
SPEAKER- AND LANGUAGE-INDEPENDENT SPEECH RECOGNITION IN
MOBILE COMMUNICATION SYSTEMS

Olli Viikki, Imre Kiss, Jilei Tian

Nokia Research Center, Speech and Audio Systems Laboratory, Tampere, Finland
Email: {olli.viikki,imre.kiss,jilei.tian}@nokia.com

ABSTRACT
In this paper, we investigate the technical challenges that are faced
when making a transition from the speaker-dependent to speaker-
independent speech recognition technology in mobile communi-
cation devices. Due to globalization as well as the international
nature of the markets and the future applications, speaker inde-
pendence implies the development and use of language-
independent ASR to avoid logistic difficulties. We propose here
an architecture for embedded multilingual speech recognition
systems. Multilingual acoustic modeling, automatic language
identification, and on-line pronunciation modeling are the key
features which enable the creation of truly language- and speaker-
independent ASR applications with dynamic vocabularies and
sparse implementation resources. Our experimental results confirm
the viability of the proposed architecture. While the use of multi-
lingual acoustic models degrades the recognition rates only mar-
ginally, a recognition accuracy decrease of approximately 4% is
observed due to sub-optimal on-line text-to-phoneme mapping and
automatic language identification. This performance loss can nev-
ertheless be compensated by applying acoustic model adaptation
techniques.

1. INTRODUCTION

Over the past few years, Automatic Speech Recognition (ASR)
technology has hit mobile phones. Speaker-trained name dialer is
today probably one of the most widely distributed ASR applica-
tions in the world. Despite the fact that more advanced speech
recognition applications have already been introduced for other
platforms during several years, there are many aspects which jus-
tify the use of this simple technology in portable mobile communi-
cation devices. Multilinguality, low complexity implementation,
and a high degree of robustness against background noise are the
key qualities of the speaker-dependent ASR technology.

The undoubted advantage of speaker-trained technology is its in-
herent support to various languages as all users train the recogni-
tion system to match their language and pronunciation characteris-
tics. Multilinguality is one of the main requirements set for speech
recognition applications running on mobile devices. A truly multi-
lingual speech recognition system can simultaneously support sev-
eral languages and is able to cope with non-native speakers, dia-
lects, accents, and multilingual vocabulary items. There are also
substantial financial facts which justify the development of multi-
lingual speech recognition systems. For such products, which are
sold world-wide, it is utterly important that there is no need to
develop different versions of the same product for different lan-
guage regions. Despite its indisputable importance, surprisingly
little efforts have been put on multilingual ASR research compared

for instance with noise robust speech recognition. In addition to
multilinguality, noise robustness and low complexity implementa-
tion are also required for all applications realized on mobile de-
vices due to the wide range of different operating conditions and
sparse implementation resources. An isolated word recognition
task combined with the speaker-dependent ASR technology guar-
antees high enough recognition rates on various languages across
various types of operating environments. It is apparent that the
same performance and implementation requirements must also be
met when shifting from speaker-dependent to speaker-independent
ASR technology.

Thanks to the progress done in technology development and the
availability of more powerful implementation platforms, it is obvi-
ous that speech recognition in mobile devices also trends towards
speaker independence. However, it is still unrealistic to expect that
this technology shift would mean the possibility to run very ad-
vanced speech recognition applications on these very resource
limited platforms.

In this paper, we discuss about technical solutions needed for ena-
bling the use of language- and speaker-independent speech recog-
nition technology in embedded systems, e.g. mobile phones. The
focus is still on applications with isolated word, or very restricted
continuous, speech input. The remainder of the paper is organized
as follows. Section 2 discusses the characteristics of mobile com-
munication systems and their implications on ASR. In Section 3, a
speech recognition architecture for multilingual systems is de-
scribed. Section 4 summarizes some experimental results obtained
in the recognition tests to verify the viability of the chosen techni-
cal solutions.

2. ASR IN MOBILE COMMUNICATION
DEVICES

It is generally acknowledged that there is enormously potential in
speech recognition to renew the ways how the users will interact
with various communication devices in the future. There are, how-
ever, several constraints that need to be considered when starting to
integrate voice control functionality in products which are used by
hundreds of millions of people world-wide. In this section, we
address some of the most important requirements that need to be
considered until ASR can be an integral part of the user interface of
global products.

2.1 Usability Requirements

It is obvious that the current wide use of speaker-dependent ASR
technology is mainly due to technical limitations, as from the user's
perspective, the training process is often seen as an additional bur-



den. While it may sometimes be acceptable to let the users
train/adapt the recognizer to their voice in an enrollment session, in
such products where speech recognition is not the main feature,
this cumbersome and lengthy training process should be avoided if
possible. Since the users are only seldom willing to train many
vocabulary items, the vocabulary size in speaker-dependent ASR
applications is often very limited. These problems can be alleviated
using the speaker-independent ASR technology, as it improves the
ease-of-use and provides a wider range of application possibilities
than when relying on the use of speaker-dependent technology.

