AUTOMATIC TRANSCRIPTION OF VOICEMAIL AT AT&T

Michiel Bacchiani

AT& T Labs-Research, 180 Park Ave., Florham Park, NJ 07932, USA
michiel @research.att.com

ABSTRACT

This paper reports on the automatic transcription accuracy of voice-
mail messages. It shows that vocal tract length normalization and
adaptation using linear transformations, proven to improve accu-
racy on the Switchboard task, provide similar accuracy improve-
ments on this task. Direct application of the normalization tech-
niques is complicated by the fragmentation of the data. However,
unsupervised clustering was found to be effective in ensuring ro-
bust estimation of normalization parameters. Variance adaptation
resulted in larger accuracy improvements than adaptation of only
mean parameters, probably due to a large variability in channel
conditions. The use of semi-tied covariances provides additional
gains over using speaker and channel normalization. The com-
bined gain of using various compensation techniques improves
the system word error rate from 34.9% for the baseline system
to 28.7%.

1. INTRODUCTION

In recent years, in light of the Switchboard evaluations [9], sev-
eral compensation algorithms have been shown to improve the
accuracy of automatic transcription of spontaneous speech. The
improvements can be attributed to the partial success of these al-
gorithms to compensate for speaker/channel variations and invalid
modeling assumptions. The most widely used techniques that have
shown performance improvements across different sites when im-
plemented independently are Vocal Tract Length Normalization
(VTLN) [1], adaptation using Maximum Likelihood Linear Re-
gression (MLLR) [3] and Semi-Tied Covariances (STC) [6]. The
VTLN technique normalizes for speaker variability by applying
a non-linear transformation to the acoustic features. The MLLR
technique compensates for speaker and/or channel variability by
a speaker-dependent linear transformation of the model mean pa-
rameters. The STCs decorrelate the elements of the acoustic fea-
tures by a linear transformation to better match the widely used
diagonal covariances. The set of these techniques will be referred
to in the rest of this paper as compensation algorithms. The tech-
niques that attempt to normalize for speaker dependent character-
istics (VTLN and adaptation) will be referred to as normalization
techniques.

The focus of this work is on how the compensation algorithms,
proven to be effective on the Switchboard task, can be applied to
a voicemail transcription task. This task has many similarities to
the Switchboard task (spontaneous speech recorded through a tele-
phone channel) but also has several characteristics that differ. First,
unlike the Switchboard corpus, the data consists of a large number
of short messages. The data fragmentation and the assumption
of a lack of supervisory information about speaker identity and
channel conditions make robust estimation of normalization pa-

rameters difficult. Second, the voicemail transcription task used
in these experiments exhibits a large variability in terms of chan-
nel conditions (use of cellular phones for example). Therefore, the
previously developed normalization algorithms require an exten-
sion to ensure robust parameter estimation. In addition, variance
adaptation might be more important given the large channel varia-
tions [8].

Three key sets of experimental results are reported in this pa-
per. To ensure robustness of the normalization parameter esti-
mation, a clustering approach was investigated. Section 5 de-
scribes two clustering algorithms and their impact on the tran-
scription accuracy. In section 6 two linear transformation-based
adaptation algorithms are compared, one adapting only means, the
other adapting both means and variances. Section 7 describes how
the use of STCs affects system performance. Since using linear
mean-+variance adaptation transformations in training allows for
feature decorrelation as well, the comparison of systems with and
without STCs is required to separate the benefits from variance
adaptation and feature decorrelation.

Before describing the key experimental results, the voicemail
corpus is described in section 2. Then, in section 3, the system
training algorithm and performance of the Gender Independent
(GI) baseline system and a Gender Dependent (GD) system are
reported. Section 4 describes the details of the compensation algo-
rithms used.

