elementscannot
becarefullypositionedrelative to eachotherandtheenvi-
ronment,thenan alternatestrategy to achieve “coverage”
is to deploy a greaterdensityof elementsso that onecan
make useof somesubsetthathave thedesiredabsoluteand
relative position. In somecontexts, even if elementscan
be uniformly placedin 3-space,environmentalconditions
mightbesuchthatcoverageis notuniformdueto obstacles
andothersourcesof noise. Anotherapplicationof redun-
dancy is whentheincrementalcostof a nodeduringinitial
deployment is much smallerthan the incrementalcost of
deploying new nodesor renewing noderesources(e.g.,en-
ergy). In this case,onecanexploit redundancy to extend
systemlifetime by adjustingdutycyclebasedon localden-
sity andlocaldemand.�
Adaptivefidelity signalprocessingis anotherstrategy that
canbeexploited in sensornetworks to make trade-offs be-
tweenenergy, accuracy, andrapidity of results.Recogniz-
ing that oneis trying to detectnon-deterministicphenom-

enain thepresenceof communicationnoiseandsensordi-
versity, thefidelity andtimelinessof thesignalprocessingat
individual sensornodescanbeadaptedto energy resources
andlatency requirements.�
A hierarchical, tiered architecture cangreatlycontribute
to overall systemlifetime and capability. Whenever pos-
sible, highercapacitysystemelementscanbe usedto of-
fload drain on small form factorelements,while the latter
canbeexploitedto obtainthedesiredphysicalproximity to
stimuli. Moreover, evenamongelementswith homogenous
capabilities,creatingclustersand assigningspecialcom-
bining functionsto clusterheadscancontribute to overall
systemscalability. However, to avoid compromisingro-
bustness,suchclusters/hierarchymustbe self-configuring
andreconfiguringin the faceof environmentalor network
changes.

4. TECHNICAL APPROACHES

We now describethreegenerictechniquesthatwould enabledis-
tributedsignalprocessingtasksin wirelesssensornetworks.

4.1. Coherent processingalgorithms

Coherentsignalprocessingalgorithmsaredistinguishedfrom non-
coherentmethodsin thatinformationaboutthephaseof thewave-
front impinging on the nodesmust be conveyed. Beamforming
techniquesallow localizationof signalsthat originatewithin the
convex hull of the participatingnodes,higherSNR estimatesof
thesignalscomparedto non-coherentmethods,anddetermination
of bearinganglesfor signalsthatoriginateoutsidetheconvex hull
of theparticipatingnodes.Theprice is a higherlevel of synchro-
nization(to within a small fraction of oneoscillation),andcom-
municationof relatively high bit rate datastreamsconsistingof
sampledwaveforms. Given its high resourcecost,we shouldre-
sort to coherentprocessingonly whenwe cannotattainadequate
accuracy in theresultwith non-coherentmethodssuchascombi-
nationof likelihoodfunctions.

Oneway to organizetheoperationsleadingto coherentbeam-
formingisasfollows. Nodesgothroughasequenceof internallev-
elsof signalprocessingbeforedeterminingthatneighborsshould
be involved in a detection/localizationdecision. An ad hoc net-
work is constructedfor non-coherentdecision-makingusing for
examplethe single winner electionalgorithm of [2]. The algo-
rithm is optimizedto minimize the overheadin finding a fusion
center, sincerelatively little datamustactuallybecommunicated.
However, if the decisionhasinsufficient certaintyor resolution,
the samesetof nodesbecomeinvolved in a new network set-up
thatseeksto minimizetheenergy consumptionin conveying sam-
pled waveformsto a commoncentralprocessingpoint. To this
endsignificantoverheadis acceptablesincelargeamountsof data
will beconveyedin thelocal neighborhood.A multi-winnerelec-
tion algorithmto accomplishthis is alsodescribedin [2]. Standard
beamformingtechniquescannow be appliedusing the datacol-
lectedfrom theclusterof nodes.

There is no requirementfor uniform lay-down of nodesto
achieve beamforming[5]. To track distantsources,two or more
clustersof nodescan be used,and with the intersectionof the
bearinglines usedto establishlocation. Note that simply using
all nodesin thenetwork to doonemassivebeamformingoperation



couldaccomplishthisend,but excessive communicationsandsig-
nal processingcomplexity would be required.Rather, for a scal-
ablesolutiona signalprocessingstepis requiredthat recognizes
whethernearor far objectsarebeingtracked. A crudetechnique
is to considertheSNRvariationsamongnodesin a clusterandto
neighboringclusters.If theSNRis similar, thenthesignalsource
is likely to be distant. Having madethis determination,clusters
maydecideto estimatelinesof bearingor not,whetherprobabilis-
tically or accordingto a predeterminedschedule.Theinformation
on thebearinglinesis thenconveyedto a centralnodedesignated
to performthe(noncoherent)fusion.Thus,thereis never acasein
which sampledwaveformsmustbeconveyedover a largenumber
of hops.

