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Abstract

This paper studies the adaptive wavelet design for fabric defect
detection. In order to achieve trandation invariance and more
flexible design, the wavelet design focused on nonsubsampled
wavelet transform. We design the wavelet filters under the
constraints that the analysis filters are power complementary,
and the wavelet has only one vanishing moment, which
corresponds to a multiscale edge deteter. Based on lattice
structure factorization, the design of power complementary
filter turn out to be unconstrainted optimization of lattice
coefficients. Adaptive wavelets are designed for five kinds of
fabric defects in the experiments. Comparing the proposed
method with adaptive wavelet design for defect detection based
on orthogonal wavelet transform, our design largely improve
the ratio of wavelet transform energy between the defect area
and the background, and achieve a robust and accurate
detection of fabric defects.

1. Introduction

In textile industry, inspection of fabric defects plays an
important role in the quality control. However, the current
inspection task is primarily performed by human inspectors and
this intensive labour cannot always give consistent evaluation
of products. Fabric Automatic Visual Inspection(FAVI) system
is an attractive alternative to human vision inspection. Based on
advances in computer technology, image processing and pattern
recognition, FAVI system can provide reliable, objective and
stable performance on fabric defects inspection. For fabric
defects detection techniques, there are two main directions. One
is statistical texture analysis, which is based on the visual
textural properties of the fabric. This approach is weak in small
defects detection since the detection primarily depends on
statistical texture property. The other direction adopts wavelet
transform and addresses fabric defects detection on multiscale
analysis. Wavelet analysis, which has the characteristic of
preserving the locality of position-frequency event in signal
representation[1], can supply a multiscale position-frequency
representation of the fabric image. Hence it is more suitable for
the analysis and detection of fabric defects. Wavelet transform
has been widely applied in fabric defects detection[2-7]. All
these work show that defect detection based on wavelet
transform has better performance and less computation than
statistical texture analysis approaches, especially for some small
fabric defects.

There also exist problems in wavelet transform approach.
As it is expected, after performing wavelet transform on fabric
image, defect areas should give significantly larger response
than the background in certain scale or some scales to enable
easy detection, while the response from the background fabric
texture will probably disturb the detection of defects and cause
false alarm. Jasper et a. [6], and Gong[7] try to solve this
problem by adaptive wavelet design for specific fabric texture.
They derive an orthogonal wavelet bases directly from the
texture data of the defect-free image, such that the wavelet filter
dves aclose to zero response to that texture, while disturbances
in the texture due to noise and defects will produce a nonzero
output. Comparing to Daubechies wavelets, the adaptive
wavelet bases they designed has achieved better performance in
enhancing the response from the defect area. In fact, their
method is based on the assumptions that the degree of
orthogonality between defect area and background texture is
strong and the design freedom of the wavelet filter is large
enough to meet the design specification. However, our
experiment results has shown that defect area is highly related
to background fabric texture. It is not suitable to separate them
with orthogonal wavelet transform. Also orthogonal wavelet
transform imposes considerable constraints on the wavelet filter
design. Furthermore critically sampling of orthogona wavelet
transform destroys shift invariance, which is important for
fabric defects detection. In order to obtain a shift invariant
decomposition and more freedom on the wavelet bases design,
we study the adaptive wavelet design for fabric defect detection
which is addressed on nonsubsampled wavelet transform. The
experiment results show that, comparing the proposed method
with adaptive wavelet design for defect detection based on
orthogonal wavelet transform, our design largely improve the
ratio of wavelet transform energy between the defect area and
the background and achieve a robust and accurate detection of
fabric defect.

2. Nonsubsampled octave band filter bank
and discrete wavelet frame

A nonsubsampled octave band filter banksis shown in Figure 1.
H(2) and G(2) denote the z-transform of low-pass filter h and
high-pass filter g respectively. The signa is iteratively
decomposed on the low-pass analysis channel. Based on this
structure, one can devise a discrete time wavelet transform and
obtain a redundant signal representation. This overcomplete
wavelet representation is also called a discrete wavelet frame.
Comparing to critically sampled octave band filter banks,
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Figurel. A nonsubsampled octave band filter bank.

nonsubsampled version achieves trandation invariance, which
is especialy desirable in pattern recognition applications, such
as fabric defect detection. And nonsubsampled version also has
less constraints for perfect reconstruction which alows for
more flexible design. This overcomplete signal expansion has
been applied in texture classification and segmentation[8,9],
multiscale edges detection[ 10] and singularity detection[11].

