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ABSTRACT

We consider the direction-of-arrival (DOA) problem for a
wavefront whose amplitude and phase vary randomly along
the array aperture. This phenomenon can for instance origi-
nate from propagation through an inhomogeneous medium.
A simple and accurate DOA estimator is derived in the case
of an uniform linear array of sensors. The estimator is based
upon a reduced statistic obtained from the sub-diagonals of
the covariance matrix of the array output. It only entails
computing the Fourier transform of an(m − 1)-length se-
quence wherem is the number of array sensors. A theoreti-
cal expression for the asymptotic variance of the estimator is
derived. Numerical simulations validate the theoretical re-
sults and show that the estimator has an accuracy very close
to the Craḿer-Rao bound.

1. INTRODUCTION

Most direction finding methods rely on the assumption that
each wavefront impinging on the array is perfectly corre-
lated between sensors and, therefore, contributes a rank-one
covariance matrix to the total covariance matrix of the array
output vector. However, in many situations this condition is
violated. For instance, in underwater acoustics the propaga-
tion medium may not be homogeneous giving rise to some
coherence loss along the array [1, 2]. As a consequence,
the wavefronts undergo random amplitude and phase fluc-
tuations along the array, which from the signal point of view
could be considered as a sort of multiplicative noise. A sim-
ilar phenomenon can be encountered in wireless communi-
cations when multiple scatterers in the vicinity of the mobile
contribute incoherently to the signal [3, 4]. The methods
proposed so far to solve this problem can be classified in
three distinct groups. The maximum likelihood estimator
(MLE) was derived in [3]; despite its optimal performance,
its high computational cost may preclude it from being used
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in practical situations. Approximate and simpler ML so-
lutions were proposed in [5]. A second group of methods
relies on the idea of covariance fitting [2, 3, 6]. This type
of estimators enjoy many desirable properties. Since they
only use the covariance matrix, they possess some robust-
ness to the lack of knowledge on the data statistics. Addi-
tionally, in the Gaussian case, they provide asymptotically
efficient estimates. However, they still require the mini-
mization of a multi-dimensional function, which may be
computationally intensive and numerically problematic. Fi-
nally, many authors advocated the use of subspace-based
methods see e.g. [4, 7, 8]. However, since the signal covari-
ance matrix is full-rank even for a single scattered source or
a source propagating in an heterogeneous media, conven-
tional subspace-based methods cannot handle properly this
problem and hence modifications are required.

In this paper, we introduce a robust and simple estimator
without trading-off too much statistical accuracy. Herein,
robustness should be understood as the capability to locate
the source without much knowledge about the type of coher-
ence loss. Towards this end, we will make as few assump-
tions on the structure of the multiplicative noise as possible.
Furthermore, for both robustness and computational cost is-
sues we consider estimates based on the covariance matrix
of the data. In order to simplify the algorithm our estimator
will be based on a reduced statistic that bears most of the in-
formation regarding the DOA. As will be shown below, this
enables us to obtain a simple estimator with an accuracy
very close to the Craḿer-Rao bound (CRB).

2. DOA ESTIMATION AND PERFORMANCE
ANALYSIS

Before presenting the detailed derivation of our estimator,
let us formulate the problem and state the hypotheses. We
consider a uniform linear array (ULA) ofm sensors with
inter-element spacing∆ in wavelengths. The received data
consists ofN independent snapshots{y(t)}N

t=1 which obey
the following model

y(t) = x(t)� a(θ0)s(t) + n(t) (1)



wherex(t) describes the random multiplicative effect due
to the propagation.s(t) is the emitted signal,θ0 is the DOA
anda(θ0) denotes the so-called steering vector

a(θ0) =
[

1 ei2π∆ sin θ0 · · · ei2π(m−1)∆ sin θ0
]T

In (1),� stands for the Schur-Hadamard (i.e. element-wise)
product andn(t) is assumed to be a zero-mean circularly
symmetric Gaussian random vector. The covariance matrix
corresponding to (1) can be written as

R = E
{

y(t)yH(t)
}

= B �
[

a(θ0)aH(θ0)
]

+ σ2
nI (2)

whereI is the identity matrix andσ2
n is the noise power in

a single sensor. The matrixB models the effects due to the
propagation through a random dispersive medium or to the
scatterers in the vicinity of the source. For the sake of con-
venience and without loss of generality, we have absorbed
the source power inB, i.e.B = E

{

x(t)xH(t)
}

E
{

|s(t)|2
}

.
Note that the signal covariance matrixB �

[

a(θ0)aH(θ0)
]

in (2) is full rank even though only a single source is con-
sidered. Our goal is to find a fast and robust method for
estimatingθ0 or, equivalently, the spatial frequencyω0 =
2π∆sin θ0 since in the field of view[−90◦, 90◦] these two
parameters are related to one another by an invertible map-
ping.

