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ABSTRACT

To the problem of no overall optimal merger for one-way
merger in the segmentation algorithm proposed by Wang
Yongzhong, et al., in this paper, we propose a method of
overall optimal search and merger. At the same time, to
the unreasonable problem of merging a segment which has
non-value (value-segment) and a segment which values are
zeros entirely (zeros-segment) to a large segment in
Wang’s method, we also propose a corresponding method
to solve the problem. The main techniques are incarnated
in local cosine transform (LCT) algorithm for a single
small segment, rather than folding processing using its
original neighboring data, instead of making zero-
extension, and then fold the each zero-extension segment.
A great deal of numerical simulations validate that this
new improved technique solves several problems of the
binary-based segment algorithm and Wang’s segment
algorithm, it not only obtains adapted effective
segmentation result, but also there are not much more
redundancy segmentations.

1. INTRODUCTION

Local cosine bases constructed by Coifman and Meyer
(1991)™ (also see Auscher, et al. 1992)™ consist of cosines
multiplied by smooth, compactly supported bell functions.
These localized cosine functions remain orthogonal and
have small Heisenberg products. However, the binary-
based segmentation algorithm via best-basis selection® in
the applications of adapted local cosine transform (LCT)
has several inherent limitations. First, the binary-based
segmentation has not only no flexibility for 1-D signal at
all, but also has much more redundant segmentations.
Secondly, the binary-based segmentation is very sensitive

to the time-shift of the original signal, such that the
resulted best-basis will change a great deal if the signal is
shifted by some samples. Due to the above mentioned
problems of the binary-based segmentation algorithm, a
new flexible segmentation method was presented by Wang
Yongzhong in the literature[4], although the new method
basically solved the problems, but there are also a few
questions to be solved. On the basis of Wang’s method,
this paper presents a corresponding improved method to
solve the problem. At the same time, we also propose a
method of overall optimal search and merger to overcome
the problem that the one-way merger by left-to-right in the
literature[4] will not be an overall optimal search merger.
The improved segmentation algorithm has more flexible
than the binary-based segmentation algorithm and Wang’s
segmentation algorithm, and it is suitable for the research
of effective segmentation and speech compression, etc.

2. ADAPTED LOCAL COSINE
TRANSFORM

2. 1. Brief description of local cosine transform

We recall briefly the local cosine transform®®. Let us
consider a partition of the line _ Uz I with 1=, a,.);
such that the width of the intervals is never less than a
fixed positive number: a,,-a,2£>0 for all joz. We

define the following cutoff functions
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With 4(t) =sin[(r/4)1+sin(z/2))] and o<r<e. The set of

functions
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with joz and kON is an orthogonal basis for 2(R).
Consequently, each signal s()o*(r) can be written in
terms of the functions %)
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A superposition of these functions may be depicted by a
sequence of adjacent envelopes or windows, with vertical
lines drawn between the nominal window boundaries. This
is done in Fig.1.

It is possible to compute several local cosine transforms
all at once, recursively subdividing the intervals into
halves. The basis functions on each subinterval are the
orthogonal direct sum of the basis functions on its left and
right halves, and this orthogonality propagates up through
the multiple levels of the binary "family tree" in Fig.2.
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Fig.1. Lapped orthogonal basis functions on adjacent intervals
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Fig.2. Several lapped orthogonal transforms computed all at once

The inner products in (1) can be computed using a
standard fast discrete cosine transform, after a preliminary
"folding" step described in the literature[6]. This "folding"
splits s(t) into a set of local finite energy signals
s,(t)0 |_2(|j), jOz, such that applying a standard discrete
cosine transform to the coefficients in s, (t) is equivalent to
computing all inner products with the functions .

2.2. Adapted binary local cosine basis

A binary-based decomposition tree consists of the bases at
different levels. However, not all the bases are efficient at
matching a given signal, therefore, we want to pick up the
"best-basis" from all the local cosine packets in the binary-
tree library based on a cost-functional. To search for local
cosine best-basis, i.e., adaptive local cosine basis, aiming
to achieve the best match of the signal, there are several
kinds of cost-functionals appearing in the literature[7].
Here, we use the so-called Shannon entropy as the cost-
functional.

In implementation, the Coifman-Wickerhauser (1992)
binary-tree fast algorithm®®is used to search for the "best-
basis" based on the Shannon entropy cost-functional. In
the beginning, a full binary-based decomposition tree with
a preset maximum decomposition level is produced. Then,
the pruning procedure starts from the leaf nodes and
proceeds toward the root. At the end of this procedure, an
optimal pruned tree is obtained for the given signal, i.e., an
adaptive binary local cosine basis is obtained.

3. IMPROVED FLEXIBLE
SEGMENTATION ALGORITHM

3.1. Wang’s segmentation algorithm

To overcome the binary segmentation constraint, a flexible
segmentation algorithm was presented in the literature[4].
LetL stand for the time segmentation resolution, i.e., the
length of the finest segment, for a 1-D signal with
length N, it is always assumed thatN is a multiple of L,
say, N =KL, whereKis the total number of finest
segments.

Starting with the uniform finest segmentation, a left-
right merging process is adopted to optimize the
segmentation that doesn't suffer from the binary tree
restriction. For each possible merger, the cost of the
merged entity (segment) is compared with the total cost,
i.e., the sum of costs of the two separate entities (segment).
If the cost of the merged segment is smaller than the total
cost of two separate segments, the merge is approved, and
the merged segment will be treated as one entity in the
next possible merger. Otherwise, if the opposite is true, the
merger will be abandoned. Many drawbacks of the binary
segmentation process have been overcomes by the new
algorithm.