2. VOICEMAIL CORPUS

The transcription experiments were conducted on a 100 hour cor-
pus of voicemail messages collected from the voicemail boxes
of 140 employees at AT&T. The corpus contains approximately
10,000 messages from approximately 2500 speakers. The mes-
sages were manually transcribed and labeled for channel condi-
tion, speaker gender, speaker identity and whether or not the mes-
sage was from a native speaker. About 90% of the messages were
recorded from regular handsets, the rest from cellular and speaker-
phones. The corpus is approximately gender balanced and approx-
imately 12% of the messages are from non-native speakers. The
mean duration of the messages is 36.4 seconds, the median is 30.0
seconds. The recordings were digitized at a sampling rate of 8kHz
and encoded as 8-bit p-law samples.

3. BASELINE AND GENDER DEPENDENT SYSTEMS

To evaluate the transcription accuracy, here and in all other results
reported in this paper, the corpus was partitioned randomly into
a 60 hour training set (700k words) and a 40 hour test set (388k
words). The transcriptions of the training messages were used to
construct a trigram language model. A 14k dictionary was con-



[ System | Word Error Rate (%) |

Gl 34.7
GD 33.3

Table 1. Baseline system error rate on the 40 hour test set.

structed using the AT&T Labs NextGen Text To Speech system
for all unique words observed in the training set. The dictionary
used 42 phonemic sub-word units, 5 noise units and 1 silence unit.

The acoustic feature vectors consisted of the first 12 FFT-
based, Mel-warped cepstral coefficients, an energy coefficient and
their first and second order time-derivatives. On a per message
basis, the mean of the cepstral parameters was subtracted and the
parameters were scaled to unit variance.

All acoustic models used 3-state left-to-right triphone HMMs.
The states of the triphone HMMs were tied using likelihood-based
decision-tree clustering of full covariance Gaussian distributions.
The output distributions of the tied states were modeled using 12-
component Gaussian mixture distributions with diagonal covari-
ances. The parameters of the mixture distributions were obtained
by a hybrid Viterbi and Expectation Maximization (EM) training
algorithm which used EM training only within word-boundaries.
The word-boundaries were estimated by Viterbi alignments. The
complexity of the tied-state output distributions were incremen-
tally increased. The IV + 1 component mixture distributions were
initialized by perturbation of the most heavily weighted mixture
components in the N component mixtures. EM training was then
used to estimate the parameters of the mixtures. Viterbi align-
ments of word-boundaries were only performed using some of the
intermediate stage systems. All models were trained by increas-
ing complexity with increments of 1 mixture component up to 8
mixture components and then used increments of 2 mixture com-
ponents to obtain the final 12-component distributions. At every
stage, 4 iterations of EM training were run to estimate model pa-
rameters. Viterbi alignments were performed after estimating the
6, 8 and 10 component mixture distributions.

Using the described training algorithm, a 8016 tied-state Gl
model was trained. Using the supervisory gender information, a
GD model was built with 4016 tied-states each. The error rates of
these models on the 40 hour test set are given in Table 1. Except
for the first pass that used the GI system, all experimental results
are based on rescoring the lattices generated by this first pass. The
GD system was used to determine gender based on likelihood for
all messages in the test set and for all further experimentation. Re-
taining the most likely transcripts, the GD transcription accuracy
reported in Table 1 was obtained.

4. COMPENSATION ALGORITHMS

Details of the compensation algorithms used in the reported exper-
iments are described here. The VTLN algorithm is described in
section 4.1. The adaptation algorithms, based on Maximum Like-
lihood (ML) estimation of linear transformations, are described in
sections 4.2 and 4.3 for the means only and means+variances al-
gorithms respectively. The details of STC algorithm are described
in section 4.4.

4.1. Vocal Tract Length Normalization

The vocal tract length normalization algorithm used a piecewise
linear frequency warping implemented similar to [2]. Denoting

frequency with respect to the Nyquist frequency, the frequency
warping is linear with slope « from 0 to 0.8 and linear with slope
é from 0.8 to 1.0. To obtain amplitude estimates at equidistant
points in the warped frequency domain, the FFT values were in-
terpolated with a cubic spline. The warp selection was based on
likelihood of voiced phones in a Viterbi alignment using either the
GD model described in section 3 or a VTLN trained model. The
alignments were either against the last available hypothesized tran-
script (in test) or the reference transcript (in training). The warps
were constrained to be between 0.9 and 1.1 with a step size of 0.02.

