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ABSTRACT for instance with noise robust esch recognition. In addition to
multilinguality, noise robustness and low complexity implementa-
In this paper, we investigate the technical challenges that are facedtion are also required for all applications realized on mobile de-
when making a transition from the speaker-dependent to speaker-vices due to the wide range of different operating conditions and
independent speech recognitionhealogy in mobile communi- sparse implementation resources. An isolated word recognition
cation devices. Due to globalization as well as the international task combined with the speaker-dependent ASR technology guar-
nature of the markets and the future applications, speaker inde- antees high enough recognition rates on various languages across
pendence implies the development and use of language- various types of operating environments. It is apparent that the
independent ASR to avoid logistic difficulties. We propose here same performance and implementation requirements must also be
an architecture for embedded multilingual speech recognition met when shifting from speaker-dependent to speaker-independent
systems. Multilingual acoustic modeling, automatic language ASR technology.
identification, and on-line pronunciation modeling are the key .
features which enable the creation of truly language- and speaker- 1hanks to the progress done in technology development and the
independent ASR applications with dynamic vocabularies and availability of more pOW(_er_fuI |_mplemc_entat|0_n platforms, it is obvi-
sparse implementation resources. Our experimental results confirm ©US that speech recognition in mobile devices also trends towards
the viability of the proposed architecture. While the use of multi- SPeaker independence. However, it is still unrealistic to expect that
lingual acoustic models degrades the recognition rates only mar- thiS technology shift would mean the possibility to run very ad-
ginally, a recognition accuracy decrease of approximately 4% is \_/ar_lced speech recognition applications on these very resource
observed due to sub-optimal on-line text-to-phoneme mapping and limited platforms.

automatic language identification. This performance loss can nev- | this paper, we discuss about technical solutions needed for ena-
ertheless be compensated by applying acoustic model adaptationpjing the use of language- and speaker-independent speech recog-
techniques. nition technology in embedded systems, e.g. mobile phones. The
focus is still on applications with isolated word, or very restricted
1. INTRODUCTION continuous, spech nput. The remainder of the paper is organized
as follows. Section 2 discusses the characteristics of mobile com-
Over the past few years, Automatic Speech Recognition (ASR) munication systems and their implications on ASR. In Section 3, a
technology has hit mobile phones. Speaker-trained name dialer isspeech recognition architecture for multilingual systems is de-
today probably one of the most widely distributed ASR applica- scribed. Section 4 summarizes some experimental results obtained
tions in the world. Despite the fact that more advanced speechin the recognition tests to verify the viability of the chosen techni-
recognition applications have already been introduced for other cal solutions.
platforms during several years, there are many aspects which jus-

tify the use of this simple technology in portable mobile communi- 2. ASR IN MOBILE COMMUNICATION

cation devices. Multilinguality, low complexity implementation, DEVICES
and a high degree of robustness against background noise are the
key qualities of the speaker-dependent ASR technology. It is generally acknowledged that there is enormously potential in

The undoubted advantage of speaker-trained technology is its in-SP€ech recognition to renew the ways how the users will interact
herent support to various languages as all users train the recogniWith various communication devices in the future. There are, how-
tion system to match their language and pronunciation characteris-8Ver, several constraints that need to be considered when starting to
tics. Multilinguality is one of the main requirements set for speech integrate voice control functionality in products which are used by
recognition applications running on mobile devices. A truly multi- hundreds of millions of people world-wide. In this section, we
lingual speech recognition system can simultaneousipart sev- addr(_ess some _of the most |mpqrtant requirements that_need to be
eral languages and is able to cope with non-native speakers, diatonsidered until ASR can be an integral part of the user interface of
lects, accents, and multilingual vocabulary items. There are also9lobal products.

substantial financial facts which justify the development of multi- . .

lingual speech recognition systems. For suadpets, which are 2.1 Usability Requirements

sold world-wide, it is utterly important that there is no need to . )

develop different versions of the same product for different lan- !t IS Obvious that the current wide use of speaker-dependent ASR
guage regions. Despite its indisputable importance, surprisingly technology is malnly (_jue to technl_cal limitations, as from t_h_e user's
little efforts have been put on multilingual ASR research compared PE'SPEctive, the training process is often seen as an additional bur-