Before deriving our DOA estimator, a few comments
and observations are in order. To gain robustness against
non-perfect knowledge of the multiplicative noise charac-
teristics we do not assume, in contrast to most approaches,
a specific form forB. Herein, we simply assume thatB is
a real-valued symmetric Toeplitz matrix whose first column

is γ̃ =
[

γ0 γ1 · · · γm−1
]T

. This assumption is widely
accepted for signal propagating through an inhomogeneous
medium [1, 2]. In wireless communications, it corresponds
to the mild assumption that the scatterers are symmetrically
distributed around the mobile [4]. Furthermore, in order to
obtain a fast algorithm, we propose to use a reduced-size
statistic that concentrates the relevant information aboutω0.
More exactly, our approach relies on the following observa-
tions. First, note that the(k, `) element of the covariance
matrix is

R(k, `) = γ|k−`|ei(k−`)ω0 + σ2
nδ(k, `)

Hence, each element along thekth sub-diagonal is equal to
the same complex number with amplitudeγk and anglekω0

(for k = 1, · · · , m− 1). Our intention is to exploit this ob-
servation. Note that in thenoiseless caseand assuming that
B(k, `) = Pρ|k−`|

0 it was shown in [5] that the maximum
likelihood estimator (MLE) ofω0 is given by

ω̃0 = angle

(

m−1
∑

`=1

̂R(` + 1, `)

)

where

̂R =
1
N

N
∑

t=1

y(t)yH(t)

denotes the sample covariance matrix. Although it was de-
rived under specific assumptions,ω̃0 was shown to be quite
accurate even in the presence of noise, provided that the
signal to noise ratio is relatively high. However, its per-
formance degrades at low SNR’s or wheneverB(k, `) 6=
ρ|k−`|
0 . An important observation is that̃ω0 uses only the

sum of the elements of̂R along its main sub-diagonal. Here,
we retain this idea of using the sub-diagonals of the co-
variance matrixbut in a different setup. Indeed, we con-
sider the framework of covariance-based methods and use
non-linear least squares fitting, as described next. Let, for
k = 1, · · · ,m− 1

zk =
m−k
∑

`=1

R(k + `, `)

= (m− k)γkeikω0 , ζkeikω0 (3)

and letẑk =
∑m−k

`=1
̂R(k + `, `) be a consistent estimate of

zk. We propose to estimateω0 andζ =
[

ζ1 · · · ζm−1
]T

as

ω̂0, ̂ζ = arg min
ω,ζ

m−1
∑

k=1

∣

∣ẑk − ζkeikω
∣

∣

2

= arg min
ω,ζ

m−1
∑

k=1

∣

∣ẑke−ikω − ζk
∣

∣

2
(4)

Since for anyω the criterion is quadratic with respect toζ,
the solution forζ is ̂ζk = Re

[

ẑke−ikω
]

. Inserting this value
into (4) and after some straightforward manipulations (see
[9] for details), the estimate ofω0 is obtained as

ω̂0 = arg max
ω

Re

[

m−1
∑

k=1

ẑ2
ke−i2kω

]

(5)

Therefore, we end up with a very simple expression for
the estimate ofω0 which entails summing along the sub-
diagonals of̂R, computing the Fourier transform in (5) and
looking for the location of its maximum. Additionally, we
reiterate the fact that this method is robust to mismodelling
the covariance matrix of the multiplicative noise. Onceω̂0
is available,θ0 is simply estimated as

̂θ0 = arcsin
(

ω̂0

2π∆

)

(6)

We next analyze the statistical performance of the esti-
mator in (5)-(6).



