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ABSTRACT

Despitecontinuougprogressn robustautomaticspeech
recognitionin recentyearsacoustianismatchbetweertrain-
ing and test conditionsis still a major problem. Conse-
guently largespeecttollectionsmustbeconductedn mary
ervironments.An alternatve approachs to generatdrain-
ing datasyntheticallyby filtering cleanspeectwith impulse
responsesnd/oradding noise signalsfrom the target do-
main. We comparethe performancef a speechrecognizer
trainedon recordedspeectin the targetdomainwith a sys-
temtrainedon suitablytransformecdleanspeech.In order
to obtaincomparableesults,our experimentsarebasedon
two channetecordingswith aclosetalk andadistantmicro-
phonewhich producethe cleansignalandthetargetdomain
signalrespectiely. By filtering andaddingnoisewe obtain
error rateswhich are only 10% higherfor naturalnumber
recognitionand30%higherfor acommandecognitiontask
comparedo trainingwith targetdomaindata.

1. INTRODUCTION

A crucialfactorfor theperformancef presenspeechiecog-
nition systemss thattrainingandtestconditionsareacous-
tically similar. This meansthat training data collections
mustbe conductedn every ervironmenta recognitionsys-
temis supposedo operatein, e.g. car, office, telephone,
living room, etc. Evenworse,suchervironmentsare usu-
ally parameterizede.g. speedat which the caris driving,
reverberatiortime of theliving room, microphonealistance,
etc. As suchdatacollectionsarebothexpensve andinflex-
ible we investigatemethodsto generatdraining datasyn-
theticallyby transformingcleanspeechundercertainmodel
assumption®f the targetdomain. The transformationsve
investigateare convolution with an impulse responseand
addition of a noisesignal. The impulseresponseand the
noisepower spectrumhave beenmeasuredn thetargetdo-
main.

In orderto evaluatethis approach,time synchronous
recordingswith a high quality closetalk microphoneand

aninexpensve distantmicrophonehave beenmadein two
living rooms. A speechrecognitionsystemis trainedwith
varioustransformation®f the closetalk signalandtested
onthedistantmicrophonaecording.Therecognitionaccu-
ragy is comparedvith asystentrainedonthedistantmicro-
phonesignal(matchedscenario). Two recognitiontasksare
studiedwherethelexicon consistsitherof naturalnumbers
or of commandphrases.

Thetransformationsf thecleansignalimprovetherecog-
nition accurag significantly comparedo a completemis-
matchscenarioand sometimesachieve the performanceof
matchedraining. Surprisingly theinfluenceof addingnoise
is more decisve than corvolution with the targetimpulse
responsen our experiments.Further asexperimentswith
white noiseindicate the spectrashapeof the noisehasless
influencethanwe expected.

The effect of variousadditive noisesignalson speech
recognitionaccurag hasbeenstudiedin [5]. Transforming
cleanspeectby filtering, addingnoiseandMLLR adapta-
tion for hands-freamicrophonearrayapplicationshasbeen
investigatedn [1, 3, 4]. This paperis a follow-up of our
previouswork ontransformingcleanspeectio the carervi-
ronmentby addingwhite noiseandrecordectar noise[2].

The concretemotivation for this work are large voca-
bulary corversationaliserinterfacesfor TVs, VCRs,audio
sets,etc. Suchapplicationsmustbe spealer independent
and require thereforelarge amountsof training material.
Moreover, several languagesieedto be supportedwhich
emphasizesven morethe needfor alternatve methodsto
generatghetrainingdata.

The paperis structuredasfollows: Section2 describes
therecordingconditions speecltdatabasesandtherecogni-
tion system.In Section3 we describevariouswayshow the
cleansignalwastransformednto training data. We inves-
tigatecornvolutionswith measuredmpulseresponsesaddi-
tion of white noiseandcolorednoisewhosespectruntorre-
spondgo thetargetdomainnoiseandcombinationghereof.
Theresultingrecognitionerrorratesarereportedn Section
4. Conclusionsaredravn in Section5.