den. While it may sometimes be acceptable to let the userscan be included in portable products. More progress is required in
train/adapt the recognizer to their voice in an enrollment session, innoise robust ASR research until for example large vocabulary con-
such products where spch recognition is not the main feature, tinuous spech recognition can successfully be utilized in mobile
this cumbersome and lengthy training process should be avoided ifcommunication systems.
possible. Since the users are only seldom willing to train many . .
vocabulary items, the vocabulary size in speaker-dependent ASRIn. addition to n(_)lse”robustness, the A.S.R system must also cope
applications is often very limited. These problems can be alleviated ‘.N'th speaker Va“ab'“ty'. Due to the multilingual acoustic models, it
using the speaker-independent ASR technology, as it improves the’® ObVIO'US that th.e m'smat.Ch betyveen acoustic models and the
ease-of-use and provides a wider range of application possibilitiesSpeakerS speech is greater in mulii- thanémalingual systems.
than when relying on the use of speaker-dependent technology. 3. MULTILINGUAL ASR ARCHITECTURE
2.2 Implementation and Application Needs Figure 1 illustrates the proposed architecture for multilingual ASR
systems. The multilingual ASR engine consists of three key units:
Compared with a normal PC environment, the implementation automatic language identification, on-line pronunciation modeling,
resources in embedded systems are sparse both in terms of procand multilingual acoustic modeling modules. The assumption is
essing power and memory. Because the factory price has a cruciathat vocabulary items are given in the textual form. First, the Lan-
importance in mass-produced products, it is important to pay at- guage Identification (LID) module detects the language of the vo-
tention to minimize all implementation costs. A compact imple- cabulary item. Once this has been determined, an appropriate on-
mentation of the ASR engine can result in substantial cost savingsline pronunciation modeling scheme is applied to get the phoneme
making the product more competitive in terms of price. sequence associated with the written form of the vocabulary item.

There are many ASR application possibilities in mobile communi- Finally, the recognltlon_ model for _e_ach vocabula_ry item I con-
structed by concatenating the multilingual acoustic models. With

tion tems. Both the v lary size and the t f ; . . ;
icnat)L?t izysiseOI:ted ?/vordsevsoz?)l?l;r?u)éusge a gan ghgﬁgeoapzlﬂ?ec%ese basic modules, the recognizer can automatically cope with

S e . N L multilingual vocabulary items without the user assistance. In the
cation by application. Since the vocabulary is dynamic in the most remainder of this section, these basic building blocks of the multi-

of ASR applications, it is clear that acoustic modeling cannot be linqual ASR svstem are investigated in areater details
based on whole-word models, but smaller sub-word based acoustic 9 y 9 9 :

units are needed. There are many benefits supporting the use of

Vocabulary entr

sub-word based acoustic modeling. We can realize easily portable mwriten form | Langusge 0
ASR applications for different recognition tasks. It is also possible il Jd dentiicaton i
to let the users modify the vocabulary items according to their own Module Quen
needs and preferences. Finally, considerable development cost o Nafn
reductions can be achieved as the expensive and time-consuming the name tag

application-specific data collection can be avoided. English

Vocabulary entr
in written form v

The use of sub-word models requires a pronunciation modeling “dial”

scheme to define how different sub-word units are concatenated to Pronunciation Pronunciaion
words. Due to their large memory requirements, extensive pronun- Modeling Fimish
ciation lexicons, which are commonly used in PC based ASR sys- Module Suen
tems, cannot though be used in embedded systeméine tech- Jalln
niques are instead required to make a conversion between the mﬁ’g"ggg;;gﬂ;ggf;

written and spoken language. As the vocabulary items are not al- I fall 1

ways monolingual, pronunciation modeling needs to be designed Acousiic

such that it can also cope with multilingual vocabulary words. Acoustic matdel fo -
Automatic text based language identification is therefore required Modeling ASR B
to choose the valid pronunciation scheme for different multilingual Module

vocabulary items.
Figure 1: Architecture for a multilingual ASR system.

2.3 Recognition Performance

_ _ _ — 3.1 Multilingual Acoustic Modeling
Noise robustness and immunity to speaker variability are probably

the two most important requirements that are common to all recog-The performance of any ASR system is highly dependent on the
nition systems. Although noise robustness has intensively beenquality of the acoustic models. When aiming at supporting multiple
studied for the last decade, it remains one of the key challenges inanguages and having restricted memory capabilities, it is obvious
speech recognition. As mobile devices are used virtually every- that one must make compromises in the modeling accuracy. The
where, a high degree of noise robustness is an obligatory requiresufficiency of memory is the main problem in acoustic modeling.
ment. This requirement also restricts the type of applications that Therefore, some of the most widely used acoustic modeling
schemes cannot be utilized in embedded systems. It is easy to un-
! This is of course not needed if the application has a fixed vocabulary derstand that commonly used context-dependent acoustic models

when the system designer can specify the pronunciation for each vocabu2r€¢ not an attractive solution due to their large memory require-
lary item. ments. Language-dependent acoustic models are also problematic,




particularly, if we need to support several languages at the same3.3 Language Identification
time.

