
THE IBM PERSONAL SPEECH ASSISTANT

Liam Comerford, David Frank, Ponani Gopalakrishnan, Ramesh Gopinath, Jan Sedivy

IBM Watson Research Center
Yorktown Heights, NY 10598

psg@us.ibm.com

ABSTRACT

In this paper, we describe technology and experience with an ex-
perimental personal information manager, which interacts with the
user primarily but not exclusively through speech recognition and
synthesis. This device, which controls a client PDA, is known as
the Personal Speech Assistant (PSA). The PSA contains complete
speech recognition, speech synthesis and dialog management sys-
tems. Packaged in a hand-sized enclosure, of size and physical
design to mate with the popular Palm III personal digital assistant,
the PSA includes its own battery, microphone, speaker, audio input
and output amplifiers, processor and memory. The PSA supports
speaker-independent English speech recognition using a 500-word
vocabulary, and English speech synthesis on an arbitrary vocab-
ulary. We survey the technical issues we encountered in build-
ing the hardware and software for this device, and the solutions
we implemented, including audio system design, power and space
budget, speech recognition in adverse acoustic environments with
constrained processing resources, dialog management, appealing
applications, and overall system architecture.

1. INTRODUCTION

The thrust of the Personal Speech Assistant project has been
to create an early example of a collaborative tool. By this
we mean an inanimate instrument capable of collaboration
in the same way that humans collaborate with one another.
In doing so, we have explored and extended the capabil-
ities of the existing speech recognition, synthesis and un-
derstanding technology, and the constellation of related el-
ements (user interface, developer’s tools, utilities, hardware
requirements, industrial design).

We begin in Section 2 with a discussion of the hard-
ware. In Section 3 we review the spoken language software
stack, by which we mean services associated with managing
and maintaining a dialog with the user. Then in Section 4
we treat the characteristics and performance of the speech
recognition and synthesis systems. Section 5 is a brief dis-
cussion of flow of control to applications, and of the appli-
cations themselves. Section 6 is a summary.

2. HARDWARE

At the inception of the PSA project, speech recognition and
synthesis systems required approximately 100 MIPS to op-
erate with acceptably short latency. The latency may be
considered short if a question equivalent to “Was I heard?”

doesn’t arise in the user’s mind. This avoids disruptive ef-
forts to repair the dialog by repeating the command. The
processing requirements were met by a single board system
designed around NEC MIPS core processors (Vr41xx), op-
erated at 133 MHz. The board, now in its fourth revision,
measures 60 mm by 100 mm.

The card supports 8 MB of DRAM and 8MB of on-
card flash memory. Memory size requirements were gues-
timated early in the project, before any portion of the soft-
ware stack had actually been written. Flash memory, used
to store recordings, user interface description files and the
PSA software stack, could be increased to advantage.

Early in development, we found that the power con-
sumed by computing and driving audio output through the
speaker exceeded the capabilities of most small batteries.
The current design uses an MnO2/Li non-rechargeable bat-
tery made for photographic applications. Battery life de-
pends upon usage. With a Palm usage model, the PSA’s
battery life is measured in days. When operated in continu-
ous audio-out, this falls to approximately 3 hours. The unit,
not including the Palm III, weighs 143 grams, of which 17
grams are battery weight.

Two serial ports are provided. One is used as a commu-
nication path to a Palm III. The other duplicates the Palm
cradle connection to support communication with periph-
erals and PC synchronization. Audio input is provided via
a built in microphone (Lucent DM 1000 model M118HC),
microphone amplifier, and an STLC7550 CODEC, sampling
input at 11.025 KHz. The audio input filter is essentially
flat from approximately 90 Hz to 5 KHz. A 25 mm speaker
driven from the CODEC through a power amplifier provides
audio output. A headset jack for users desiring “private” au-
dio output is also provided.

