
A CLASS OF EFFICIENT-ENCODING GENERALIZED
LOW-DENSITY PARITY-CHECK CODES

Tong Zhang and Keshab K. Parhi

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455, USA

E-mail:ftzhang, parhig@ece.umn.edu

ABSTRACT

In this paper, we investigate an efficient encoding approach for
generalized low-density (GLD) parity check codes, a generaliza-
tion of Gallager’s low-density parity check (LDPC) codes. We
propose a systematic approach to construct approximate upper tri-
angular GLD parity check matrix which defines a class of efficient-
encoding GLD codes. It’s shown that such GLD codes have equally
good performance. By effectively exploiting the structure sharing
in the encoding process, we also present a hardware/software code-
sign for the practical encoder implementation of these efficient-
encoding GLD codes.

1. INTRODUCTION

Low-Density Parity-Check (LDPC) codes were first introduced by
Gallager [1][2] in 1960’s. In his original work, two innovative
ideas were exploited: iterative decoding and constrained random
code ensemble. However, Gallager’s work was forgotten by the
majority of the scientific community for the next 30 years until the
discovery of Turbo codes in which both above ideas are employed.
LDPC codes were independently rediscovered by both MacKay
and Neal [3] and Wiberg [4]. In past few years, LDPC codes have
received a lot of attention and many new developments have been
brought in this area.

Recently, a class of pseudo-random error correcting codes,
called Generalized Low-Density (GLD) Parity-Check codes, were
introduced by Lentmaier [5] and Boutros [6], independently. As
a generalization of Gallager’s LDPC codes, GLD codes are con-
structed by replacing each parity check equation in LDPC codes
with the parity check matrix of a small linear block code called the
constituent code. GLD codes can be effectively decoded using iter-
ative decoding algorithm based on Soft Input Soft Output (SISO)
decoding of the constituent code. It has been shown that GLD
codes are asymptotically good in the sense of minimum distance
and exhibit an excellent performance on both AWGN and Rayleigh
channels. Furthermore, GLD decoder has a regular and parallel
structure with high computational localization, which make it very
suitable for practical integrated circuit (IC) implementations.

However, like LDPC, the major drawback of GLD codes lies
in their high encoding complexity. The straightforward encoding
scheme for GLD codes, using the generator matrix, has quadratic
complexity in the block length. It’s suggested in [7] and [8] that

This research was supported by the Army Research Office by grant
number DA/DAAG55-98-1-0315.

using an approximate upper triangular parity check matrix to con-
struct LDPC code can reduce the encoding complexity signifi-
cantly without performance degradation. In this paper, inspired
by the above idea, we investigate the efficient encoding of GLD
codes. We present a systematic approach to construct approxi-
mate upper triangular GLD parity check matrix which defines a
class of efficient-encoding GLD codes. Such GLD codes can be
efficiently encoded by exploiting the sparseness of parity check
matrix. It’s shown that the performance of such efficient-encoding
GLD codes is as good as ordinary GLD codes. Moreover, by ex-
ploiting the structure sharing in the encoding process, we propose
a hardware/software codesign for the practical encoder implemen-
tation of such GLD codes.

2. GENERALIZED LOW-DENSITY PARITY-CHECK
CODES

In this section, according to [5] and [6], we briefly describe the
construction of GLD codes and their iterative decoding process.

It’s well known that LDPC codes are defined by a sparse parity
check matrix, in which each row is a single-error detecting parity
check equation. As a generalization of LDPC codes, GLD codes
are also specified by a sparse parity check matrix H , constructed
by replacing each row in LDPC parity check matrix with (n� k)
rows including one copy of the parity check matrix H0 of con-
stituent code C0(n; k), a k-dimensional linear code of length n.
Such (n � k) rows including one copy of H0 construct a con-
stituent submatrix in H . The structure of a GLD parity check ma-
trix is depicted in Fig. 1, where the construction approach is very
similar with that of Gallager’s LDPC codes [2]. Matrix H0 is a
block diagonal matrix and just produces the direct sum of N=n
constituent codes as shown in Fig. 1, where N is the GLD code
length. Parity check matrix H of GLD code is divided into J
submatrices, H1

� � �HJ , each containing a single column of con-
stituent parity check matrix H0 in each column. Each submatrix
is constructed as: Hj = �j(H

0) for j = 1 � � � J , where �j repre-
sents a column permutation. For the case of simplicity, we usually
let H1 = H0. Obviously, each Hj contains N=n constituent
submatrices. A (N; J; n) GLD code C can be seen as the intersec-
tion of J super-codes C1; � � � ; CJ , whose parity check matrices
are the J submatrices, H1; � � � ; HJ , respectively. In practice, �i’s
are chosen at random with the only condition that in parity check
matrix H no two constituent submatrices have more than one over-
lapping nonzero column.