2.2 Implementation and Application Needs

Compared with a normal PC environment, the implementation
resources in embedded systems are sparse both in terms of proc-
essing power and memory. Because the factory price has a crucial
importance in mass-produced products, it is important to pay at-
tention to minimize all implementation costs. A compact imple-
mentation of the ASR engine can result in substantial cost savings
making the product more competitive in terms of price.

There are many ASR application possibilities in mobile communi-
cation systems. Both the vocabulary size and the type of speech
input, i.e. isolated words vs. continuous speech, can change appli-
cation by application. Since the vocabulary is dynamic in the most
of ASR applications, it is clear that acoustic modeling cannot be
based on whole-word models, but smaller sub-word based acoustic
units are needed. There are many benefits supporting the use of
sub-word based acoustic modeling. We can realize easily portable
ASR applications for different recognition tasks. It is also possible
to let the users modify the vocabulary items according to their own
needs and preferences. Finally, considerable development cost
reductions can be achieved as the expensive and time-consuming
application-specific data collection can be avoided.

The use of sub-word models requires a pronunciation modeling
scheme to define how different sub-word units are concatenated to
words. Due to their large memory requirements, extensive pronun-
ciation lexicons, which are commonly used in PC based ASR sys-
tems, cannot though be used in embedded systems. On-line tech-
niques1 are instead required to make a conversion between the
written and spoken language. As the vocabulary items are not al-
ways monolingual, pronunciation modeling needs to be designed
such that it can also cope with multilingual vocabulary words.
Automatic text based language identification is therefore required
to choose the valid pronunciation scheme for different multilingual
vocabulary items.

2.3 Recognition Performance

Noise robustness and immunity to speaker variability are probably
the two most important requirements that are common to all recog-
nition systems. Although noise robustness has intensively been
studied for the last decade, it remains one of the key challenges in
speech recognition. As mobile devices are used virtually every-
where, a high degree of noise robustness is an obligatory require-
ment. This requirement also restricts the type of applications that

                                                          
1 This is of course not needed if the application has a fixed vocabulary
when the system designer can specify the pronunciation for each vocabu-
lary item.

can be included in portable products. More progress is required in
noise robust ASR research until for example large vocabulary con-
tinuous speech recognition can successfully be utilized in mobile
communication systems.

In addition to noise robustness, the ASR system must also cope
with speaker variability. Due to the multilingual acoustic models, it
is obvious that the mismatch between acoustic models and the
speaker's speech is greater in multi- than in monolingual systems.

3. MULTILINGUAL ASR ARCHITECTURE
Figure 1 illustrates the proposed architecture for multilingual ASR
systems. The multilingual ASR engine consists of three key units:
automatic language identification, on-line pronunciation modeling,
and multilingual acoustic modeling modules. The assumption is
that vocabulary items are given in the textual form. First, the Lan-
guage Identification (LID) module detects the language of the vo-
cabulary item. Once this has been determined, an appropriate on-
line pronunciation modeling scheme is applied to get the phoneme
sequence associated with the written form of the vocabulary item.
Finally, the recognition model for each vocabulary item is con-
structed by concatenating the multilingual acoustic models. With
these basic modules, the recognizer can automatically cope with
multilingual vocabulary items without the user assistance. In the
remainder of this section, these basic building blocks of the multi-
lingual ASR system are investigated in greater details.
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Figure 1: Architecture for a multilingual ASR system.

3.1 Multilingual Acoustic Modeling

The performance of any ASR system is highly dependent on the
quality of the acoustic models. When aiming at supporting multiple
languages and having restricted memory capabilities, it is obvious
that one must make compromises in the modeling accuracy. The
sufficiency of memory is the main problem in acoustic modeling.
Therefore, some of the most widely used acoustic modeling
schemes cannot be utilized in embedded systems. It is easy to un-
derstand that commonly used context-dependent acoustic models
are not an attractive solution due to their large memory require-
ments. Language-dependent acoustic models are also problematic,



particularly, if we need to support several languages at the same
time.