4.2. Mean Adaptation

The algorithm used to adapt means was an implementation of the
MLLR algorithm described in [3]. All mean adaptation experi-
ments used one full transformation matrix plus offset applied to
all mixture components. Experiments where MLLR adaptation
was used in training and testing followed an implementation of
the Speaker Adaptive Training (SAT) algorithm described in [4].

4.3. Constrained Mean and Variance Adaptation

The algorithm used to allow adaptation of both means and vari-
ances was the Constrained Model-space (CM) adaptation algo-
rithm described in [5]. The implementation of the iterative opti-
mization procedure directly followed the described algorithm. In
all experiments, 10 optimization iterations were run to obtain the
final transformation estimates. All experiments used a full trans-
formation matrix plus offset. In some experiments, multiple re-
gression classes were used, each using a full transformation matrix
plus offset. The regression classes were hand designed and fixed
throughout the experiments. In the experiments using two regres-
sion classes, the classes were silence+noises and speech. In the ex-
periments using five regression classes, there were separate trans-
formations for noises+silence, vowels+semivowels+glides, nasals,
stops and affricates+fricatives. In the experiments where CM adap-
tation was applied in both training and test, the system will be re-
ferred to as CM-SAT.

4.4, Feature Decorrelation

The algorithm used to decorrelate the elements of the acoustic
feature vectors was the semi-tied covariance algorithm described
in [6]. However, the optimization algorithm for estimating the
semi-tied transformation and corresponding model differed slightly
from that algorithm. Here, starting with the fully trained VTLN
model, the following iterative algorithm was executed:

1. Using the last estimate of the semi-tied transformation (iden-
tity for the first iteration) and last model estimate, compute
posterior probabilities of occupying each mixture compo-
nent at each time and collect the statistics for estimating the
semi-tied transformation.

2. Estimate the semi-tied transformation based on the statistics
collected in step 1.

3. Using the same posterior probabilities as found in step 1,
re-estimate the model parameters using the semi-tied trans-
formation estimate from step 2.

4. Complete the model update by running 3 iterations of EM
training using the last semi-tied transformation estimate.

5. If another training iteration, go to step 1.



5. MESSAGE CLUSTERING

The use of normalization techniques (VTLN and adaptation) in the
voicemail transcription task is complicated by the fragmented na-
ture of the corpus. Direct estimation of normalization parameters
based on the data available in a single message can lead to large es-
timation errors due to insufficient data. Because multiple messages
are available for many speakers, estimation error could be avoided
if these messages were pooled together and share a common set
of normalization parameters. To implement this, clustering ap-
proaches were investigated. In cases where normalization is only
applied on the test data, only the test data needed to be clustered.
As availability of supervisory information about speaker and/or
channel conditions could not be assumed in such a scenario, an un-
supervised clustering algorithm was required. If the normalization
techniques were also used in training (training a VTLN or SAT
model), clustering of the training data was also required. There,
availability of supervisory information about speaker and channel
could be assumed and could be used in clustering. However, since
many speakers have only very little data in the whole corpus and
since in many cases the channel conditions change from message
to message for a given speaker, the optimality of a clustering con-
figuration remains unclear even given the supervisory information.
Therefore, in the experiments using normalization in training, un-
supervised clustering was applied to the training data as well.
Two clustering approaches were investigated that were com-
pared in more detail in [7]. The first used Text Independent Gaus-
sian Mixture Models (TIGMMs) to represent messages and used
an agglomerative clustering approach with a likelihood based dis-
tance metric. The models were estimated on the speech frames of
the messages only. To distinguish speech from silence and noises,
the final Viterbi alignments of the GD model training described
in section 3 were used for the training data. For the test data, the
final alignment of the GD model hypothesis was used. The fea-
tures used for the TIGMMSs were 12 dimensional linear predictive
coding derived cepstral features and their first order time deriva-
tives. The implementation used 64-component, diagonal covari-
ance mixture models, estimated using a training algorithm similar
to the one described in section 3, except that no Viterbi alignments
were used and complexity increments were in steps of 4 mixture
components. In addition, if the occupancy count of a mixture com-
ponent that was to be split fell below 100 frames, the covariances
of the newly formed mixture components were tied. After estimat-
ing the TIGMM s for all messages, agglomerative clustering was
used to ensure data pools of at least 40 seconds of data. The sym-
metric distance metric between messages used in clustering was
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where D(%, j) denotes the distance between messages ¢ and 7, £(.)
denotes the log-likelihood function, pi,? denotes the m-th mean of
the mixture model of message 3, pﬁ{ ) denotes the n-th mean of the
mixture model of message j, M denotes the mixture model of
message ¢ and A/ denotes the mixture model of message ;.

