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ABSTRACT

A method for estimation of Doppler spectral moments on pulsed
weather radars is presented. This scheme operates on
oversampled echoes in range; that is samples of in-phase and
quadrature phase components are taken at a rate several times
larger than the reciprocal of the transmitted pulse length. The
aforementioned radar variables are estimated by suitably
combining weighted averages of these oversampled signals in
range with usual processing of samples (spaced at pulse
repetition time) at a fixed range location. The weights in range
are chosen such that the oversampled signals become
uncorrelated and consequently the variance of estimates
decreases significantly. Because estimates’ errors are inversely
proportional to the volume scanning times, it follows that storms
can be surveyed much faster than it is possible with current
processing methods, or equivalently, for the current volume
scanning time, accuracy of estimates can be greatly improved.

1. INTRODUCTION

Weather radars provide estimates of spectral moments (i.e.,
signal power, mean Doppler velocity, and spectrum width) that
relate to intensity of precipitation and/or refractive index
fluctuations and winds. Weather signals are defined as composite
echoes from a very large number of individual hydrometeors or
from refractive index irregularities in clear air. These signals are
sampled at discrete time delays 7, where the corresponding
range (or distance from the radar) is given by r = c742 (C is the
speed of light.) The time delay rg is also called the range time,
i.e., the time it takes a transmitted pulse to make a round trip to a
distance r. Pulses of width 7 are sent every Tg seconds, which
gives origin to the sample-time, or time between samples for a
fixed location in range. For each sample value there is an
associated resolution volume in space with the hydrometeors that
contribute the most to that sample.

The variance reduction of averaged estimates is inversely
proportional to the equivalent number of independent samples
M, which depends on the correlation between samples and the
total number M of samples averaged as follows [1]
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where the correlation coefficient o(m) refers to time (from pulse
to pulse) or range, and mis an integer indicating the lag. For
correlation in sample time, the lags are MTg, where Tgis the pulse
repetition time; for sampling in range the lags are m(z/L), where ¢
is the pulse length and L a positive integer greater than one if the
pulse is oversampled in range. The time correlation function
depends on the Doppler spectrum width, which is one of the
parameters to be estimated. If samples are averaged in range and
the radar resolution volume (i.e., pulse volume) is uniformly
filled with scatterers, the correlation coefficient is determined by
the pulse shape and the receiver filter impulse response. After
the receiver filter, the correlation coefficient of samples in range
time can be determined as [1]
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where the superscript * denotes complex conjugation, p(m) is the
transmitted pulse shape, and h(m) is the impulse response of the
receiver filter. Note that the expression for the correlation
coefficient along range time depends solely on parameters that
are known (or can be measured) and therefore allows for its
exact determination.

2. WEATHER SIGNAL PROCESSING

The principal purpose of radar signal processing is the accurate,
efficient extraction of information from radar echoes. Modern
atmospheric Doppler radars can sample an entire volume of a
weather event in a short period of time. Therefore, a very large
amount of data must be processed to give the user compact,
comprehensible information. Note that signal processing on
weather radars is primarily an estimation procedure. Target
detection is not the goal of these remote sensing devices.

To obtain meaningful estimates that allow efficient
quantification of weather phenomena, estimation errors must be
kept below maximum allowable limits. The only parameter we
can adjust to accommodate these requirements is the number of
samples in the estimation process. Achieving smaller errors
requires more samples, which in turn implies a slower antenna
rotation rate and an overall increase in acquisition time; then
probing of the weather phenomena would be performed less
frequently. This statistical estimation framework becomes of
particular significance if the goal is to scan a phenomenon
quickly because the random-process nature of weather signals



demands a certain amount of averaging if the desired accuracy is
to be achieved. This is a trade-off in all polarimetric Doppler
radar systems.

To reduce the statistical uncertainty of estimates of spectral
moments it is customary to average signals from many pulses.
The variance reduction of averaged estimates is inversely
proportional to the equivalent number of independent samples
M, (1), which as stated before, depends on the correlation
between samples and the total number of samples averaged.

A technique that increases the number of independent
samples by keeping the dwell time constant would reduce the
trade-off described above. More independent samples would
lower the estimates’ errors at the same antenna rotation rate, or
volume scans times would decrease while keeping the errors at
previous levels. A well-known method to reduce the acquisition
time is the pulse compression technique [2]. Pulse compression
can be applied to increase the number of independent samples by
averaging high-resolution estimates in range. However, most
ground-based weather radars do not use pulse compression due
to the need to increase the transmission bandwidth.