GLD codes can be effectively decoded using the following it-

H =
0

1

0

H =

0

0

(H)
0π

π (H)

2

J

(H)
0π

0

H =

Fig. 1. Structure of GLD parity check matrix H

erative decoding scheme: For each bit, we compute its probability
given its received sample considering that it belongs to the super-
code C1. Since each super-code is composed of N=n independent
constituent codes, we can use N=n Soft-Input Soft-Output (SISO)
decoders working in parallel on each constituent code. This step
generates for each coded bit an a posteriori probability (APP) and
an extrinsic probability. The latter one, as an a priori information,
is fed to the SISO decoders working on the N=n constituent codes
of super-code C2. This process is iterated on each super-code:
C1

! C2
! � � � ! CJ

! C1
! � � �.

It has been shown in [5][6] that binary GLD codes with only
J = 2 levels is asymptotically good. Furthermore, GLD codes
with 2 levels have the highest code rate and simple decoder struc-
ture, which are desirable in real applications. Thus, in this work,
we only consider the efficient encoding of (N; 2; n) GLD codes.
Here we note that for (N; 2; n) GLD codes, only if N=n � n, it
is possible to construct a parity check matrix H in which no two
constituent submatrices have more than one overlapping nonzero
column. Therefore, the (N; 2; n) GLD codes dealt with in the rest
of paper always satisfy N=n � n.

3. EFFICIENT-ENCODING GLD CODES

As we have mentioned, one major drawback of GLD code is its
apparent high encoding complexity, which is generally scaled as
N2 if the straightforward encoding approach is used. It has been
shown in [7] and [8] that LDPC code can be efficiently encoded
based on an approximate upper triangular parity check matrix. In-
spired by their work, we investigate a similar efficient encoding
scheme for (N; 2; n) GLD codes.

In [8] the greedy algorithms are used to construct approximate
upper triangular LDPC parity check matrix. Different with that
approach, based on the structure of GLD parity check matrix, we
propose the following systematic approach to construct approxi-
mate upper triangular (N; 2; n) GLD parity check matrix H under
the condition that no two constituent submatrices have more than
one overlapping nonzero column. Then we briefly describe how
the encoding is efficiently carried out based on such parity check
matrix.

3.1. Construction of H

Let the constituent code C0 be an (n; k) code and its parity check
matrix H0 have systematic form [I; P], where I is an (n � k) by
(n � k) identity matrix. We define N=n as s and s � (n � k)
as L, respectively. In the following, we present the systematic
construction approach of H in two steps:

1. Construct a matrix Ĥ = [Ĥ1
T

; Ĥ2
T

]T where both Ĥ1 and
Ĥ2 are L by N dimensional and contain s constituent sub-
matrices;

2. Obtain H by reordering certain columns of Ĥ .

First, we construct Ĥ1 as [I; SP], where I is an L by L iden-
tity matrix and SP is a block diagonal matrix containing s copies
of submatrix P as shown in Fig. 2. We note that Ĥ1 can be seen
as the parity check matrix of a super-code which consists of s con-
stituent codes.

L

SPn

0

N

H = I

n-kH = 0 I

1

0

P

P

P

Fig. 2. Structure of matrix Ĥ1

Ĥ2 is constructed by permuting columns of matrixQ as shown
in Fig. 3. We write matrix Q in block matrix form as [Q1; Q2],
where Q1 and Q2 are L by (N � L) and L by L, respectively.
By introducing two column permutations, �1 and �2, we construct
Ĥ2 as [�1(Q2); �2(Q1)]. Ĥ2 also defines a super-code consisting
of s constituent codes. Combining Ĥ1 and Ĥ2 together, we get a

(N; 2; n) GLD parity check matrix Ĥ = [Ĥ1
T

; Ĥ2
T

]T . Here �1
and �2 are chosen at random with the condition that no two con-
stituent submatrices in Ĥ have more than one overlapping nonzero
column. Based on the prerequisite that N=n � n and the structure
of Ĥ1 and Q, we can prove that such two permutations always
exist.

I

I

I

L

N-L

H 2
2H 1

2

π1 π2

L

N-L

0

0

0

L

H =2

0
Q =

1 2Q Q

L

P

P

P

Fig. 3. Structure of matrix H2

Since Ĥ2

2 = �2(Q1) and Q1 contains

b
N � L

n
c = b

s � n� s � (n� k)

n
c = b

s � k

n
c

complete copies of systematic parity check matrix H0, we can al-
ways find a column permutation �3 which makes H = �3(Ĥ) has
the approximate upper triangular form as shown in Fig. 4, in which
each Pi, i = 1 � � � s, is obtained by removing some columns from
matrix P . As shown in Fig. 4, H can be written as

H =

�
T B D
A C E

�
; (1)

π3

π3

0

I

2L

H =

N

L

L

L

D

L

H = (H) =

0

BT

0

I

0

0

E

0

0

I

A C

0

0

0
0

P

1

Ps

P

P

Fig. 4. Structure of matrix H

where the left 2L by 2L submatrix is�
T B
A C

�
; (2)

in which T is K by K upper triangular submatrix, where K =
L + k � b s�k

n
c. The GLD codes defined by H , called efficient-

encoding GLD codes, are a special class of the ordinary GLD
codes described in Section 2. Through simulations it’s shown that
such GLD codes have equally good performance.