The second clustering approach was the MLLR-based algo-
rithm described in detail in [7]. This algorithm uses the MLLR
adaptation statistics to directly optimize the MLLR adaptation like-
lihood of the cluster data. In contrast to the TIGMM approach, this
clustering approach is consistent as it optimizes the same objective
used in MLLR adaptation. In addition, this approach is efficient as
it uses the adaptation statistics based on the recognition model and

Model Test Normalization | Word Error Rate (%)
TIGMM | MLLR
GD - 333 333
GD VTLN 324 323
VTLN VTLN 32.3 32.0
VTLN VTLN+MLLR 31.2 30.9
VTLN+SAT VTLN+MLLR 30.9 30.4

Table 2. Normalized system performance using either TIGMM or
MLLR based message clustering.

| Model | Adaptation Type | Word Error Rate (%) |
VTLN MLLR 30.9
VTLN+SAT MLLR 30.4
VTLN CM 30.7
VTLN+CM-SAT CM 29.7

Table 3. System performance using mean only adaptation or con-
strained mean-+variance adaptation applied in either test only or
training and test.

does not require the construction of an external model. As in the
case of the TIGMM clustering approach, the algorithm was used
to cluster the messages agglomeratively into clusters of at least 40
seconds of speech data.

The transcription accuracies using the two clustering approach-
es are given in Table 2. Using either clustering approach, the
transcription accuracy improves by using the normalization tech-
niques. Use of the adaptation likelihood-based clustering consis-
tently improves performance over the TIGMM-based clustering
approach and gives a 0.5% accuracy improvement for the system
that uses both VTLN and adaptation in both training and test. Due
to this observation, MLLR-based clustering was used to define the
message clusters that share normalization parameters in all subse-
quent experiments.

6. ADAPTATION

Previous work on variance adaptation has shown that this is par-
ticularly beneficial for tasks that exhibit large variation in chan-
nel characteristics [8]. As this voicemail corpus exhibits such
variations, the linear transformation-based adaptation technique
that adapts only model means (MLLR) was compared with an ap-
proach that adapts both means and variances using a constrained
linear transformation (CM). Table 3 shows the performance of
these adaptation approaches using adaptation in test only or in both
training and test. The system that used adaptation in training us-
ing the CM algorithm was trained using two iterations of CM-SAT.
The performance of the system obtained by one CM-SAT pass was
29.9; 0.2% worse. Using a second pass of SAT of the MLLR-based
system did not show any additional improvement in transcription
accuracy. It can be observed from Table 3 that the CM adaptation
algorithm performs slightly better than MLLR if used in test alone
(30.7 vs. 30.9) and somewhat more if used in both training and test
(29.7 vs. 30.4).

Although the CM adapted system has the ability to adapt both
means and variances, the estimated linear transformation is con-
strained as it applies to both means and variances. Hence, one op-
tion to further improve modeling accuracy is to cascade CM adap-
tation with MLLR adaptation. Another option for improvement of
modeling accuracy is to use multiple regression classes. The per-



[ Adaptation Approach | Word Error Rate (%) |

CM+CM2 295
CM+CM2+CM5 294
CM+MLLR 29.3

Table 4. System performance using a cascade of adaptation
passes. A + indicates iterative adaptation and the numerical suf-
fixes indicate the number of used regression classes.