To have a reasonable number of acoustic models. we selecte The task of the Language Identification (LID) module is to identify
' qhe language of each vocabulary item based on its textual form.

monophone HMMs as a basic acoustic building block. The mono- SO .
. This decision is utilized to choose an appropriate text-to-phoneme
phone models are further shared across different languages and the

. X . mapping technique for each vocabulary item. Since the result of the
parameters of continuous density monophone HMMs are trained - - S .
Y : LID module is not always unambiguous, it is important to provide
on multilingual speech corpora for having as small number of

models as possible. We chose the International Phonetic Alphabetmumple results and pronunciations for certain vocabulary items.
(IPA) [1] to define the phoneme inventory for the multilingual In general, a text based LID is a fairly new research topic. A
ASR engine. Some language-specific modifications have though straightforward approach is to utilize the occurrence probabilities
been included in the IPA phoneme set either to further reduce theof different letter combinations and certain language-specific let-
number of models or to increase the modeling accuracy. In addi-ters [5]. The drawback of this-gram modeling is that the size of
tion to the small number of acoustic models, the multilingual ap- the LID module increases rapidly with the higher values of

proach also makes it possible to support languages for which there

is no speech data available for HMM parameter estimation. As 4. EXPERIMENTAL RESULTS

shown in Section 4, an acceptable recognition accuracy can be

achieved for an unseen language by defining only the valid pro- The objective of the performance evaluation was to confirm the
nunciation of vocabulary items. technical viability of the proposed multilingualesgeh recognition

Acoustic model adaptation has been found to be an efficient architecture, i.e. how much the recognition rate is affected by the

method to increase the speaker-specific recognition rate by severa .ggro;:qrgatl?gz ?ﬁg?olnn If:;%ﬁtr']c m:dﬁ:'r;gl’.nlanglui?R'd::t'.Ecea'
researchers [2]. Since multilingual acoustic models cannot charac-sI ’ ortin pf. euE Irol can lan Iag.es Er? Il‘éhguGerman S galm'sh
terize the language-specific details as accurately as ttogiolm- upporting five Europ guages, gish, , =panish,

gual counterparts, the importance of model adaptation is evenF'nn'Sh‘ and |ta||an.,.was created‘ accgrglmg to Figure 1. The
greater in multi- than in monolingual ASR systems. Besides im- amount of the multilingual acoustic training data was approxi-

proving speaker-specific recognition rate, it is also possible to in- mately balanced in terms of different languages. However, no

crease the performance for unseen languages that are only su acoustic training data was available for Italian. Small modifications

ported at the pronunciation modeling level. This enables us to sup-to the IPA phoneme definitions were made to reduce the number of

port minority languages for which no large enougbeesih corpora acoustic models, e.g. no sgparate models were trained for double
exist. After the user has uttered a few utterances. the adap,[eaconsonants and vowels in Finnish. The p.hon.eme set for Italian was
acoustic models provide a recognition rate that is comparable tocon;sté:cted from the phonemes occurring in the other four lan-

those languages that have been seen in the training phase. guages.

As mentioned in Section 2.1, off-line adaptation is only seldom an 4 1 Front-End. Acoustic Models. and Test Set-Up
acceptable solution, and therefore, the adaptation process often ’ '

needs to be made transparent to the user. Another advantage of ok set of 12 MFCC coefficients and log-energy, together with their
line adaptation is that it is capable of adapting the system to certainfirst- and second-order time derivatives, were extracted from a

operating conditions preferred by the user. continuous-time speech signal sampled at 8 kHz. Three-state, left-
. Lo . to-right continuous density HMMs were trained to characterize all
3.2 Automatic Pronunciation Modeling 66 monophones that were chosen to represent the spoken sounds of

) . . the five test languages.
On-line pronunciation modeling, i.e. Text-to-Phoneme (T2P) map-

ping, is an obligatory feature in embedded systems with dynamic The language-specific test vocabulary consisted of 120 isolated
vocabularies where it is not feasible to have large pronunciation commands for each test language. There were both "native” and
dictionaries for several languages. If the pronunciation of a lan- "non-native” items included in the vocabulary. The majority of
guage is very regular, e.g. in Finnish or Japanese, the T2P mapping/ocabulary entries matched the language of the test speaker. Each
module is very compact as it can be realized from a finite set of command was repeated twice by all test speakers.