Achieving therequiredlevelof synchronismfor coherentbeam-
forming is in principle relatively straightforward for systemsin
which every nodepossessesa radio. Sincethe propagationve-
locity of seismicandacousticsignalsis six ordersof magnitude
slower thanthatof radiowaves,achieving datalock for RF com-
municationswould seemto alreadybe muchbettersynchroniza-
tion than is requiredfor beamforming.However, particularcare
mustbepaidto thenodearchitectureto takeadvantageof this tim-
ing information. The typical interruptcyclesof general-purpose
processorscanbetensof milliseconds,aneternitywith respectto
evenacousticsignals.Thus,embeddedreal-timecomponentsare
requiredin thenodesto dealwith time-stampingof thedata.

4.2. Localization

Nodelocationis employedby routingprotocolsthatusespatialad-
dresses,andby signalprocessingalgorithms(e.g. beamforming)
thatareusedfor taskssuchastarget tracking. Theunderlyingal-
gorithm problemis that of localizationwherebythe nodesin the
network discover their spatialcoordinatesuponnetwork boot-up.
When the sensornodesare deployed in an unplannedtopology,
there is no a priori knowledgeof location. The useof GPSin
sensornodesis ruledout in many scenariosbecauseof power con-
sumption,antennasize,andoverheadobstructionssuchasdense
foliage. Theadhocnatureof deploymentrulesout infrastructure
for many scenariosof localization. It is critical that sensornet-
work nodesbeableto estimatetheir relative positionswithout as-
sistance,usingmeansthatcanbebuilt-in.

Thelocalizationproblemin itself isagoodexampleof asignal-
processingtask that the sensornetwork needsto solve. The ba-
sic approachwould be for sensornodesto gathersufficient num-
berof pair-wisedistanceestimatesvia somesuitablemechanism,
andthenusemultilaterationalgorithmsto estimatepositionsof the
nodes.To begin with, a few nodesmight know their positionvia
othermeans(beaconnodes),but at theendof thelocalizationpro-
cessevery nodewouldhopefullyknow its position.

A key problemhowever is that in conventionalformulations
of multilateration[6][7] oneneedsto estimatethe locationof an
entity given estimatesof its distanceto 3 or more beaconswith
known positions. In sensornetworks a very high densityof bea-
consnodeswould beneeded.To keeptherequiredbeacondensity
andenergieslow, a preferredmethodwould beto jointly estimate
positionsof all thenon-beaconnodesvia a collaborative multilat-
erationformulationbasedon criterion suchas least-squareerror
minimization.Besidesbeingcomputationallyhardfor largenum-
berof nodes,doingthiswouldrequireacentralizednodewhereall
the distanceestimateswould be collectedat significantcommu-
nicationandassociatedenergy cost. A morescalablesolution is

locally distributediterativemultilateration[8] wherebyanodecal-
culatesits positionandis promotedto a beaconassoonasenough
of its 1-hopneighborsarebeacons.Startingwith a critical density
of beacons,a percolation-like phenomenonwould result in grad-
ually all the nodesdiscovering their position. With a sufficient
beacondensity, asmallnumberof successive multilaterationsteps
lead to rapid convergenceof location estimates.The communi-
cationoverheadis muchlower thanin centralizedapproachasall
messageexchangeis strictly local and is easily piggybacked on
routingmessages.

Anotherchallengein localizationis estimationof distancebe-
tweena pair of nodes.Using time-of-flight of radiosignals(asin
GPS)is ruled out when the distancesare too tiny andradio fre-
quenciesnot very high. A readily availablemethodwould be to
usethereceivedsignalstrengthindication(RSSI)providedbethe
radio.TheRSSIdatacanbecheaplypiggybackedonregularrout-
ing anddata. Theaccuracy of this approachcanbe improved by
usinga parameterizedchannel,pathlossmodelwhoseparameters
arealsoestimatedtogetherwith position[8]. However, in practice,
theRSSIbasedapproachworksonly in theabsenceof significant
multipath effects. In mostenvironmentsother than openspaces
multipathis anissue.A promisingalternative technologyis to es-
timatedistanceby time of flight of acousticor ultrasoundsignals,
andusingthemuchfasterradiosignalto establishtime reference
[9][10][11].

4.3. Distrib uted power management

Dynamic power managementtechniquessuchas shutdown and
dynamicvoltagescalinghave emerged as powerful methodsfor
power-awarecomputing.Power-awareoperationis evenmoreim-
portantfor wirelesssensornetworks,andrequiresdistributedver-
sionsof power managementtechniques.