The cascade of filtering operations in the nonsubsampled
octave band filter bank shown in Figure 1 can be described as
the following equivalent filter sequences
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Here HO(Z) is defined as 1. In this paper, we use two oriented

two-dimension wavelets y (x,y) and y *(xy) for fabric
defect detection, which are constructed as follows
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where y '(z,2,) and y,*(z,2,) have horizontal and vertical
orientation respectively, and i is the scale index. If the highpass
filter G(2) has exact one zero a z=1, then we can detect
multiscale edges in an image based on wavelet transform
modulug[ 10].

3. Wavelet filter design
Based on nonsubsampled octave band filter banks, we study the

filter design under the constraint that H(z) and G(z2) are power
complementary, i.e., H(z) and G(2) satisfy
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which corresponds to tight frames in the space of square
summable sequenceg[13].

We also impose the following constraints on H(2) and G(2)
H(-1)=0 ad  G(1)=0 (4)

where H(-1)=0 is required for meeting regularity constraint. By
choosing G(1)=1, we will construct a wavelet with one
vanishing moment, which is equivaent to a mutliscale edge
detecter.

We have tried two approaches in designing filters H(z) and
G(2) satisfying constraints (3) and (4). The first is based on
spectral factorization, and the second is based on lattice
structures. Spectral factorization approach[12] designs the
autocorrelation function H(z)H(z‘l) of the low-pass filter H(2),
then perform spectral factorization on H(z)H(z' 1) and
G(Z)G(z'l) to obtain filters H(2) and G(2). For meeting the
design specification, optimization procedure will be performed
on the coefficients of H(z)H(z’ l) However, spectral
factorization approach becomes increasingly inaccurate and
time consuming when the order of the filter autocorrelation
function is high. Moreover, optimization procedure based on
coefficients of H(z)H(z‘ 1) is a constrainted optimization since
those coefficients which lead to complex filters should be
avoided.

An adternative and numerically well-conditioned design
procedure is based on lattice structure[14], which perform a
cascade-form factorization for [H(2) G(2)]
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With this design method, power complementary property (3) is
structurally satisfied. And under the constraints (4) in this
factorization structure, we will have m-1 independent free
parameters to choosein designing filters with length m+1. With
lattice  structure factorization, the design of power
complementary filters turns out to be unconstrainted
optimization of the lattice coefficients.

4. Objective function and optimization
method

The goal of adaptive wavelet design is to maximize the ratio of
wavelet transform energy between defect area and the defect-
free background at certain scale, such that the defect area can be
easily segmented out of the background by a simple threshold
classifier. Based on this assumption, our objective function is
designed asfollows

R o

wherem, is the mean energy of wavelet transform coefficients
at certain scale within defect areaand ), isthe mean energy of



wavelet transform coefficients of the defect-free imege, a same
scaeasm, .

Based on lattice structure factorization, the maximization of
the objective function J with respect to lattice rotation angesis
complicated since J is not strictly convex or concave, having a
number of local maxima. Several optimization techniques have
been tried, they are quasi-Newton method, ring algorithm[15]
and Nelder-Mead Simplex agorithm. Quasi-Newton method is
selected because its convergence is relatively fast, especialy for
high order lattice structure.

