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ABSTRACT

This paper is concerned with the implementation of au-
tomatic speech recognition (ASR) based services on wire-
less mobile devices. Techniques are investigated for im-
proving the performance of ASR systems in the context
of the devices themselves, the environments that they are
used in, and the networks they are connected to. A set
of ASR tasks and ASR system architectures that are ap-
plicable to a wide range of simple mobile devices is pre-
sented. A prototype ASR based service is defined and
the implementation of the service on a wireless mobile
device is described. A database of speech utterances was
collected from a population of fifty users interacting with
this prototype service in multiple environments. An ex-
perimental study was performed where model compen-
sation procedures for improving acoustic robustness and
lattice rescoring procedures for reducing task perplexity
were evaluated on this speech corpus.

1 INTRODUCTION

The widespread interest in ASR on hand-held mobile de-
vices is due to the perception that speech input provides
considerable added value given the limited input modal-
ities that can be supported on these devices. A variety
of ASR tasks relating to portable devices have been en-
visioned ranging from portable dictation systems to data
entry systems implemented on specialized multi-media
devices [1, 2]. Furthermore, a variety of ASR system ar-
chitectures have been implemented ranging from server
based implementations accessed by the device over the
wireless network to recognizers embedded in the local
processor associated with the device [5]. This paper in-
vestigates ASR issues in the context of a limited set of
tasks and architectural alternatives for ASR services in
a wireless mobile environment. Specifically, we are inter-
ested in tasks that provide functionality which is equiv-
alent to form filling applications that are currently avail-
able only on an internet browser running on a desk-top
workstation with a keyboard and a mouse. We are in-
terested in network based ASR architectures, and have
implemented a prototype system based on that frame-
work.

The choice of task and system architecture is dictated
by several issues. The first issue is the inherent limita-
tions of the devices and the variety of conditions under
which they are used. There will always be fundamental
trade-offs between computing power and battery life, and
the available bandwidth will always be limited by the ex-
isting telecommunications infrastructure. A second set
of issues are security and consistency considerations for

large real-time databases. These limitations make it dif-
ficult to build recognition networks on the mobile device
that are associated with very large databases, as might
be the case, for example, with a directory retrieval ap-
plication with hundreds of thousands of names. A third
issue dictating our choice of tasks and system architec-
ture is applicability to a large range of simple hand—held
devices. It is assumed that these devices would include
voice input in combination with pen or push-button input
and a limited display. Our focus is primarily on voice—
enabling the widest possible variety of hand-held devices
rather than to develop specialized multi—-media portable
systems.

The general “form-filling” class of tasks considered
here will be described in Section 2. Issues relating to
ASR system architectures in a wireless network will be
discussed in Section 3. As part of this discussion, the op-
eration and the architecture of our prototype ASR based
application running on a hand-held device will also be
described.

The simple task and prototype implementation serve
as a platform for investigating ASR problems that are
specific to wireless mobile devices. Some of these prob-
lems are discussed in Section 4, where two approaches for
improving ASR performance on this task are described.
Acoustic hidden Markov model (HMM) compensation
procedures for dealing with difficult acoustic environ-
ments are described in Section 4 and evaluated on this
task in Section 5. Techniques for reducing task perplexity
by rescoring lattices from utterances taken from multiple
parts of a dialog are also described and evaluated. Sec-
tion 5 provides a description of the speech corpus which
was collected using this prototype system. Its use as an
evaluation platform for an experimental study involving
the above techniques is presented.

2 TASK DOMAIN
2.1 Form-Filling Applications

The interest in this work is to investigate ASR problems
in the context of a class of services that will be most
widely applicable to a broad family of simple wireless
devices. In particular, simple “formfilling” applications
that are easily implemented using an internet browser on
a desk—top workstation are considered. A good example
of this class of services is navigation of the on—screen di-
alog that is associated with a typical travel services web
page. These on—screen dialogs involve a user clicking on
a field in the display, typing a value for that field, and
continuing to fill in fields until enough information has
been entered to form the desired database query. While
the need for keyboard input would make it difficult to ex-
tend this functionality to a standard mobile device, this



class of services would be straight—forward to implement
on a small device that employs a combination of speech
and pen input along with a simple display. The design of
speech based dialog provides input confirmation strate-
gies and guides user behavior to fill in fields associated
with a semantic frame is much simpler for this scenario
than for a voice—only dialog systems. Even a very simple
display can provide much of the context for the dialog,
and speech input would be easier than handwriting input
or selecting fields from long menus.