Example 3.1 Let’s consider the (N,2,15) GLD codes with Ham-
ming constituent code (15,11). Fig. 5 shows the performance of
both ordinary and efficient-encoding GLD codes at two different
code length configurations. These GLD codes are modulated by
BPSK and transfered over AWGN channel. In both cases, we pick
20 permutation patterns at random and select the one leading to
the best results, and in the iterative decoding process each super-
code decoding is performed by means of MAP decoder.

1 1.5 2 2.5 3 3.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a) N=420

B
E

R

E
b
/N

0
(dB)

1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(b) N=4035

B
E

R

E
b
/N

0
(dB)

Iteration #1
Iteration #3
Iteration #5
Iteration #10

Iteration #1
Iteration #3
Iteration #5

Fig. 5. Simulation results for (a) N=420 and (b) N=4035,
where solid lines correspond to ordinary GLD, dash dot lines for
efficient-encoding GLD.

3.2. Encoding Process

In the following, we describe how the efficient-encoding is actually
carried out based on the approximate upper triangular GLD parity
check matrix. Let x = (xa; xb; xc) be a codeword decomposed
according to (1), where xc is the information bits with length of
N � 2L, redundant bits xa and xb have length of L + k � bs�k

n
c

and L� k � bs�k
n
c, respectively.

Procedure 3.1

1. Compute yc = D � xc and zc = E � xc, which is efficient
because both D and E are sparse;

2. Solve T � x̂a = yc. Since T has the form as shown in Fig.
4, we can prove that T�1 = T . Thus we have x̂a = T � yc,
which can be easily computed since T is sparse;

3. Evaluate ŝ = A � x̂a + zc, which is also efficient since A is
sparse;

4. Compute xb = � � ŝ, where � = (A � T �B+C)�1. In this
step, the complexity is scaled by (L� k � bs�k

n
c)2.

5. Finally we can obtain xa by solving T � xa = B � xb + yc.
Since T�1 = T , xa = T � (B � xb + yc). This is efficient
since both T and B are sparse.

We note that the above encoding process is similar with that in
[8] for LDPC codes. However, in [8], x̂a and xa have to be solved
using the less efficient back-substitution method since T�1

6= T
in that case.

4. HARDWARE/SOFTWARE CODESIGN OF GLD
ENCODER

In a coding system, the decoding delay is much longer than encod-
ing delay by one or two orders of magnitude which is true even for
LDPC or GLD codes. Thus encoding process is not speed-critical
and software-based encoder is usually employed. In this section,
we consider the practical software-based encoder implementation
for the above efficient-encoding GLD codes.

As shown in Procedure 3.1, the encoding process mainly con-
sists of several bit level matrix-vector multiplications. However,
these bit level computations can’t be efficiently performed in gen-
eral purpose digital signal processors (DSPs). One natural solu-
tion is to incorporate a specialized bit manipulation unit (BMU)
into the processor’s data path to improve its efficiency. Before pre-
senting our proposed architecture design for such BMU, we first
introduce the following computation approach for the multiplica-
tion of a special matrix and a variable vector.

Recall that H0, the parity check matrix of constituent code
C0(n; k), has the systematic form [I; P]. We define the block
diagonal matrix, as shown in Fig. 6, as (P,t)-block diagonal matrix,
in which each block Pi is obtained by removing li columns from
P , where 0 � li � k for 1 � i � t. Thus each Pi can be
expressed as Pi = P � Ii, where Ii is constructed by removing the
corresponding li columns from the (n � k) by (n � k) identity
matrix.

0

0
1

2

tP

P

P

Fig. 6. (P,t)-block diagonal matrix

For the multiplication of a (P; t)-block diagonal matrix U and
a vector v, we have

U � v = [P1 � v1; � � � ; Pt � vt]
T (3)

where v = [vT1 ; � � � ; v
T
t]

T . Substituting Pi = P � Ii into (3), we
get

U � v = [P � ~v1; � � � ; P � ~vt]
T (4)

where ~vi = Ii �vi . Since Ii is constructed by removing li columns
from identity matrix, ~vi can be obtained directly by inserting ze-
roes into vi at the li corresponding positions. Moreover, for a ma-
trix S constructed by column permutation of a (P; t)-block diago-
nal matrix U , that is S = �(U), we have

S � v = �(U) � v = U � z

= [P � ~z1; � � � ; P � ~zt] (5)

where zT = ��1(vT) and ~zi = Ii � zi. It’s suggested by (4) and
(5) that we may reuse one simple dedicated hardware unit, which
performs the multiplication of P and a variable vector, by t times
to implement the multiplication of a (P; t)-block diagonal matrix
U (or a column permutation of U) and a vector v, where v needs to
be manipulated (inserting of zeroes and permutation) accordingly.