Model Adaptation Approach | Word Error
Rate (%)
VTLN+CM-SAT CM 29.7
VTLN+CM-SAT CM+MLLR 29.3
VTLN+STC+CM-SAT CM 29.3
VTLN+STC+CM-SAT CM+MLLR 28.7

Table 5. Adapted performance of systems with and without using
semi-tied covariances.

formance of these different options starting from the VTLN+CM-
SAT model are given in Table 4. The progressively more complex
adapted models were obtained by iterative decoding using the hy-
potheses of the last recognition pass to estimate the transforma-
tions of the next pass. It can be observed that cascading CM and
MLLR provides slightly better performance than iterative adap-
tation using CM with multiple regression classes. Further inves-
tigation showed that cascading the 5 regression class CM adap-
tation with MLLR adaptation did not show any additional gains.
Furthermore, using 5 regression classes in CM-SAT performed
slightly better after one training pass (29.8 vs. 29.9) but slightly
worse after a second iteration (29.8 vs. 29.7). Finally, the use of
block-diagonal transformation matrices performed slightly worse
than using a full transformation matrix (29.9 vs. 29.8).

7. SEMI-TIED COVARIANCES

The improved performance of the CM adaptation in comparison
to the MLLR-based adaptation approach is potentially due to the
fact that CM-SAT can better compensate for speaker and channel
variations (due to variance adaptation) but it could also be due to
decorrelation of the acoustic features. Both the CM-SAT algorithm
and the STC algorithm estimate linear transformations applied to
the acoustic features and then estimate model parameters based on
the linearly transformed features. The STC algorithm finds a linear
transformation applied independently of speaker identity whereas
the CM-SAT algorithm estimates speaker-dependent transforms.
However, since both transforms are linear, the CM-SAT algorithm
has a sufficient number of free parameters to learn both simulta-
neously. The difference using STCs followed by CM-SAT ver-
sus using CM-SAT alone is the starting model and initial trans-
form estimate. To compare the impact of this, two systems, one
with and one without STCs were compared. Starting from the
GD VTLN models, using the iterative algorithm described in sec-
tion 4.4, two STC systems was trained, one using a single STC
transformation, the other using seven transformations for different
hand-designed regression classes. The best performance was ob-
tained using the single transform STC system after seven iterations
of training which provided a 1.2% accuracy improvement over the
GD VTLN model. The performance of this system with adapta-
tion and the system without STCs but with adaptation are given in
Table 5. It can be observed that the gains from CM-SAT and STCs

are not additive, with the 1.2% gain of using STCs on the VTLN
model reduced to a 0.6% gain after CM-SAT. However, the use of
STCs before CM-SAT did provide additional gains, indicating the
importance of the seed model that the CM-SAT is initialized with.

8. CONCLUSIONS

The experiments reported in this paper show that gains from VTLN,
linear transformation-based adaptation and STCs are similar to
those obtained on the Switchboard task [9]. Clustering was effec-
tively used to ensure sufficient data for the estimation of normal-
ization parameters. The transcription accuracy was dependent on
the type of clustering algorithm. CM adaptation provided larger
accuracy gains than MLLR adaptation especially if used in both
training and test. Use of a cascade of CM and MLLR adapta-
tion provided additional accuracy improvements. Further accuracy
improvements could be obtained by the use of STCs. The STC
and CM adaptation gains were not additive, indicating that use of
CM adaptation in training partially succeeds in decorrelating the
acoustic features. Assuming the STC gain (1.2%) is additive to the
MLLR-based adaptation gain (1.6%), the combined gain would
still be less than that of the joint gain of using STCs and CM adap-
tation (3.3%) showing the advantage of using variance adaptation
in this task.
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