To have a reasonable number of acoustic models, we selected
monophone HMMs as a basic acoustic building block. The mono-
phone models are further shared across different languages and the
parameters of continuous density monophone HMMs are trained
on multilingual speech corpora for having as small number of
models as possible. We chose the International Phonetic Alphabet
(IPA) [1] to define the phoneme inventory for the multilingual
ASR engine. Some language-specific modifications have though
been included in the IPA phoneme set either to further reduce the
number of models or to increase the modeling accuracy. In addi-
tion to the small number of acoustic models, the multilingual ap-
proach also makes it possible to support languages for which there
is no speech data available for HMM parameter estimation. As
shown in Section 4, an acceptable recognition accuracy can be
achieved for an unseen language by defining only the valid pro-
nunciation of vocabulary items.

Acoustic model adaptation has been found to be an efficient
method to increase the speaker-specific recognition rate by several
researchers [2]. Since multilingual acoustic models cannot charac-
terize the language-specific details as accurately as their monolin-
gual counterparts, the importance of model adaptation is even
greater in multi- than in monolingual ASR systems. Besides im-
proving speaker-specific recognition rate, it is also possible to in-
crease the performance for unseen languages that are only sup-
ported at the pronunciation modeling level. This enables us to sup-
port minority languages for which no large enough speech corpora
exist. After the user has uttered a few utterances, the adapted
acoustic models provide a recognition rate that is comparable to
those languages that have been seen in the training phase.

As mentioned in Section 2.1, off-line adaptation is only seldom an
acceptable solution, and therefore, the adaptation process often
needs to be made transparent to the user. Another advantage of on-
line adaptation is that it is capable of adapting the system to certain
operating conditions preferred by the user.

3.2 Automatic Pronunciation Modeling

On-line pronunciation modeling, i.e. Text-to-Phoneme (T2P) map-
ping, is an obligatory feature in embedded systems with dynamic
vocabularies where it is not feasible to have large pronunciation
dictionaries for several languages. If the pronunciation of a lan-
guage is very regular, e.g. in Finnish or Japanese, the T2P mapping
module is very compact as it can be realized from a finite set of
rules. There are, however, many languages, English being the best
example, whose pronunciation cannot accurately be expressed
using a rule set. To gain a high performance T2P mapping for ir-
regular languages, it is necessary to have large text resources.

Decision trees have successfully been used to compress large pro-
nunciation dictionaries [4][6]. The T2P irregularity of the language
controls the size and accuracy of the decision tree based pronun-
ciation model. If the number of T2P exceptions is small, the deci-
sion trees do not become very big. However, the size of the deci-
sion tree based T2P model increases rapidly if there are many pro-
nunciation exceptions in the language. T2P mapping can also be
implemented using neural nets [3] when the module becomes very
compact.

3.3 Language Identification

The task of the Language Identification (LID) module is to identify
the language of each vocabulary item based on its textual form.
This decision is utilized to choose an appropriate text-to-phoneme
mapping technique for each vocabulary item. Since the result of the
LID module is not always unambiguous, it is important to provide
multiple results and pronunciations for certain vocabulary items.

In general, a text based LID is a fairly new research topic. A
straightforward approach is to utilize the occurrence probabilities
of different letter combinations and certain language-specific let-
ters [5]. The drawback of this n-gram modeling is that the size of
the LID module increases rapidly with the higher values of n.

4. EXPERIMENTAL RESULTS

The objective of the performance evaluation was to confirm the
technical viability of the proposed multilingual speech recognition
architecture, i.e. how much the recognition rate is affected by the
approximations made in acoustic modeling, language identifica-
tion, and pronunciation modeling. A multilingual ASR engine
supporting five European languages, English, German, Spanish,
Finnish, and Italian, was created according to Figure 1. The
amount of the multilingual acoustic training data was approxi-
mately balanced in terms of different languages. However, no
acoustic training data was available for Italian. Small modifications
to the IPA phoneme definitions were made to reduce the number of
acoustic models, e.g. no separate models were trained for double
consonants and vowels in Finnish. The phoneme set for Italian was
constructed from the phonemes occurring in the other four lan-
guages.

4.1 Front-End, Acoustic Models, and Test Set-Up

A set of 12 MFCC coefficients and log-energy, together with their
first- and second-order time derivatives, were extracted from a
continuous-time speech signal sampled at 8 kHz. Three-state, left-
to-right continuous density HMMs were trained to characterize all
66 monophones that were chosen to represent the spoken sounds of
the five test languages.

The language-specific test vocabulary consisted of 120 isolated
commands for each test language. There were both "native" and
"non-native" items included in the vocabulary. The majority of
vocabulary entries matched the language of the test speaker. Each
command was repeated twice by all test speakers.

4.2 Multilingual Acoustic Modeling

First, it was tested how much the recognition rate degrades if we
replace the monolingual acoustic models by the multilingual
HMMs. For each language, except for Italian, the language-
dependent acoustic models were estimated, and their performance
was compared to the multilingual phoneme set. As shown in Table
1, the use of multilingual HMMs decreased the recognition rates
only marginally, except in the case of Finnish, for which the rates
improved considerably. It should be noted that neither on-line pro-
nunciation modeling nor LID was used in these tests, but both



pronunciations and language identities of all vocabulary items were
specified by a human expert.