Proposition 1. Under the assumptions that{y(t)}N
t=1 are

independent Gaussian random vectors with a covariance
matrix given by (2), the asymptotic variance ofω̂0 in (5)
is given by

lim
N→∞

Nvar (ω̂0) , lim
N→∞

NE
{

(ω̂0 − ω0)
2
}

=
ζT D(Γ− ˜Γ)Dζ

2(ζT D2ζ)2
(7)

whereD = diag (1, 2, · · · ,m− 1) and

Γ(k, `) =
m−k
∑

p=1

m−
∑̀

q=1

γ|p−q+k−`|γ|p−q|

+ 2σ2
nγ|k−`|min(m− `,m− k)

+ (m− k)σ4
nδ(k, `) (8)

˜Γ(k, `) =
m−k
∑

p=1

m−
∑̀

q=1

γ|p−q+k|γ|p−q−`|

+ 2σ2
nγk+` max(m− k − `, 0) (9)

Proof. see [9]

Corollary 1. Since there exists a one-to-one continuous and
differentiable mapping fromω0 to θ0, it follows that

lim
N→∞

Nvar
(

̂θ0

)

=
(

∂θ0

∂ω0

)2

lim
N→∞

Nvar (ω̂0)

=
ζT D(Γ− ˜Γ)Dζ

2(2π∆cos θ0)2(ζT D2ζ)2
(10)

The previous results provide closed-form expressions
for the asymptotic variances of̂ω0 and ̂θ0. These expres-
sions are checked against empirical variances in the next
section, and also numerically compared with the CRB.

3. NUMERICAL EXAMPLES

In this section, we illustrate the performance of our estima-
tor by means of Monte-Carlo simulations and validate the
theoretical analysis. We consider a ULA withm = 8 sen-
sors spaced a half wavelength apart. The DOA of the source
is θ0 = 10◦. The signal is given by (1) wherex(t) is mod-
eled as a zero-mean Gaussian random vector with covari-
ance matrixB(k, `) = ρ|k−`| andρ = 0.9 unless otherwise
stated. For each figure,300 Monte-Carlo simulations were
run to estimate the root mean-square error (RMSE) of the
estimates. For comparison purposes, the Cramér-Rao bound
[3] is also displayed. All values are given in degrees (◦).

First, the influence of the number of snapshotsN is
investigated in Figure 1 forSNR = 0 dB. It can be ob-
served that the empirical and theoretical results are in very
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Fig. 1. CRB (solid line), empirical (+) and theoretical
(dash-dotted line) RMSE of the DOA estimate versusN .
m = 8, SNR=0dB andρ = 0.9.

good agreement, even for a small number of snapshots. The
RMSE of the estimator is seen to be very close to the CRB.

A second series of simulations deals with the influence
of the SNR, see Figure 2. The main point to be noted is
that the performance remains quite close to the CRB even
for low SNR’s. When SNR increases, both the theoreti-
cal variance of the estimator and the CRB tend to a con-
stant term. In fact, both of them are theoretically of the
form N−1(a+bSNR−1 +cSNR−2) wherea, b, c are con-
stants. The terma is zero only if there is no multiplicative
noise. Otherwise, the variance does not go to zero as SNR
increases since, even whenσ2

n = 0, i.e. when there is no
additive noise, there is still multiplicative noise which pre-
vents us from retrievingω0 exactly.

Next, the influence of the number of sensors is examined
in Figure 3. The performance is shown to be very close to
the CRB whatever the value ofm.

Finally, it is interesting to examine how the estimator
behaves as the coherence loss increases, that is when the
correlation among the elements is less and less pronounced.
In Figure 4 the coherence loss at a wavelength separation,
(20 log10 ρ), is varied from−3 dB to −0.25 dB. The es-
timator does not exhibit a breakdown; its performance is
only slightly degraded, which is an interesting feature of the
method and proves that it can work under severe conditions.

4. CONCLUSIONS

In this paper we have proposed a very simple and robust
method for estimating the direction of arrival of a source
in the presence of amplitude and phase fluctuations of the
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Fig. 2. CRB (solid line), empirical (+) and theoretical
(dash-dotted line) RMSE of the DOA estimate versus SNR.
m = 8, N = 60 andρ = 0.9.

wavefront. It relies on the sum of the sub-diagonal elements
of the array output covariance matrix and only entails find-
ing the maximum of a function which can be expressed as a
Fourier transform. A theoretical expression for the asymp-
totic variance of the estimator was derived and its validity
was shown through numerical simulations. Numerical ex-
amples showed that the proposed estimate has an accuracy
very close to the CRB.
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