3. WHITENING TRANSFORMATION

The current implementation of spectrum moment estimators uses
a simple method of averaging in range at the expense of
degradation in range resolution. Simple averaging, however,
does not yield the best performance when the observations are
correlated.

It is know from estimation theory that classical estimators
of the mean and variance of white (i.e. uncorrelated) Gaussian
observations attain the Cramer-Rao lower bound. Therefore, one
would like to derive a transformation on the original data based
on the known correlation coefficient such that the resulting
samples would be uncorrelated (or white). Still, this
transformation would have to preserve the same properties that
are of interest in the original sequence. Such transformation
exists, and it is usually termed as “whitening” [3] or
decorrelation transformation and has been applied to solve a
variety of signal processing problems [4].

The procedure starts with oversampling in range so that
there are L samples during the pulse duration 7z, (that is
oversampling by a factor of L). Assume that the range of depth
cr/2 is uniformly filled with scatterers. For relatively short pulses
this is a common occurrence. For convenience, the contribution
from the pulse volume to the sampled complex voltage V(nTy) =
I(nTy + j Q(nTy at a fixed time delay, can be decomposed into
sub contributions $(I,n) from L contiguous slabs each cz/(2L)
thick. The index n indicates time at pulse repetition increments
Ts The voltages s(I,n) are identically distributed complex
Gaussian random variables, the real and imaginary parts,
Re{s(,n)} and Im{s(l,n)}, have variances ¢°, and the power of
§(I,n) is 6 = 26°>.  Pulse of an arbitrary shape p(l) (I are time
increments within the transmitted pulse which correspond to a
decreasing index in range) induces weighting to the
contributions from contiguous slabs such that the composite
voltage is
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then the correlation of samples along range time is given by (2).
For the ideal case of a rectangular pulse and infinite receiver
bandwidth (2) simplifies to
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otherwise

The procedure for implementing the whitening
transformation is as follows. Define the Toeplitz symmetric
correlation coefficient matrix C (0(0) = 1 on the main diagonal,
A1) on the first off diagonal, p(2) on the second off diagonal,
etc.). Because this matrix is positive semidefinite, it can be
decomposed into a product of a matrix H and its transpose as
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where the superscript t indicates matrix transpose. Any H that
satisfies (5) is called a square root of C [5] and is the inverse of a
whitening transformation matrix W = H™, which if applied to
the range samples (in vector notation V,' = [V(1,n), V(2,n), ...,
V(L,n)]) produces L uncorrelated random variables [6]. Denote
with X(I,n) the sequence of time samples spaced Tg seconds apart
each of which is obtained with this procedure (in vector notation
Xt = [X(L,N), X(2,n), ..., X(L,mD), i.e.
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where W are the entries of the whitening transformation W.

3.1. Construction of the Whitening Matrix W

In general the decomposition of C is not unique and many well-
known methods could be applied to generate different whitened
sequences. Two prominent methods to generate whitened
sequences are the eigenvalue decomposition [7] and triangular
(or Gram-Schmidt orthogonalization) decomposition [7,8].

In the eigenvalue decomposition method the eigenvalues 4;
of the correlation matrix C are computed first and C is
represented as C = UAUY, where A is a diagonal matrix of
eigenvalues, and U is the unitary transformation matrix whose
columns are the eigenvectors of C. Then, to obtain W a diagonal
matrix D with elements on the diagonal equal to A2 s
constructed and W = H™= DU".

Triangular or Cholesky decomposition is identical to the
Gram-Schmidt orthogonalization [8]. The matrix H is a lower
triangular matrix. Hence the whitening matrix is also lower
triangular. A possible advantage of triangular H matrices is that
whitening can proceed in a pipeline manner; that is,
computations can start as soon as the first sample is taken and
progress through subsequent samples. Non-triangular H matrices
require presence of all data before computations can start.