rules. There are, however, many languages, English being the best » . )

example, whose pronunciation canratcurately be expressed 4.2 Multilingual Acoustic Modeling

using a rule set. To gain a high performance T2P mapping for ir-

regular languages, it is necessary to have large text resources. ~ First, it was tested how much the recognition rate degrades if we
replace the mnolingual acoustic models by the multilingual

Decision trees have successfully been used to compress large prosjMMs. For each language, except for Italian, the language-
nunciation dictionaries [4][6]. The T2P irregularity of the language dependent acoustic models were estimated, and their performance
controls the size and accuracy of the decision tree based pronunwas compared to the multilingual phoneme set. As shown in Table
ciation model. If the number of T2P exceptions is small, the deci- 1, the use of multilingual HMMs decreased the recognition rates
sion trees do not become very big. However, the size of the deci-only marginally, except in the case of Finnish, for which the rates
sion tree based T2P model increases rapidly if there are many proimproved considerably. It should be noted that neither on-line pro-

nunciation exceptions in the language. T2P mapping can also benunciation modeling nor LID was used in these tests, but both
implemented using neural nets [3] when the module becomes very

compact.



pronunciations and language identities of all vocabulary items were ance degradation when using multilingual speaker-independent
specified by a human expert.

acoustic models. Figure 3 illustrates the recognition performance
gain that was obtained when supervised on-line MAP adaptation of
Gaussian means [2] was included in the recognition system. The
tests were done both in clean and noisy test environments with on-
line T2P. The noisy utterances were created by adding various
types of noise signals (car noise, babble noise, music) to clean

Language | Monolingual HMMs | Multilingual HMMs
8 mix 16 mix 8 mix 16 mix
English 94.5 95.2 93.3 94.7
German 93.3 94.6 93.1 94.1
Spanish 94.6 95.4 94.5 95.6
Finnish 96.4 96.5 98.1 98.8
Average 94.7 95.4 94.8 95.8

Table 1: Recognition rate comparison between mono- and multi-
lingual acoustic models.

4.3 On-line T2P and Automatic LID

While the results in Table 1 were obtained with the error-free pro-
nunciations and language identification decisions, the goal of the
following tests was to study how the recognition rate is affected
when automatic methods were applied to these tasks. Decision tree
based T2P modules were created from English, German, and
Spanish pronunciation dictionaries. A rule set was defined for Fin-
nish and ltalian. Am-gram (=2) based LID module was also
created from large text resources. Figure 2 depicts the results ob-
tained in these tests with the 8-mixture multilingual HMMs.
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waveforms at the Signal-to-Noise Ratio range of +20...+5 dB.
Adaptation results clearly show that acoustic model adaptation
should be an integral part of the multilingual ASR system.
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clean and noisy conditions, 8-mixture HMMs.

5. CONCLUSIONS

In this paper, we have proposed a framework for multilingual
speech recognition in mobile communication devices. Compared
with a monolingual speech recognition architecture, this revised
ASR framework includes three new modules, namely multilingual
acoustic modeling, on-line T2P, and automatic LID. By relying on
these new modules, it is feasible to realize a high performance

multilingual ASR system on the resource sparse implementation

Figure 2: The effect of automatic T2P and LID on the recognition
accuracy.

platform that can deal with dynamic and multilingual vocabularies.
Preliminary experimental results for five European languages show

Not surprisingly, a small performance degradation is observed for the usefulness of the proposed ASR architecture.

all languages due to the sub-optimal pronunciations. The perform-
ance drop is nevertheless insignificant for all languages. It is also
interesting to note that very high recognition rates were achieved
for Italian although no ltalian data was present during training.
These results suggest that multilingual acoustic models can suc-
cessfully be applied also for unseen languages for which only pro- 2]
nunciation information is available

Automatic LID appears to degrade the performance more than on-
line pronunciation modeling. Particularly for English, the rates
were affected quite drastically. The tests also indicate the impor-
tance of acoustic model adaptation to compensate the performance
losses due to erroneous T2P and LID decisions. [4]

(1]

4.4 On-line Adaptation Experiments

(5]
Inter-speaker variability (accents, dialects etc.), environmental
mismatch between training and testing conditions, as well as the
language mismatch between the multilingual acoustic models and(®!
the test language, are the three major sources resulting in perform-
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