Language Monolingual HMMs Multilingual HMMs
8 mix 16 mix 8 mix 16 mix

English 94.5 95.2 93.3 94.7
German 93.3 94.6 93.1 94.1
Spanish 94.6 95.4 94.5 95.6
Finnish 96.4 96.5 98.1 98.8
Average 94.7 95.4 94.8 95.8

Table 1: Recognition rate comparison between mono- and multi-
lingual acoustic models.

4.3 On-line T2P and Automatic LID

While the results in Table 1 were obtained with the error-free pro-
nunciations and language identification decisions, the goal of the
following tests was to study how the recognition rate is affected
when automatic methods were applied to these tasks. Decision tree
based T2P modules were created from English, German, and
Spanish pronunciation dictionaries. A rule set was defined for Fin-
nish and Italian. An n-gram (n=2) based LID module was also
created from large text resources. Figure 2 depicts the results ob-
tained in these tests with the 8-mixture multilingual HMMs.
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Figure 2: The effect of automatic T2P and LID on the recognition
accuracy.

Not surprisingly, a small performance degradation is observed for
all languages due to the sub-optimal pronunciations. The perform-
ance drop is nevertheless insignificant for all languages. It is also
interesting to note that very high recognition rates were achieved
for Italian although no Italian data was present during training.
These results suggest that multilingual acoustic models can suc-
cessfully be applied also for unseen languages for which only pro-
nunciation information is available

Automatic LID appears to degrade the performance more than on-
line pronunciation modeling. Particularly for English, the rates
were affected quite drastically. The tests also indicate the impor-
tance of acoustic model adaptation to compensate the performance
losses due to erroneous T2P and LID decisions.

4.4 On-line Adaptation Experiments

Inter-speaker variability (accents, dialects etc.), environmental
mismatch between training and testing conditions, as well as the
language mismatch between the multilingual acoustic models and
the test language, are the three major sources resulting in perform-

ance degradation when using multilingual speaker-independent
acoustic models. Figure 3 illustrates the recognition performance
gain that was obtained when supervised on-line MAP adaptation of
Gaussian means [2] was included in the recognition system. The
tests were done both in clean and noisy test environments with on-
line T2P. The noisy utterances were created by adding various
types of noise signals (car noise, babble noise, music) to clean
waveforms at the Signal-to-Noise Ratio range of +20…+5 dB.
Adaptation results clearly show that acoustic model adaptation
should be an integral part of the multilingual ASR system.
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Figure 3: The performance comparison of the speaker-independent
(SI) and on-line adapted (ADA) multilingual ASR systems both in
clean and noisy conditions, 8-mixture HMMs.

5. CONCLUSIONS

In this paper, we have proposed a framework for multilingual
speech recognition in mobile communication devices. Compared
with a monolingual speech recognition architecture, this revised
ASR framework includes three new modules, namely multilingual
acoustic modeling, on-line T2P, and automatic LID. By relying on
these new modules, it is feasible to realize a high performance
multilingual ASR system on the resource sparse implementation
platform that can deal with dynamic and multilingual vocabularies.
Preliminary experimental results for five European languages show
the usefulness of the proposed ASR architecture.

REFERENCES
[1] The International Phonetic Association, Handbook of the Interna-

tional Phonetic Association (IPA), Cambridge University Press,
Cambridge, UK, 1999.

[2] J. L. Gauvain, C.-H. Lee, "Maximum a Posteriori Estimation of Mul-
tivariate Gaussian Mixture Observations of Markov Chains", IEEE
Transactions on Speech and Audio Processing, Vol. 2, No. 2, pp.
291-298, April 1994.

[3] K. J. Jensen, S. Riis, "Self-Organizing Letter Code-Book for Text-to-
Phoneme Neural Network Model", Proc. of ICSLP'00, Beijing,
China, 2000.

[4] V. Pagel, K. Lenzo, A. W. Black, "Letter to Sound Rules for Ac-
cented Lexicon Compression," Proc. of ICSLP'98, Sydney, Australia,
1998.

[5] J. Prager, “Linguini: Language Identification for Multilingual Docu-
ments”, 32nd Hawaii International Conference on System Sciences,
pp. 1-11, Hawaii, 1999.

[6] J. Suontausta, J. Häkkinen, "Decision Tree Based Text-to-Phoneme
Mapping For Speech Recognition", Proc. of ICSLP'00, Beijing,
China, 2000.