2. EXPERIMENT SETUP

2.1. Recording Environment

Therecordingsveremadein two differentroomswhichare
3m x 5mand2m x 3m largeand2.5mhigh. Both rooms
have a reverberatiortime T60 of about0.44secondst 500
Hz. Two synchronousecordingswith anear(0.4m)anda
far (2.5m)microphonehave beenmadeandtheimpulsere-
sponsedetweenspealer and the microphoneshave been
measuredseeFigure 1. The nearmicrophoneis a high
quality AKG C1000with an SPL Mike Man Model 9223
pre amplifier The far microphoneis a MWM MH118HC
with aRadioDesignLabsSTM-1 preamplifier The MWM
MH118HCis aninexpensve microphoneof thekind which
are usedin consumerproducts. A sampleutterancespo-
kenin room 1 andrecordedoy bothmicrophoness plotted
in Figure2. Theimpulseresponses room 1 are plotted
for both microphonepositionsin Figure3. For eachutter
ancethe SNR hasbeenestimatedusingan automaticsey-
menter TheresultingSNRhistogramgor eachmicrophone
areplottedin Figure4. As expectedthe nearmicrophone
SNRis higherthanthefarmicrophoneSNR.Finally the av-
eragenoisepower spectrumhasbeenestimatedor the far
microphonén bothrooms,seeFigure5.

The samplingrate was 32 kHz for the speechrecord-
ings and44.1 kHz for the measurementf the impulsere-
sponsesAll experimentswere carriedout on 8 kHz down
sampledsignals. The nearand the far microphonesignal
aredenotedby z,, andzy, the correspondingmpulsere-
sponsedetweenspealer and microphonesare denotedby
hn andhy respectiely.
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2.2. Speech Database

The recordeddatabasecomprises200 spealers (98 men,
102women)with anagerangingbetweenl0 and60 years.
The languageis native British English. Testswere carried
out on two sub corpora. The first corpuscontainsnatu-
ral numbersge.g. “two thousandandthree”, “seventeen”,
“eighty” , etc. andcomprises5288 utteranceg3362train-
ing, 1926test, disjoint spealers). The lexicon consistsof
32words,which aremodeledby wholeword HMMs whose
lengthsrangefrom 10 to 51 states. This is a difficult task

becausenary wordssoundvery similar, e.g. “ninety” and
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Fig. 2. Recordingof the sameutterance'two thousandand
four” with nearmicrophongleft graph)andfarmicrophone
(right graph)in room1.
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Fig. 3. First 200msof impulseresponsdrom spealer po-
sition to nearmicrophone(left graph)andfar microphone
(right graph)in room1.
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Fig. 4. UtterancebasedSNR histogramfor near micro-
phone(left graph)and far microphone(right graph) after
preemphasiaccumulateaver bothrooms.
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Fig. 5. Estimatedogarithmic noisepower spectrumfrom
thefar microphondén room1 androom2. Thenoisepower
in thenearmicrophones negligible.



“nineteen”. The seconccorpuscontaingtypical commands
for consumerelectronicsdevices, e.g. “volume higher”,
“silent”, “c hanneldown”, etc. andcomprises9844 utter
anceg6281training,3563test). Thelexicon consistof 54
words, which are modeledby whole word HMMs whose
lengthsrangefrom 14 to 59 states.

