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ABSTRACT in practical situations. Approximate and simpler ML so-

) o ] lutions were proposed in [5]. A second group of methods
We consider the direction-of-arrival (DOA) problem for a (gjies on the idea of covariance fitting [2, 3, 6]. This type

wavefront whose amplitude and phase vary randomly along ot estimators enjoy many desirable properties. Since they
the array aperture. This phenomenon can for instance origi-oy yse the covariance matrix, they possess some robust-
nate from propagation through an inhomogeneous medium.yess 1o the lack of knowledge on the data statistics. Addi-

A simple and accurate DOA estimator is derived in the caseyjonally, in the Gaussian case, they provide asymptotically
of an uniform linear array of sensors. The estimator is basedggficient estimates. However they still require the mini-

upon a reduced statistic obtained from the sub-diagonals ofyization of a multi-dimensional function. which may be

the covariance matrix of the array output. It only entails ¢ompytationally intensive and numerically problematic. Fi-

computing the Fourier transform of dm — 1)-length se- 4y, many authors advocated the use of subspace-based
quence wheren is the number of array sensors. A theoreti- 1 athods see e.g. [4, 7, 8]. However, since the signal covari-

cal expression for the asymptotic variance of the estimator is 3nce matrix is full-rank even for a single scattered source or
derived. Numerical simulations validate the theoretical re- 5 goyrce propagating in an heterogeneous media, conven-

sults and show that the estimator has an accuracy very closgnal subspace-based methods cannot handle properly this

to the Crangr-Rao bound. problem and hence modifications are required.
In this paper, we introduce a robust and simple estimator
1. INTRODUCTION without trading-off too much statistical accuracy. Herein,
robustness should be understood as the capability to locate

Most direction finding methods rely on the assumption that the source without muqh knowledge_ aboutthe type of coher-
ence loss. Towards this end, we will make as few assump-

each wavefront impinging on the array is perfectly corre- S . .
lated between sensors and. therefore. contributes a rank-on%ons on the structure of the multiplicative noise as possible.
: ' urthermore, for both robustness and computational cost is-

covariance matrix to the total covariance matrix of the array . . X i
sues we consider estimates based on the covariance matrix

output vector. However, in many situations this condition is fthe data. In order to simolify the algorith timat
violated. For instance, in underwater acoustics the propaga—o_ € dala. In order {o simp 'fy_ € algorithm our estimator
will be based on a reduced statistic that bears most of the in-

tion medium may not be homogeneous giving rise to some
coherence loss glong the arra?/ 1, 2]. %s agconsequenceformation regarding_ the D_OA. As W_iII be shoyvn below, this
the wavefronts undergo random amplitude and phase ﬂuC_enables us to obtam' a simple estimator with an accuracy
tuations along the array, which from the signal point of view very close to the Cragr-Rao bound (CRB).
could be considered as a sort of multiplicative noise. A sim-
ilar phenomenon can be encountered in wireless communi- 2. DOA ESTIMATION AND PERFORMANCE
cations when multiple scatterers in the vicinity of the mobile ANALYSIS
contribute incoherently to the signal [3, 4]. The methods
proposed so far to solve this problem can be classified inBefore presenting the detailed derivation of our estimator,
three distinct groups. The maximum likelihood estimator let us formulate the problem and state the hypotheses. We
(MLE) was derived in [3]; despite its optimal performance, consider a uniform linear array (ULA) of. sensors with
its high computational cost may preclude it from being used inter-element spacing in wavelengths. The received data
consists ofV independent snapsho{tg(t)}ft\;1 which obey
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wherexz(t) describes the random multiplicative effect due where
to the propagations(t) is the emitted signab), is the DOA N
anda(6p) denotes the so-called steering vector 5 _ 1 H
R=> gty (1)
t=1