The industrial design of the package plays a significant
role in its usability. It is made to clamp firmly to a Palm III,
so that the impression is created of a single, mechanically
robust package. The speaker is mounted in a base-ported
enclosure in order to maximize its efficiency in producing
voice band signals. The microphone is modified and lo-
cated to support voice operation at the distance and orienta-
tion typical of reading or writing on the Palm. This design
was chosen in order to support a physical usage model that
allowed normal PDA operation.

Three LEDs are visible on the front face of the PSA.
These serve as microphone state (green = listening) indica-
tor, a recording state indicator (green = ready to record) and



a user speech volume indicator (yellow = too soft, green =
OK, red = clipping). These indicators are provided to make
status information immediately available to the user without
using precious screen space, or requiring the user to search
the screen for it.

3. THE SPOKEN LANGUAGE SOFTWARE STACK

The PSA software stack comprises an operating system (Vx-
Works version 1.01), a collection of “engines” providing
spoken language, communication and other services, and a
dialog manager. The role of the dialog manager is primarily
construction of the user interface by coordinating the oper-
ation of the service engines and utilizing data from the user
interface file set.

Two engines are central to the operation of the soft-
ware stack. These are the speech recognizer and the text-
to-speech encoder; these engines are currently available as
the IBM Embedded ViaVoice product. Other engines were
written specifically to meet project requirements. All project
code components are designed to be portable and can be
adapted to new hardware or operating systems by modify-
ing a hardware portability layer and recompiling.

3.1. The Embedded Dialog Manager: Philosophy

The Embedded Dialog Manager (EDM) is successful to the
extent that it makes the user comfortable with the spoken
language interface. The conditions for this are easily rec-
ognized from personal experience with conversations that
have failed. Human parties to a conversation must feel that
they are being paid attention to, that they are understood and
elicit a response when they speak, that there is meaning in
what is spoken to them, that they can express the same re-
quest in several ways, that if understanding fails the other
party will cooperate in a mutual effort to restore the conver-
sation, and that the conversation itself may be discussed and
its rules changed dynamically. Moreover, the behavior of
the conversation must be varied and take into account both
recent and long-term conversational history. These prop-
erties are supported in the EDM by means of its built-in
properties and its collection of user interface data.

Either party, in the course of a conversation, may create
utterances in four domains of discourse. The first three are
(1) the content of subject of the conversation (“Tom pitched
a curve”), (2) the subject of the conversation (“Let’s stop
talking about baseball”), and (3) the conversational condi-
tions (“Please speak a little louder, I’m having trouble hear-
ing you over the game”). In a conversation between a person
and a device, these correspond to addressing an application,
addressing the operating system under the application (nav-
igation), and addressing the dialog manager itself. Utter-
ances in the fourth domain occur when two people converse
and a third listens; in this case, some portion of the utter-
ances can be intended to influence the listener. In a conver-
sation between a person and a device, these utterances cor-
respond addressing or launching background applications.

3.2. The Embedded Dialog Manager: Design

The user interface (UI) data collection is structured around
these four domains. All applications addressed by the spo-
ken language interface software stack provide UI data files
for the EDM. UI files can be created and manipulated with
any text editor. Specifying behaviors through data files that
govern the dialog permits developers to build applications
with a conversational interface without any specific knowl-
edge of the APIs of the supporting engines.

A minimal UI file set contains a VOC (vocabulary) file;
a typical set of such files will include at least one VOC file,
a PMT (prompt) file and a PRF (profile) file. Multiple files
of each kind can be provided for each application in order to
provide both default and application-state-specific vocabu-
laries, prompts and hardware properties.

VOC files map user utterances into events that may be
processed in the event loops of the VOC target. When the
EDM accepts a spoken utterance for processing, the de-
coded string returned by the recognition engine is used as
a search key in the set of active VOC files. The search or-
der (dialog manager VOC, target platform VOC, application
VOC, background VOC), prevents any application devel-
oper from overriding the default vocabularies and damaging
default functionality such as inter-application navigation.