As shown in Fig. 4, we can write several block submatrices of
H as: A = [A1; 0], B = [BT

1 ; 0; B
T
2]

T , D = [DT
1 ; D

T
2]

T , where
DT

1 consists of upper L rows of D, and

T =

�
I F
0 I

�
: (6)

Let’s introduce a set G = fA1; B1; B2; D1; D2; Fg. According
to the construction approach of H presented in Section 3.1, each
matrix in set G is either (P; t)-block diagonal matrix or column
permutation of (P; t)-block diagonal matrix. Therefore, except the
multiplication by �, all other matrix-vector multiplications in the
encoding process can be performed using the above computation
scheme in which a dedicated hardware unit is introduced to carry
out the multiplication of matrix P and a variable vector.

Based on the above discussion, we propose a hardware/software
codesign for the encoder of efficient-encoding GLD codes, where
the DSPs data path architecture is shown in Fig. 7. The incorpo-
rated BMU includes two hardware units: Direct multiplication unit
(DMU) is a dedicated hardware unit to perform the multiplication
of matrix P and a variable vector; Barrel shifter efficiently per-
forms the bit manipulation operations which will be extensively
used when inserting zeroes into vectors and permuting vectors.
Here it should be pointed out that many modern processors pro-
vide a barrel shifter in the main data path, in these cases we only
need to incorporate the DMU into the data path. Using the above
approach, most of the matrix-vector multiplications in encoding
process can be efficiently performed. Since the encoding process
is matrix-vector multiplication intensive, such hardware/software
codesign approach may provide a much more efficient solution
compared with a solely general processor based encoder.

5. CONCLUSION

In this paper, we have presented an efficient encoding scheme for
the 2-level GLD codes. We proposed a systematic approach to
construct approximate upper triangular GLD parity check matrix
under the condition that no two constituent submatrices have more
than one overlapping nonzero column. We showed that GLD codes
defined by such parity check matrix can be efficiently encoded, and
their performance is as good as the ordinary GLD codes. Such
GLD codes may have practical importance for the applications

Register File

Barrel
DMU

Original
BMU

Data Pathshifter

Fig. 7. Proposed Data Path architecture in a DSP processor

with limited computation power. Moreover, by incorporating spe-
cial function units into the general purpose DSPs data path, we
presented an efficient hardware/software codesign for encoder of
these GLD codes.

6. REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes”, IRE
Trans. Inform. Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[2] R. G. Gallager, Low-Density Parity-Check Codes, M.I.T
Press, 1963.

[3] D. J. C. MacKay and R. M. Neal, “Near shannon limit per-
formance of low density parity check codes”, Electronics
Letters, vol. 32, pp. 1645–1646, Aug. 1996.

[4] N. Wiberg, “Codes and decoding on general graphs”, Ph.D.
Dissertation, Linkoping University, Sweden, 1996.

[5] M. Lentmaier and K. S. Ziganfirov, “Iterative decoding of
generalized low-density parity-check codes”, in Proceedings
of IEEE International Symposium on Information Theory, p.
149, 1998.

[6] J. Boutros, O. Pothier, and G. Zemor, “Generalized low den-
sity (Tanner) codes”, in Proceedings of ICC’99, pp. 441 –
445, Vancouver, June 1999.

[7] David J. C. MacKay, Simon T. Wilson, and Matthew C.
Davey, “Comparison of constructions of irregular gallager
codes”, IEEE Transactions on Communications, vol. 47, pp.
1449–1454, Oct. 1999.

[8] T. Richardson and R. Urbanke, “Efficient encoding of low-
density parity-check codes”, submitted IEEE Transactions
on Information Theory.

[9] O. Pothier, “Compound codes based on graphs and their iter-
ative decoding”, Ph.D. thesis, Ecole Nationale Suprieure des
Tlcommunications, Jan. 2000.

[10] L. Song, K. K. Parhi, I. Kuroda, and T. Nishitani, “Hard-
ware/software codesign of finite field datapath for low-
energy Reed-Solomon codecs”, IEEE Trans. on VLSI Sys-
tems, vol. 8, pp. 160–172, April 2000.

[11] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Proces-
sor Fundamentals: architectures and features, IEEE Press,
1997.