a(GO) — [1 eiQTrA sinfp . .. ei?ﬂ(m—l)A sin HO]T
denotes the sample covariance matrix. Although it was de-
In (1), © stands for the Schur-Hadamard (i.e. element-wise) rived under specific assumption, was shown to be quite
product andn(t) is assumed to be a zero-mean circularly accurate even in the presence of noise, provided that the
symmetric Gaussian random vector. The covariance matrixsignal to noise ratio is relatively high. However, its per-
corresponding to (1) can be written as formance degrades at low SNR’s or whene¥{k, ¢) #

|k—¢| ; P
B I B I 9 po - Animportant observation is thal, uses only the
R=¢ {y(t)y (t)} =Bo [a(eo)a (90)] ol () sum of the elements d@® along its main sub-diagonal. Here,

where[ is the identity matrix and? is the noise power in ~ We retain this idea of using the sub-diagonals of the co-
a single sensor. The matri® models the effects due to the ~Variance matrixbut in a different setup. Indeed, we con-
propagation through a random dispersive medium or to the5|der_the framework of co_va_\rlance-baseq methods and use
scatterers in the vicinity of the source. For the sake of con- Non-linear least squares fitting, as described next. Let, for

venience and without loss of generality, we have absorbedk = 1,---,m —1
the source power i, i.e. B = £ {x(t)z (t)} £ {|s(t)[*}. ok
Note that the signal covariance matéik® [a(6y)a” (6o)] =Y R(k+0,0)
in (2) is full rank even though only a single source is con- =
S|d§red_. Our goal is to find a fast an_d robust method for = (m— k),_ykeikwo 2 ¢ ethwo ©)
estimatingf, or, equivalently, the spatial frequency =
27 A sin 6, since in the field of view—90°, 90 }_these_ two g lets), — Zl:lk R(k + ¢, 0) be a consistent estimate of
parameters are related to one another by an invertible map- = ) T
ping. z,. We propose to estimate and¢ = [¢1 -+ (1]

Before deriving our DOA estimator, a few comments as
and observations are in order. To gain robustness against m—1

ey . . ~ = . =~ ikw |2

non-perfect knowledge of the multiplicative noise charac- @p, ¢ = arg min ]zk — (ke |
teristics we do not assume, in contrast to most approaches, R
a specific form forB. Herein, we simply assume th#& is m—1 ' )
a real-valued symmetric Toeplitz matrix whose first column = arg miél [Ake*“““’ - (k.| (4)
isy=1[v m - wm,l]T. This assumption is widely T ok=1

accepted for signal propagating through an inhomogeneoussjn e for any. the criterion is quadratic with respect¢o
medium [1, 2]. In wireless communications, it corresponds

to the mild assumption that the scatterers are symmetricall
distributed around the mobile [4]. Furthermore, in order to
obtain a fast algorithm, we propose to use a reduced-siz

the solution for is (, = Re [Zre~ "] Inserting this value
Yinto (4) and after some straightforward manipulations (see
e[9] for details), the estimate afj, is obtained as

statistic that concentrates the relevant information abgut m—1 A
More exactly, our approach relies on the following observa- W = arg max Re Z Eﬁe*ﬂ’“‘” (5)
tions. First, note that thék, £) element of the covariance “ k=1

matrix 1s Therefore, we end up with a very simple expression for

Rk, 0) = vp_s cilk=0wo 4 026(k 0) the estimatertuO which entails summing along the sub-
’ k=t e diagonals ofR, computing the Fourier transform in (5) and
Hence, each element along th& sub-diagonal is equal to  l0oking for the location of its maximum. Additionally, we

the same complex number with amplitugeand anglé:wg reiterate the fact that this method is robust to mismodelling
(for k = 1,---,m — 1). Our intention is to exploit this ob-  the covariance matrix of the multiplicative noise. Onge
servation. Note that in theoiseless casand assuming that  is availablef is simply estimated as

B(k,¢) = Pp‘okfa it was shown in [5] that the maximum R 5

likelihood estimator (MLE) ofuy is given by 8o = arcsin (27&) (6)
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Jo = angle ( ﬁ(g 1, £)> rnat\:)Vrei :?;()'[_?Gn)alyze the statistical performance of the esti-
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Proposition 1. Under the assumptions th@y(t)}iil are
independent Gaussian random vectors with a covariance
matrix given by (2), the asymptotic variance@f in (5)

is given by

& Jim NE {(@ w0’}
¢"D(r -T)D¢
2(¢" D*¢)?