3.2.  Improved segmentation algorithm



3.2.1. LCT algorithm for a single segment

Although Wang’s method basically solved the drawbacks
of the binary-based segmentation, but there are a few
questions to be solved. If one of two neighboring segments
outside of a segment which has non-zero values (value-
segment) is a segment which values are zero entirely
(zero-segment), the method will merge the value-segment
and zero-segment to a large segment, obviously, this is
unreasonable. On the basis of Wang’s method, this paper
presents a corresponding method to solve the problem. The
main techniques are incarnated in LCT algorithm for a
single segment, rather than folding processing using its
original neighboring data, instead of making zero-
extension, and then fold the each zero-extension segment,
all local cosine transforms for each segment can be
finished simultaneously. All of local cosine transform
coefficients of a zero-segment are zero, so that the zero-
segment and the value-segment will not be merged.

3.2.2.  Overall optimal search and merger

The merger method in the literature[4] is an one-way
merger by left-to-right, this may be not overall neighboring
optimal merger. To solve the problem, to achieve an
optimal merger based on overall optimal search technique,
the paper presents an approach as fellows. The approach is
to adopt to calculate LCT coefficients using the LCT
algorithm in above section, and then computes all entropy
for each segment and all segments merged by two
neighboring segments simultaneously. In implementation,
the Shannon entropy is used, if the summation of the
entropy of the two neighboring segments is larger than the
entropy of the entity (segment) merged by the two
neighboring segments, then the two neighboring segments
will be a candidate to be merged a large segment.
Otherwise, they will not be merged to a large segment. At
a time, only two neighboring optimal segments of all
candidates will be merged, the search method of choosing
optimal candidate is that the entropy of a large segment
merged by the optimal candidate is smallest in the entropy
of all segments merged by other candidates. And then
computes the entropy between the merged segment and its
neighboring segments, confirms whether they are
candidates in the next possible merger. The overall search
and merger will not be terminated until without candidates
to be merged. The method overcomes the problem that the
one-way merger in the literature [4] will not be an overall
optimal merger. The procedure can be illuminated in Fig.3.

Here, E(2,3) stands for the entropy of third neighboring
combination by left-to-right in the second level, the
combination may be candidate to be merged to a large
segment. E(1,1)=N stands for the first combination by left-
to-right in the first level, but it can not be a candidate to be
merged to a large segment.

et
e e

Level2 | \w/ 1
Cead Ce3d

Level3 | } T

b
)

Result | | | | |
s 2 s3 4

Fig.3. Sketch map of ovarall optimal search and merger

4. SIMULATION EXPERIMENTS

In all the tests on synthetic signals, we choose N =1024
and the smallest time segment, L =32 and thus K =32,
although arbitrary time resolution can be used in our
improved segmentation algorithm. For the sake of
comparison, in the binary tree algorithm, the maximum
decomposition level is preset at 5 for synthetic signals so
that the smallest time segment is also 32. The tests will be
done on the following two aspects.

4.1. Without binary constraint

To highlight the binary restriction of the binary tree
algorithm, and to demonstrate the advantages of the
improved flexible segment algorithm, we choose as our
input signal a Ricker wavelet and a blocked
sinusoid(t=1~128), the support of the Ricker wavelet is 17
from t=504~520, and the peak of this wavelet just rides on
the midpoint of the whole signal, a possible segmentation
point for the binary tree algorithm, the algorithm in the
literature [4] and the improved algorithm. Fig. 4(a) shows
the best segmentation result using binary tree algorithm.
We see that an intact impulse is unreasonably separated
from the peak. Undoubtedly, this kind of drawback is
inherent in the binary tree algorithm. By contrast, in Fig.
4(c) is the result of the improved algorithm, the Ricker
wavelet can't be split into two halves from the peak. The
segmentation using the improved algorithm is reasonable
for the two kinds of signals, at the same time, there are no
any abundant segments. Fig. 4(b) is the result using the
algorithm in the literature[4], however, even though the
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Fig.4. Comparison chart between different
segmentation algorithms without time-shift

Ricker wavelet is segmented correctly, but the right
segment position of the sinusoid is at t=160 instead of at
t=128, this is just the reason discussed in above section,
but Fig. 4(c) can commendably solve the problem.

4.2.  Much reduced time-shift sensitivity

Let the signal be shifted by 32 samples, Fig. 5(a) shows us
the result obtained by the binary tree algorithm, which has
changed a great deal compared with Fig.4(a). This fact
clearly illustrates the segmentation given by the binary tree
algorithm is not time-shift invariant. However, the result in
Fig.5(c) generated by the improved flexible segmentation
algorithm shows it is time-shift invariant. We also see that
the result in Fig. 5(b) obtained by the algorithm in the
literature[4], it is also not time-shift invariant, this clearly
illustrates the drawback of the algorithm in the
literature[4].

5. CONCLUSIONS

To the problem of no overall optimal merger for the one-
way merger in the literature[4], we propose a merger
method based on overall optimal search. If one of two
neighboring segments outside of a segment which has non-
zero values (value-segment) is a segment which values are
zero entirely (zero-segment), Wang’s method will merge
the value-segment and zero-segment to a large segment, it
is unreasonable. In order to resolve the problem, this paper
presents corresponding techniques to solve the problem.
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Fig.5. Comparison chart between different
segmentation algorithms with time-shift
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