2.2 A Prototype ASR Task

The ASR task used in this work is based on a 3700 name
ATT Labs employee directory access task where users
click on individual data fields for a database entry, speak
the entry for that field, and see the recognized result dis-
played in the field as confirmation. An example of the
display associated with this application is shown in Fig-
ure 1. The data fields include first name, last name, lo-
cation, and telephone number. Once enough fields have
been entered to uniquely disambiguate the desired di-
rectory entry from all other entries in the database, all
available information for that user is displayed in the data
window at the bottom of Figure 1. The speech corpus
described in Section 5 was collected from users who were
interacting with the display in Figure 1.
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Figure 1: Display for multi—-modal directory retrieval
service.

3 SYSTEM ARCHITECTURE

3.1 Server Based ASR

The block diagram in Figure 2 is a simplified descrip-
tion of how the ASR based service described in Section 2
would be implemented in a wireless telephony context.
The hand-held device runs a thin client that implements
a simple application. The application interprets input
generated on the device and communicates with the ASR
and dialog servers via client /server protocols. The speech
recognizer and the dialog manager exist as servers in
the network. Speech is sent from the application to the
ASR server either as coded ASR features over the ASR
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Figure 2: Architecture for implementation of ASR
based service on hand-held wireless mobile device.

client/server protocol or over a voice channel. The ASR
server provides the result to the application either as
a single string or a word lattice. The application run-
ning on the hand-held device presents the dialog man-
ager with new input information from the device which
corresponds to the values associated with fields that have
been entered by the user. With the newly updated input
fields and the application database as input, the dialog
manager output is used by the application to either dis-
play directory information to the user or to prompt the
user for additional information.

The application can instruct the ASR server to update
acoustic HMMs and pronunciation models to reflect a
given device, user, or acoustic environment. It can also
select the proper recognition network to associate with
a given database field. Acoustic parameters associated
with the speaker, device, and acoustic environment can
be continually updated through a “configuration server”
and stored in the network. These parameters can then
be applied to compensating and adapting the speaker
independent HMMs associated with the network based
ASR server. The techniques discussed in Section 4 are
all implemented in a manner that is consistent with this
scenario.

3.2 Prototype Implementations

The prototype versions of the general system architec-
ture shown in Figure 2 were implemented in the con-
text of an 11 Mbps IEEE 802.11 wireless local area net-
work. Network bandwidth and channel distortions were
not an issue in the prototype implementation. The ap-
plication runs on a Linux based lap-top PC. It is be-
ing ported to a Compaq iPAQ hand-held device running
Linux. The ASR server is implemented using the AT&T
Watson speech recognizer [9] and the dialog server is im-
plemented using the Chronus dialog manager [8].

4 ASR ISSUES ON MOBILE DEVICES

There are many issues for mobile devices that affect the
actual ASR algorithms that are implemented in this do-
main. The first set of issues relates to the variety of
conditions under which these devices are being used. The
mobility afforded by wireless connectivity implies a wider
variety of acoustic environments than those that exist for
wire-line telephone or desk—top computer applications. A
second set of issues is related to the long—term use of the
device by a single user. The fact that a device can be
“personalized” to a given user represents an opportunity
to acquire representations of speaker, environment, and
transducer variability through the normal use of the de-
vice. A third set of issues relates to the nature of the ASR,
based services that are likely to be used on real commer-
cial devices. While the “form—filling” scenario described
in Section 2 seems like a simple class of tasks, the vo-
cabularies involved can be large and statistical language
models are not applicable when the task is to recognize
1 out of N equally likely options in a field. These issues
are addressed in the following ways.

4.1 Compensation for Acoustic Variability

Techniques for compensating speaker independent acous-
tic HMMs simultaneously for environmental noise and for
speaker /transducer mismatch have been applied to this
task [3]. These techniques are based on iterative applica-
tion of parallel model combination (PMC) of speech and
noise models and maximum likelihood (ML) based linear



model compensation procedures [3, 6, 4]. It is assumed
that the ASR system in Figure 2 relies on a speaker in-
dependent HMM Ax which was trained from a sequence
of observation vectors, X. It is also assumed that during
recognition there is a mismatch between a corrupted se-
quence of speech observation vectors, Y, that is caused
by speaker and transducer variability along with vary-
ing characteristics associated with the ambient acoustic
noise, N. Hence, the corrupted observation vectors are
modeled as Y = WX + N, where W is a linear trans-
formation representing the mismatch between ¥ and X
that is induced by the speaker/transducer mismatch.
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Figure 3: Procedure for simultaneous compensation
of HMM with respect to ambient acoustic noise and
speaker/transducer distortions.