lim N W
Jim  Nvar (@)

@)

whereD = diag (1,2,--- ,m — 1) and

m—km—~

L(k,0) = Z Z Vp—gq+k—£|V|p—al

p=1 q=1
+ QUim—a min(m — £,m — k)
+ (m—k)opd(k,0)

m—km—~

L(k )= > > Vp—qthVip—q—1

p=1 g=1

(8)

+ 20%716“ max(m — k — £,0) 9
Proof. see [9]

Corollary 1. Since there exists a one-to-one continuous and
differentiable mapping fromvg to 6, it follows that

. SN 900\ _
lgnoo Nvar (00) = (&«00) A}Enoo Nvar (&)
¢"D(r - T)D¢

(10)

B 2(27A cos 0p)2(¢T D*¢)?

The previous results provide closed-form expressions
for the asymptotic variances af, and 50. These expres-
sions are checked against empirical variances in the nex
section, and also numerically compared with the CRB.

3. NUMERICAL EXAMPLES

In this section, we illustrate the performance of our estima-
tor by means of Monte-Carlo simulations and validate the
theoretical analysis. We consider a ULA withh = 8 sen-
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Fig. 1. CRB (solid line), empirical ) and theoretical

(dash-dotted line) RMSE of the DOA estimate versis

m = 8, SNR=)dB andp = 0.9.

good agreement, even for a small number of snapshots. The
RMSE of the estimator is seen to be very close to the CRB.

A second series of simulations deals with the influence
of the SNR, see Figure 2. The main point to be noted is
that the performance remains quite close to the CRB even
for low SNR’s. When SNR increases, both the theoreti-
cal variance of the estimator and the CRB tend to a con-
stant term. In fact, both of them are theoretically of the
form N~1(a+bSNR~' 4+ cSNR~2) wherea, b, c are con-
stants. The term is zero only if there is no multiplicative
noise. Otherwise, the variance does not go to zero as SNR
increases since, even whefj = 0, i.e. when there is no
additive noise, there is still multiplicative noise which pre-
vents us from retrievingy exactly.

Next, the influence of the number of sensors is examined
in Figure 3. The performance is shown to be very close to
the CRB whatever the value of.

Finally, it is interesting to examine how the estimator
behaves as the coherence loss increases, that is when the
correlation among the elements is less and less pronounced.
In Figure 4 the coherence loss at a wavelength separation,

sors spaced a half wavelength apart. The DOA of the source(20 log,, p), is varied from—3 dB to —0.25 dB. The es
10 PJs - —U. . :

is 8y = 10°. The signal is given by (1) whete(¢) is mod-
eled as a zero-mean Gaussian random vector with covar
ance matrixB (k, £) = p/*~‘l andp = 0.9 unless otherwise
stated. For each figur800 Monte-Carlo simulations were

run to estimate the root mean-square error (RMSE) of the

estimates. For comparison purposes, the @raRao bound

[3] is also displayed. All values are given in degre®s (
First, the influence of the number of snapshéisis

investigated in Figure 1 foNR = 0 dB. It can be ob-

timator does not exhibit a breakdown; its performance is
only slightly degraded, which is an interesting feature of the
method and proves that it can work under severe conditions.

4. CONCLUSIONS

In this paper we have proposed a very simple and robust
method for estimating the direction of arrival of a source

served that the empirical and theoretical results are in veryin the presence of amplitude and phase fluctuations of the
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3. CRB (solid line), empirical €) and theoretical
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wavefront. It relies on the sum of the sub-diagonal elements
of the array output covariance matrix and only entails find-
ing the maximum of a function which can be expressed as a
Fourier transform. A theoretical expression for the asymp-
totic variance of the estimator was derived and its validity _
was shown through numerical simulations. Numerical ex- éo_s
amples showed that the proposed estimate has an accuracg

very close to the CRB. o)
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