PMT (prompt) files provide a set of useful system re-
sponses for programmed events such as error conditions or
acknowledgments. Well-designed prompts play an impor-
tant role in creating the illusion of conversation. A PMT
file is a list of sets of two elements comprising a prompt
key and a prompt string. Prompt strings, which may con-
tain references to environment variables (such as the name
of the user), and to sound files, are played after composition.
Any process capable of sending a message to the EDM can
issue a command to play a prompt, so the same mechanism
can be used by non-application functions such as low bat-
tery warnings or appointment notifications.

In a minimal prompt file, only one string is specified
for each index. If one prompt is spoken to the user several
times in a row, the user will perceive this as “mechanical”
and grow frustrated. Three conditions arise in which more
than one prompt should be specified. If the user needs to be
alerted to the same condition several times, a collection of
prompts of similar content may be used. A set of prompts of
the same information value is called a “rotation.” The EDM
can also select prompt complexity on the basis of conver-
sational history. Repeated errors cause prompts of succes-
sively increased content (taper up) [2]. Growing user expe-
rience reduces feature prompts, down to “Ready” or a sound
icon (taper down).

Properties such as voicing, power management and but-
ton properties also play a role in the user experience. These
aspects of the interface are controlled by environment vari-
ables. A PRF (profile) file contains a list of variable names
and values. When active, these are treated as environment
variables and are used to control services, settings, substi-
tutions in prompts, and to pass values between applications.
Values in these files may be defaults or application-specific.



Any application can change these values while running, but
the defaults will be restored before a new application envi-
ronment is loaded.

4. SPEECH RECOGNITION AND SYNTHESIS

The Embedded Speech Engine (ESE) is the smallest en-
gine in the ViaVoice product line. The ESE is designed for
medium vocabulary (up to 500 active words) speech recog-
nition with finite-state grammars (FSG). The ESE uses the
same application development tools as the ViaVoice dica-
tion/telephony engine; however, it uses substantially less
processor bandwidth and memory. The ESE is highly por-
table and scalable (small to medium vocabulary) and can
run on any suitable 32 bit general-purpose CPU. The speech
synthesis module in the ESE is a low-resource version of the
one in ViaVoice desktop/telephony.

4.1. ESE Architecture and Toolkit

The ESE uses the abstraction of services and queues. Each
service (or execution unit) reads from an input queue, pro-
cesses the data, and writes results to an ouput queue. At the
heart of the ESE is a scheduler that examines the queues and
schedules the appropriate service(s) to process data. Typi-
cally all the services run synchronously. However, the ar-
chitecture also supports buffered services. For example, the
ABS service, described below, works on accumulated cep-
strum coefficients.

The recognition part of the ESE is built mainly from
three services (FrontEnd, Labeler and Decoder), and three
queues (PcmQueue, CepstralQueue, and RankQueue). The
FrontEnd service reads from PcmQueue (which buffers the
incoming audio), computes cepstral coefficients and writes
results to CepstralQueue (which buffers the computed cep-
stra). The Labeler reads cepstra from CepstralQueue, com-
putes the ranks (described below) and writes results to Rank-
Queue. The Decoder reads ranks from RankQueue, finds
the most likely word string permitted by the FSG and writes
it out. The order of service invocation is controlled by a
scheduler. The maximum size of each queue depends upon
the CPU speed and expected maximum length of an utter-
ance; the queues have to be big enough to buffer sufficient
data in case the CPU cannot keep up with the incoming
PCM. For the 7/11 digit string recognition task described
below, with an acoustic model (AM) of 7000 Gaussians,
the CPU requirements of the three services are similar. For
larger grammars the Decoder takes more CPU. The speed
of the Labeler is nearly independent of the size of the AM.