Figure 3 summarizes an iterative procedure where at it-
eration ¢ ML-based compensation of HMM model )\g?

is performed to obtain model )\E,q;,) x> Which is then com-
bined with estimated noise model Ay to obtain the com-
pensated model )\S}). The performance of this procedure
in reducing degradation in speech recognition word accu-
racy (WACQ) caused by the use of far field microphones is
described in Section 5.

4.2 Applying Linguistic Constraints

While the general class of tasks outlined in Section 2
seems very simple, the vocabularies involved can be large
and statistical language models may not apply. Hence,
although added display and input modalities may help
provide additional context for the application, this class
of tasks can result in a high language model perplexity
which generally corresponds to high word error rates. In
order to avoid these problems, linguistic constraints are
applied in a lattice rescoring paradigm. The system func-
tions as follows. First, all the queries are presented to the
user simultaneously as shown in Figure 1 with a separate
language model to handle the responses to each query.
Second, the user selects a field, speaks the “value” of the
field, and the recognizer produces a word lattice for the
utterance. Third, the user continues providing responses
to other queries, and the system produces a recognition
lattice for each input.

Each time the ASR outputs a new lattice, a new recog-
nition result is generated for the current input and each
of the previous responses. This done in two steps. First,
the lattices from each recognized field are concatenated to
form a single combined lattice. Second, the concatenated
lattices are re—scored using a language model that incor-
porates the constraints over all the fields that have been
selected thus far. This process can be done in near real-
time because the language models can be precomputed
and the computing needed for determining the best path
through the lattice is small. If the system confidence ex-
ceeds a certain level, feedback will be provided to the
user. The task performance of such a system should
be comparable to the situation where dynamic language
models are used, in cases where that is feasible. The per-
formance of this lattice rescoring approach is given for a
simple scenario in Section 5.

5 AN EXPERIMENTAL STUDY

This section describes the results of an experimental
study evaluating the effectiveness of the procedures de-
scribed in Section 4. The important aspect of this study
is that it represents the first time many of these tech-
niques have been evaluated using utterances collected
from speakers interacting with a real application in the
actual noisy environments. Previous evaluation of sim-
ilar techniques were performed by simulating noisy en-
vironments by artificially corrupting speech utterances
recorded in quiet noise—free environments. The acoustic
model compensation techniques are evaluated to demon-
strate the potential for reducing ASR performance degra-
dation in the context of far—field microphones, varying
ambient acoustic environments, and diverse speaker pop-
ulations. The lattice rescoring procedure is evaluated in
order to demonstrate the potential for applying linguistic
constraints over the fields in the user interface scenario
associated with the task in Section 2. All of the experi-
ments were performed using speaker independent, task-
independent HMM'’s trained from a subset of the Wall
Street Journal speech corpus recorded using a wide-band
noise cancelling microphone in a high signal to noise ratio
(SNR) acoustic environment [7]. Both techniques were
evaluated using a speech corpus collected using the pro-
totype system implementation described in Section 3.

5.1 Speech Corpus

A corpus of speech utterances was collected from users
interacting with the application illustrated in Figure 1.
The utterances were collected in both office and cafe-
teria environments from users speaking simultaneously
through two microphones. Table 1 summarizes the ut-
terances in the subset of this corpus that were used for
the experimental study described below. The utterances
used for the study were actually isolated utterances of
proper names. All utterances were collected simultane-

Information | Vocabulary Test utterances
Field Size Office Cafeteria
48 Spkrs | 21 Spkrs
First Name 1884 1970 918
Last Name 2980 1963 917

Table 1: Summary of vocabulary size, number of ut-
terances, and number of speakers for speech corpus
collected in office and cafeteria environments.

ously through both close-talking (C-T) and far—field (F-
F) microphones. The Sennheiser HMD410 headset with
dynamic pressure gradient transducer was used for the
close—talking microphone, and the Lucent Intelligent Au-
dio SDM 1100 microphone mounted on the device at a
distance of approximately 0.75 meters from the speaker
was used for the far—field microphone. Each of a popu-
lation of fifty subjects were asked to retrieve a different
set of forty directory entries from the employee direc-
tory. The subjects were not prompted with the correct
pronunciations for the fields shown in Figure 1, and the
lexical pronunciations were obtained automatically using
a text—to—speech system.