2.3. Speech Recognition System

Thespeechrecognizeis acontinuousnixturedensitywhole
wordHMM systemwhoseparameterareestimatedy Viterbi
training. Each mixture consistsof 8 Laplaciandensities
with a global diagonalcovariancematrix. As our intention
is to understandacousticeffects we refrainedfrom using
a languagemodel or a grammarduring recognition. The
signal analysisis asfollows: The obsened speechsignal
is preemphasizednd subdvided into overlapping,16 ms
spacedramesof 32 mslength. For eachframethe power
spectrumis estimatedhrougha Hammingwindowed FFT
followedby afilter bankwith 15 mel spacedriangularker-
nels. In orderto reducelow frequeny noisethefilter bank
cutsoff frequenciebelov 187Hz. The centerfrequeng of
theleft mostkernelis 312Hz. After a discretecosinetrans-
form of thelogarithmicfilter bankoutputsl2 melfrequeny
cepstralcoeficientsare obtainedwhoselong term meanis
eliminatedby a first orderrecursve filter with a large time
constantFinally, thefeaturevectoris augmentedby 12 co-
efficients obtainedby linear regressionover two framesin
the pastandtwo framesin the future. No further stepsare
takenfor channelequalizatioror noisesuppression.

3. INVESTIGATED APPROACHESTO
SYNTHESIZE THE FAR MICROPHONE SIGNAL

In this sectionwe define seven transformationsvhich we
appliedto the nearmicrophonesignalz,, in orderto gener
atetraining material:

(1) xn: Nearmicrophonesignal. This correspondgo a
completemismatchscenario,which meansthat the
nearmicrophoneecordingz,, is usedfor trainingand
thefar microphoneecordingz ; is usedfor testing.

(2) zn * hy: Near microphonesignal filtered with the
transferfunctionfrom spealerto farmicrophone The
reverberatiorof the resultingsignalis similar to z .
Theoutputsignalhasbeenscaledsuchthatthespeech
enegy in eachutterancds thesameasz . Themea-
surewe usedfor the speechenegy of an utterance
is the averageenepy in the 1500-3000Hzband of
the20%frameswith highestenepgy. Perceptually2)
sounddike z; exceptfor additive noise.

(3) zn * hy x hy': Like (2) but additionalinversefilter-
ing with the transferfunction from spealer to near

microphone.This is slightly moreaccurateghan(2),
however we could not hearary differencebetween
(2) and(3).

(4) znxhgxh,*+n.: Like(3) butadditionof astation-
ary noisesignaln. with the samepower spectrumas
thenoisesignalin z¢. Thenoisesignalhasbeengen-
eratedby estimatingthe averagenoise power spec-
trum of z; over the entiretraining corpus,seeFig-
ure5. Assumingzerophasea complex noisespec-
trum hasbeengeneratedvhich wasusedusedto fil-
ter white noise. The resultis a randomsignal with
the samepower spectrumasthe averagenoisesignal
in z¢. Perceptuallywve did not realizeary difference
between(4) andz;.

(5) T * hy x h,' + n,: Like (4) exceptthatthe added
noisesignalis white noisen,, with the samepower
asthenoisein z ;. Thedifferencein the background
noiseof (5) andz is clearlyaudible.

(6) =, + n.: Assumingthatthe impulseresponsesire
notgiven,thenearmmicrophonesignalis simply added
with anoisesignalasin (4). Beforeaddingthe noise
x, wasscaledasdescribedn (2).

(7) =, + ny: Like (6) exceptthatwhite noisehasbeen
used.

Theresultingsignalsaremoreor lesssimilar to the far
microphonesignalz ; dependingontheamountof informa-
tion usedfrom thetargetdomain.Options(2) to (5) presume
knowledgeof impulseresponsesOptions(4) and(6) pre-
sumethatthe averagenoisepower spectrumandthe speech
enegy in z; canbe estimated.Option (5) and (7) merely
requirethatthe speechenegy andaveragenoiseenegy in
x ¢ aregiven.

4. EXPERIMENTAL RESULTS

Table1 and2 summarizeghe speechrecognitionresultsfor
all combinationsof corporaandrooms. Apart from error
rateson thefar microphonesignalz ; we measurealsothe
error rateswhenthe test signalsis generatedy the same
transformatiorof z,, asthetrainingsignal. The parameters
of the speectrecognizethave beenoptimizedfor the case
whentrainingandtestis doneon thetargetsignalz ;.