The FrontEnd service computes standard 13-dim MFCC
coefficients from 16 bit PCM, sampled at 11.025 KHz. All
computations are in integer arithmetic. The FrontEnd also
labels each cepstral vector as speech or silence. This deci-
sion is based on simple Gaussian mixture models for speech
and silence in cepstral space. Due to the latency of speech-
silence detector the FrontEnd also uses a buffer that holds

a few milliseconds of cepstral data. The FrontEnd also per-
forms adaptive mean and energy normalization.

The Labeler service calculates the delta and the delta-
delta coefficients, yielding a 39 dimensional feature vector.
The Labeler then ranks the Gaussians in the acoustic model
(AM) according to their log-likelihoods as computed on the
given vector. The Labeler represents the acoustic model
(typically about 7-10K Gaussians) efficiently in memory,
and its algorithm is highly optimized for small footprint and
high speed on RISC CPUs. The output from the Labeler is
the top one hundred ranked HMM states, where each state
is modeled by a Gaussian mixture.

The Decoder service implements a simple synchronous
Viterbi search, based on the rank likelihoods supplied to it
[3]. The associated trellis is represented in memory by ar-
rays specifically built for the currently active grammar.

The ESE architecture allows multiple services to run in
parallel on the same queue. For example multiple Labelers
and Decoders (with different grammars, acoustic models
and so on) can run on the same cepstral data simultane-
ously. Moreover services like SpeakerID, SpeakerVerifica-
tion, CepstralCompression, and AcousticBaseformGenera-
tion can all read from the same CepstralQueue; thus the
FrontEnd service is shared.

An important service that is provided by the recognizer
is AcousticBaseformGeneration or ABS. ABS reads in the
cepstral vectors that correspond to an uttered word and gen-
erates a pronunciation for it. It searches through the space of
phone strings for the most likely phone string (as scored by
both the recognition acoustic model, and a language model
on phone strings) that could have generated the observed
cepstral vectors [1]. This service permits on-the-fly creation
of acoustic baseforms, for dynamic enlargement of the vo-
cabulary.

The ESE toolkit has two parts: runtime code and of-
fline utilities. The offline utilities enable users to design
sets of grammars for applications, and to create the final re-
locatable binary image. The image can be located in either
ROM or RAM, and at any place in memory. The ViaVoice
grammar compiler compiles common BNF input source and
generates the HMM search graph associated with the input
FSG. In addition to the compiled FSG, the binary image in-
cludes the acoustic model data, initial mean normalization
vector, the speech/silence detection model data and other
initialization data.

4.2. ESE Performance

This section describes the application of the ESE to a dif-
ficult digit string recognition task in a car. The task is to
recognize 7 or 11 digit phone numbers in a car.

A total of 120 hours of speech data were recorded from
300 speakers. Each recording consisted of 100 sentences
of read speech from one speaker at one of three speeds:
0/30/60mph. The recorded scripts contained a mix of digit
strings, command-and-control strings and general English.
Over twenty cars and minivans were used as data collec-
tion sites. The data were recorded simultaneously on AKG-



Q400 microphones placed on the driver side seatbelt and
sun-visor (or rear-view mirror). The split of data was 80/20/20
hours each at 0/30/60mph respectively.

The training data were augmented with data generated
by digitally adding car noise to the 0mph part of the training
corpus. The augmented training set (200 hours) was used to
build the AM which has about 700 word-internal triphone
HMM states, each modeled with a Gaussian mixture. The
AM had a total of about 7000 Gaussians in a 39-dimensional
feature space.

The test data consisted of recordings of 100 sentences
of 7/11 digit strings from 14 speakers (7 male, 7 female)
at each of three speeds: 0/30/60mph. The test data were
recorded on an AKG-Q400 mounted on the visor.

Operating at a 15 ms frame rate, the ESE requires about
60 MIPS of CPU for this recognition task, which has an
unusually broad grammar. Recognizing utterances in a sim-
pler grammar would require less computation. The memory
requirements for the digit string task are 387KB ROM and
92KB RAM. Table 4.2 shows the string error rate (SER) of
the ESE on this task.