4. SPECTRAL MOMENT ESTIMATION
4.1. Signal Power

Power estimates are computed from whitened oversampled data
as follows
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where N is the noise power and as before, M is the number of
samples obtained for at a fixed range location, and L is the
oversampling factor. It can be proved that the improvement in
variance reduction ratio when compared with the regular
processing where the whitening transformation is not applied is
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4.2. Mean Doppler velocity and spectrum width

Several options exist for determining the mean velocity.
Autocovariance processing produces correlation estimates in
sample time
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where Iml is the lag index between 0 and M—1, and | the range
index between 0 and L-1. Ii| (mTg) estimates are averaged in
range (over the index |) so that the variance of the estimate

R(mT)= %z R () (10)

decreases as L increases with the same relation as in (8).
From (10) Doppler velocity and spectrum width estimates
can be obtained as [1]
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respectively, where A is the transmitter wavelength.
4.3. Performance with Additive Noise

The presence of noise is inherent to every radar system, so it is
of concern to analyze the performance of the whitening
transformation under noisy conditions. When applying the
whitening transformation, both signal and noise are evenly
affected. The noise, which was white prior to the whitening
transformation, becomes colored. It can be shown using
eigenvalue decomposition of C that the SNR for each
oversampled signal component is scaled from the original SNR
by the corresponding correlation matrix eigenvalue. For A; > 1,
the SNR of the whitened signal increases; otherwise, the noise
gets enhanced.

For a correlation matrix corresponding to (4) it is not very
difficult to find a closed-form expression for the noise

enhancement factor. In this case
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The previous equation shows that the noise is enhanced for
L>1 (which is always the case). Therefore, for weak SNR, the
variance reduction achieved by increasing L will be masked by a
corresponding noise power boost. This trade-off in the presence
of additive noise makes the whitening transformation useful in
cases of relatively large SNR. In fact, for weather radars, the
SNR of signals from storms is indeed large.

5. RESULTS

The proposed procedure [9] entails whitening in range the
oversampled signals, processing of time samples by any one of
the well-known algorithms, and combining the results from the
whitened signals in range to yield significant reduction in
variances of the estimates. This variance reduction occurs only if
the signal-to-noise ratios are relatively high as is usually the case
for most signals in weather surveillance radars. At low signal-to-
noise ratios the variances increase so that there are crossover
points (these are different for different estimates) of the
variances. Below the cross over SNR, the classical processing
produces lower variances. In general the cross over SNR
depends on the variable that is to be estimated and on some other
parameters (spectrum width, number of samples, etc.) An
objective decision on which estimates to use, classical or the
ones obtained from whitened samples in range, should be based
on the SNR and possibly on estimates of other parameters that
affect the variance.

Fig. 1 shows the results for the case of power estimation on
colored (or correlated) and whitened noise-free observations.
Theoretical results are also plotted to verify the agreement
between theory and simulations. Observe that with oversampling
factors of eight or more, the variance reduction is greater than
four times. Fig. 2 shows the results obtained when estimating the
set of three spectral moments (mean power, mean Doppler
velocity, and Doppler spectrum width) in the presence of
additive white Gaussian noise. This figure shows the standard
deviation of estimates versus the SNR using an oversampling
factor of 10. We can see from these plots that for low SNR, the
noise enhancing effect prevails, and the variance reduction
obtained by the whitening transformation is masked. Beyond the
crossover point, which is different for each parameter being
estimated, the variance of estimates decreases as the SNR
increases, until it reaches its theoretical minimum (for the ideal
case of no noise). In addition it can be verified that for the range
of interest (SNR>12dB), the estimators of spectral moments
using the whitening transformation are unbiased.

6. CONCLUSIONS

This method allows increasing the speed of volume coverage by
weather radar so that hazardous features can be timely detected.
It also leads to better estimates of precipitation and wind fields.
The application of this technique is possible because of two
reasons:

(1) The correlation of samples in range is known exactly if
the resolution volume is uniformly filled with scatterers (true



over relatively short ranges), and the receiver bandwidth is large
compared to the reciprocal of the pulse length.

(2) For all weather phenomena of interest, the SNR is
relatively high, so the increase of noise power is not detrimental
to the procedure.

The initial agreement between the theory and simulation
results suggests that the advantages of the proposed processing
will hold in practice.
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Fig. 1. Comparison of simulation results with theoretical
predictions of standard deviation of power (top) and variance
reduction of power estimates (bottom) vs. the oversampling
factor L. In the bottom are the normalized mean powers.
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Fig. 2. Standard deviation of power (top), mean Doppler velocity
(middle), and Doppler spectrum width (bottom) obtained by
simulating correlated range samples and applying both
traditional and proposed processing. M is the number of time
samples (separated by Ty which are used to compute the
Doppler spectrum and its moments. L is the oversampling factor,
i.e., the number of range samples that are used to reduce the
standard error of estimates. The simulation results were obtained
from 1000 realizations. For visual clarity, lines connect the
simulation results (circles at SNR increments of 3dB).