Accordingto our results additive noiseis moredecisie
thancorvolution with the targetdomainimpulseresponse,
evenif the spectralshapeof the noiseis differentfrom the
targetdomain.Thelowesterrorrateswhich areabout10%
higherfor naturalnumbersand 30% for commandphrases
relativetotrainingonz; areobtainedoy combiningfiltering
andaddingnoise.If z,, is useddirectly for trainingwithout
ary transformationtheerrorrateincreasedy 100%relative
for naturalnumbersand250%for commandphrases.



NaturalNumbers

| room1 | room2 | room1+2 |

Training andtestonz ¢

| xy || 22.7 | 24.8 | 22.7 |
Training on transformede,,, testonz ¢
Tn 54.7 41.5 44.0
Tn * hy 45.4 36.1 36.0
Tp*hy' * hy 455 34.9 36.1
Tp*xh, ' xhy +n. 30.5 225 24.7
Tpxhyt xhy +ny 28.3 30.2 27.3
Tn + Ne 42.6 26.2 28.6
Tn + Ny 37.2 34.4 32.4
Training andteston transformede,,
Tn 9.7 9.0 10.1
Tn * hy 15.7 19.2 17.3
Tp*h, 1 xhy 16.2 17.8 17.5
Tp*h,t xhy +n. 17.0 19.1 18.1
Tp*xhyt xhy +ny 21.6 24.6 25.2
Tp + Ne 9.2 11.3 10.5
Tn + Ny 14.5 20.3 17.3

Table 1. Worderrorratesonthenaturalnumbercorpus.The
firstrow is thebaselinevherethefar microphonerecording
wasusedfor trainingandtesting.In theblock below trans-
formationsof the nearsignalz,, areusedfor training and
the far microphonerecordingz s is usedfor testing. In the
lower block training andtestdataare obtainedby the same
transformation®f thenearsignalz,.

| Commandphrases || room1 [ room2 | room1+2 ]

Training andtestonz ¢

| Ty || 14.2 | 10.5 | 10.2 |
Training on transformede,,, testonz ¢
Tn 455 36.6 36.4
Tn * hy 37.4 28.5 28.8
Tp*h,t % hy 35.3 26.9 27.7
Tp*xh," xhy +n. 23.1 13.7 14.7
Tp*xhyt xhy +ny 19.7 16.5 16.0
Tn + Ne 33.2 18.9 20.9
Tn + Ny 30.1 19.5 19.8
Training andteston transformed,,
Tn 2.6 2.2 1.9
Tp *x hy 6.1 7.0 6.0
Tp*x hy' * hy 7.0 7.0 6.0
Tp*xh," xhy +n. 7.4 7.5 6.6
Tp*xhy' xhy +ny 9.6 12.8 10.3
Tn + Ne 3.0 3.0 2.4
T + Ny 5.1 7.3 5.3

Table 2. Sameresultsasin Table 1 but for the command
phrasesorpus.

5. CONCLUSION

We comparedhe recognitionaccurag of a systemtrained
in thetargetdomainwith onetrainedonsuitablytransformed
clean speech. Various transformationshave beenimple-
mentedwhich consistof corvolution with measuredm-
pulseresponsesnd addingwhite and colorednoise. The
experimentswere carriedout in two living roomson two
whole word recognitiontasks. Best resultswere usually
achievedby corvolutionwith theimpulseresponsdetween
spealerandtargetmicrophoneposition,inversecorvolution
with the impulseresponséetweenspealer and closetalk
microphonepositionandadditionof stationarynoisewhose
power spectrumhasbeenmeasuredn the target domain.
With this setupwe obtainerrorrateswhich are 10% higher
comparedo matchedrainingfor naturalnumbersand30%
higherfor commandphrases.

Theapproactof usingtransformedleanspeectior train-
ing hasnot only the advantageof reducingthe effort for
datacollections. We hopeto improve the recognitionper
formanceby using the filtered signal for Viterbi sggmen-
tation befole the addition of noise. Further we intendto
usetransformedrainingmaterialwith differentinstance®f
the noiseprocessn orderto obtaina morerobustacoustic
model.
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