Speed 0mph 30mph 60mph Avg
SER (%) 2.0 6.0 9.3 5.8

Table 1. String Error Rate (SER) of the ESE on the 7/11
Digit String Recognition Task

5. APPLICATIONS

The EDM was designed to be application neutral: applica-
tion domain expertise is expected to reside in the applica-
tion, and conversational expertise is expected to reside in
the EDM and the UI data files. The EDM provides its ex-
pertise by responding to messages. The external sources of
messages are the user, the application platform and the cur-
rent application. When the EDM captures a user utterance,
it sends the audio to the ESE, and prepares to receive back
an error or a recognized phrase. On receiving the response
from the ESE, if it is not an error, the decoding is found in
the active VOC file collection, and its associated event and
data are sent to the target application.

By these means, we have speech-enabled the Palm PIM
applications (date book, address book, to do list, memo pad),
and a simple phrase-to-phrase language translator. The PIM
applications were made the owners of their user interface
files, and events in these applications were aliased or added
to respond to messages from the PSA. Provisions were also
added to drive the text-to-speech and PCM playback sys-
tems from the application.

The speech-enabled date book functions include navi-
gation in the calendar by day (for instance “yesterday,” “to-
day,” “last Friday, “next Sunday”) and time (“8 am,” “5
pm”), readout of appointments (“next appointment,” “list
appointments”), and creation of new appointments at a spec-
ified date and time. New appointments drawn from a short

list of place names (for example “auditorium”) can be tran-
scribed directly into the calendar as text, or can be created in
audio format and stored there as PCM. Future versions will
transfer such audio files to the desktop at synchronization
time, where they will be decoded by a large vocabulary rec-
ognizer, and reinserted as text into the calendar. A similar
set of functions are enabled for the other PIM applications.
All these applications may also be controlled by the familiar
stylus interface, in case the user prefers silent interaction.

The phrase-to-phrase translator recognizes a small vo-
cabulary of complete phrases judged useful to the business
traveler (for instance “Good morning,” “I am lost,” “I’d like
a single room,” “Please take me to this address”). These
are then rendered into one of a selected list of languages,
currently French, German, Italian, Japanese and Spanish.
The rendering is accomplished either through the text-to-
speech system, or by playback of prerecorded utterances of
native speakers. The translation is a simple mapping from
one known phrase to another.

6. SUMMARY

This paper has described the hardware and software char-
acteristics of the IBM Personal Speech Assistant (PSA),
a handheld conversational personal information manager.
The PSA is a both platform for experimentation and a de-
manding proving ground. In addition to the obvious chal-
lenge of performing speech recognition in the varied and
often highly adverse acoustic environments where handheld
devices are expected to operate, we have contended with the
constraints imposed by the unit’s desired size and weight,
the esthetics of creating a device that is pleasing to look at
and hold, the creation of an environment that is easily modi-
fied and extended by others, and the synthesis of a complete
user interface from all these elements of design and technol-
ogy. Whether we have succeeded must be judged by those
who use the result of our labors.

7. ACKNOWLEDGEMENTS

We wish to thank Sabine Deligne, Ellen Eide, Paul Fern-
hout, Dimitri Kanevsky, Benoit Maison, Harry Printz, Roberto
Sicconi, Karl Zeeso, IBM Vimercate (now Celestica Vimer-
cate) and IBM Voice Systems for their contributions.

8. REFERENCES

[1] S. Deligne, B. Maison and R. A. Gopinath. Automatic Gen-
eration and Selection of Baseforms for Dynamic Vocabular-
ies Proc. ICASSP 2001.

[2] N. Yankelovich. Designing SpeechActs: Issues in Speech
User Interfaces CHI’95 Proceedings.

[3] L. R. Bahl, P. V. de Souza, P. S. Gopalakrishnan, D. Na-
hamoo, M. A. Picheny. Robust Methods for Using Context-
Dependent Features and Models in a Continuous Speech
Recognizer Proc. ICASSP 1994.