5.2 Acoustic Model Compensation

The PMC and speaker/transducer compensation (TC)
algorithms were evaluated in terms of their ability to min-
imize performance degradation between the close—talking
(C-T) and farfield (F-F) microphones. Table 2 presents
the performance of the model compensation algorithms



on the speech collected in the actual office and cafeteria
environments through the F-F microphone. The recog-
nition word accuracies obtained when no model compen-
sation was performed in the office and cafeteria environ-
ments are shown in the first two columns of Table 2.
The relative performance degradation between the base-
line (C-T microphone) and the Uncompensated (F-F mi-
crophone) conditions is 41.7% in the office environment
and 79.2% in the cafeteria environment. Looking at the
relative impact of PMC and TC in the two different envi-
ronments, it is clear that additive noise distortion is more
dominant in the cafeteria environment then in the office
environment. We also see that the combined approach
showed a significant improvement beyond that achieved
for either PMC or TC separately for both environments.
Finally, the overall performance degradation with respect
to the C—T microphone performance was reduced from
41.7 percent to 10.4 percent for the office environment,
and from 79.2 percent to 39.8 percent in the cafeteria
environment.

Envir- Base- Far-Field Microphone
onment Line Un- PMC | TC | Com-
(C-T) | Comp. bined
Office 72.2 42.1 61.0 | 589 | 64.7
Cafeteria | 71.1 14.8 37.7 | 26.2 | 42.8
Table 2: Model Compensation word accuracy for

far—field (F-F) microphone in office and cafeteria en-
vironments on the “Last Name” grammar.

5.3 Lattice combination results

The lattice re-scoring procedure was evaluated in terms
of its ability to improve recognition accuracy by combin-
ing lattices obtained from utterances spoken for multiple
independent fields in Figure 1. Specifically, the goal is
to determine the degree to which combined recognition
of the first name and last name fields improves when lat-
tices from these two fields are combined and rescored.
The experiments were performed on a subset of the test
utterances shown in Table 1 that consisted of 1849 first
name and last name utterances. The use of a test set that
is slightly different from the test set used in Section 5.2
was mandated by the need to maintain a correspondence
between the first and last names as they were spoken in
the database. Only the wide-band C-T microphone ut-
terances were used. The recognition results are reported
in Table 3.

First Last | Top-Choice | Lattice | Concatenated
Name | Name | Combined Utterances
74.2 73.9 56.5 89.1 89.9
Table 3: Performance of the lattice combination

method compared to the performance of individual
fields measured in percent word accuracy

The first and second columns of Table 3 correspond
to the accuracy with which first and last names respec-
tively were recognized from independent first name and
last name utterances. Recognition was performed using
grammars with vocabulary sizes shown in Table 1. If the
top-choice of the recognizer for the first and last names
are concatenated to produce a full name, the resulting full
name accuracy is significantly lower than the accuracy of
the individual fields. This is shown in the column la-
beled “Top-Choice”. The “Lattice” results are obtained
using the algorithm described in Section 4.2. Finally, the
column labeled “Concatenated Utterances” displays the
WAC obtained by concatenating the waveforms of the

first and last name utterances and using a grammar of
3701 full names from the employee database. This is the
best case scenario in terms of performance, but incurs
a maximum overhead in computation and delay. This
example illustrates that lattice—rescoring of the concate-
nated utterances achieves WAC that is almost identical
to the best-case scenario. This ability to combine input
obtained independently for a variety of fields, while main-
taining good performance, significantly simplifies task de-
sign.
6 SUMMARY

A prototype implementation of a multi-modal, speech
recognition based service for a wireless mobile device has
been presented. This implementation has served as a
platform for investigating ASR problems that are specific
to these devices. The baseline performance reported on
this task provides a good example of how simple user in-
terfaces but highly variable acoustic conditions can make
ASR difficult. Seemingly simple user interfaces can lead
to very high perplexity ASR tasks, and unencumbering
microphones can exacerbate the effects of the surround-
ing acoustic environment. The acoustic model compensa-
tion and lattice re-scoring techniques presented here are
examples of techniques that have been successfully ap-
plied to improving ASR performance. There are a variety
of other problems that are important in this task domain
but have not been addressed here. These include better
techniques for integrating additional input and output
modalities with speech, techniques for obtaining speaker-
specific pronunciation models, and techniques for dealing
with the vast array of robustness issues that are spe-
cific to ASR applications on mobile devices. Research on
these problems will have increasing importance as voice
enabled wireless devices become ubiquitous.
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