As an example,considershutdown, which is widely usedin
portablecomputingsystemssuchas laptops. In sensornetsone
couldexploit redundantnodesby turningon only a time- varying
subsetof nodes,wherethesubsetis selectedfor desiredsensorand
radiocoverage.Theremainingnodescanbeshutdown, only to be
wokenup to provideadditionalsensorreadingsor communication
routeswhensomethinginterestinghappens[12].

A key problemin sucha distributedshutdown schemeis the
strategy to selectwhich nodeto shutdown andwhich to turn on
at any given instant.A goodway to modelthis problemis to op-
timally divide thesensornodesinto severalsubsetssuchthatany
givensubsetprovidesa baselinelevel of sensingandcommunica-
tion coverage.Thedifferentsubsetscanthenbeturnedon andoff
accordingto a duty cycle determinedby a repetitive schedule.As
nodesdieby depletingtheirbatteries,thesubsetsarechanged.

Unfortunately, modelingthe problemin this fashionrequires
oneto gatherglobal informationto find the subsets.Sincecom-
municationis expensive in energy, thecostof thepower manage-
ment algorithm would swamp the savings from power manage-
ment! This illustrates the dilemma that sooften arisesin prob-
lems in sensornets: the seeminglyoptimal way of solving a
problem often resultsin algorithms whosecommunication en-
ergy costsexceedtheir benefits. Therefore,a betterstrategy is
to usealgorithmsthatonly shootfor goodthoughsuboptimalre-
sultsbut requireonly locally distributedprocessingwith minimal
communicationcosts.

This suggeststhat the decisionregardingwhen to shutdown
andwakeupa nodeshouldbemadeusinginformationin thelocal



neighborhood.A simpleschemeis to turnthenodesonanoff with
a certainduty cyclewith randomphasedifferences.Whenoff, the
nodepower consumptioncanbereducedto microwatts.However,
the power savings comeat the costof reductionin detectionand
classificationaccuracy as the sensorwould miss a phenomenon
whenoff. Thecostof suchmissedeventsis very applicationspe-
cific: it maybeokay to missa frequentevent,but very crucial to
detectarareevent. In general,suchagoalmightbequantifiedasa
qualityof servicerequirementsuchasthefollowing in thecaseof a
sensornetfor surveillance:“a targetwith 20mphspeedfollowing
this trackwill notpassundetected”.

More sophisticatedlocally distributedschemesfor shutdown
would coordinatethe on andoff periodsof neighboringnodesto
improve energy efficiency for the samelevel of detectionperfor-
mance,andperhapsadaptthedutycycleparametersbasedonevent
activity. A crucial problemhereis that of waking up the node.
In shutdown in PCsandlaptopsexternaleventssuchaskeyboard
pressesor arrival of network packet result in the restof the sys-
temwakingup. However, in sensornodesit is highly desirableto
turn off the radio, which is usuallymorepower-hungry thanthe
processorand the sensors.Turning off the radio, unfortunately,
meansthat a neighboringnodethat detectedan interestingevent
cannotwakeanodeup. Thiscanleadto missedeventsandpackets.
Therefore,one technologicalchallengefor effective power man-
agementof sensornetworks is to have anultra low-power paging
communicationchannelto wakeupneighboringnodesondemand.
An alternative is for low-power sensorsto be constantlyvigilant,
with radiowake-upaccordingto signalprocessingresults.

Theproposedform of adaptive duty cycle appliesat multiple
levels in thesystem.At shortranges,radioswill consumenearly
asmuchenergy whethertransmittingor receiving. Consequently,
it makessenseto arrangefor a time-divisionstructurefor commu-
nications.In [2] analgorithmis describedfor enablingdistributed
boot-upof thenetwork, establishingbothchannelassignmentsand
synchronismin anenergy-efficient fashion.It assumesthat suffi-
cient signalprocessingis donein eachnodeto resulton average
with traffic occupying a very small fractionof theavailableband-
width. Nodesregularly communicatewith their neighborsto keep
synchronismandto indicatewhetherlargerslotsareto bereserved
for bulk datatransfers,in effectalertingtheneighborto turnon its
receiver for somespecifiedtimeperiod.

Maintaininga constantlevel of synchronismis helpful in re-
ducing network latency and for health-keeping,but it is not the
most energy efficient strategy in all traffic scenarios.When the
signalsourcesof interesthave a very low duty cycle, it may be
betterto periodicallyexchangepacketsto re-synchonly to within
somevery coarseaccuracy, and thenspendsignificantenergy in
achieving tightersynchronismwhenthereis somethingof interest
to send[13].

5. CONCLUSIONS

In conclusion,wirelesssensornetworks presentfascinatingchal-
lengesfor theapplicationof distributedsignalprocessinganddis-
tributedcontrol. Thesesystemswill challengeus to applyappro-
priatetechniquesandmetricsin light of thetechnologyopportuni-
ties(cheapprocessingandsensingnodes)andchallenges(energy
constraints).
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