5. Experiment results

Adaptive wavelet filters have been designed for the detection of
five kinds of fabric defects. These defects are Wrong Draw,
Broken End, Mispick, Thin Bar and Slack End. All the design
are performed on scale 2. Filter design in scale 1 does not lead
to satisfactory result, since the wavelet we design is equivalent
to multiscale edge detecter, scale 1 is too fine and noisy.
Designing on scale larger that 2 also can yield large ratio of
wavelet transform energy between defects area and the
background, while the location of the defect area is not as
precise as in scae 2, since the resolution become lower and
filter length become longer. In choosing the filter length, we
prefer shorter filter as it can provide a more accurate location of
the defect area and lower computational cost, but it also
provides less free parameters for design. In designing the filter,
we evaluated a number of filter sizes which range from 3 to 20
and selected the best candidate. Normally filter length larger
that 12 can lead to a good optimization result. In our
experiment, it is found that, optimization based on the wavelet
transform component, whose direction is aong with the
orientation of the defect distribution (nearly horizontal or
vertical direction), can result in a larger ratio of wavelet
transform energy between defects area and the background and
a more precise location of the defect area than on the other
component. In fact, there are two kinds of edges in locating the
defect area. One is the edges between the defect area and the
background fabric image, and the other kind of edges is the
texture edges of texture primitives within the defect area, which
is different from the edges of background fabric texture in size
and orientation. Defect areas normally have small width. If the
defect areais not strongly different from the background in gray
scale, it isvery difficult to locate the edges between the defect
area and the background. Alternatively, along the orientation of
the defect area, we have enough size to evaluate the texture
properties of defect area in that direction. Edges within defect
area and the background response differently to edge detective
wavelet, and this difference can be enlarged by wavelet design,
which leads to arobust detection of the defect area.

Using adaptive wavelet filter, the detection results for fabric
defects Mispick and Broken End are shown in Figure 2 and
Figure 3. For the purpose of displaying the energy of the
wavelet transform, their values have been linearly mapped to
the gray level of interval 0~255. The threshold is selected as
m+3.5 , whererr ands are the mean and standard deviation
of the energy of same wavelet transform on defect-free image.
As the experiment results show, the adaptive wavelet response
much differently to the defect area and the defect-free

background area, and we can achieve good detection of the
defect aress.

For comparative study, we also implement the orthogonal
wavelet design for fabric defect detection. The design procedure
here follows aong the same lines as Jasper[6] and Gong[7].
Lattice structure is used for orthogonal wavelet design[7].
Experiment results show that, comparing with Daubechies
wavelet, the response from defect area in detail space is
enhanced, while the disturbance from background is still not be
efficiently suppressed, and it is difficult to find a suitable
threshold to segment the defect areas out of the background.
This result imply that the defect area is closely related to the
background fabric texture, and it is not feasible to separate them
by orthogona wavelet transform.

It has been verified in our experiment that equation (6) is
closely proportional to the detection performance, that is, larger
value corresponds to more accurate and easier detection of
fabric defects. Comparison based on this criterion for adaptive
wavelet design of nonsubsampled wavelet transform, adaptive
wavelet design of orthogonal wavelet transform and Daubechies
wavelet is shown in Table 1. The filter length of the quadrature
mirror filter for adaptive wavelet in orthogona wavelet
transform is 12, and we choose the detail space in which the
value of equation (6) islarger than the other two detail spaces.

6. Conclusions

In this work, we study the wavelet design for fabric defect
detection based on nonsubsampled wavelet transform.
Comparing with orthogonal wavelet transform, nonsubsampled
wavelet transform has the advantages of trandation invariance
and more flexible for the wavelet design. The adaptive wavelets
we design largely improve the ratio of wavelet transform energy
between defect areas and the background fabric texture and
achieve robust and accurate detection of fabric defects. From
our experiment results, we can conclude that it is not suitable to
segment the defect area out of the background by orthogonal
wavelet transform since they are highly related, and the
adaptive design of orthogonal wavelet for defect detection has
limited performance. For power complementary filter design,
lattice structure factorization formulate the design as
unconstrainted optimization of the lattice coefficients, which is
more efficient than spectral factorization method. We aso find
that, by using a wavelet with the ability of multiscale edge
detection, it is an efficient approach to locate the defect areas
based on the wavelet transform response on the texture edges
along the defect orientation within he defect area and the
background fabric texture.
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Table 1. Comparison based on equation (6) for adaptive wavelet design of nonsubsampled wavelet transform, adaptive wavelet
design of orthogonal wavelet transform and Daubechies wavelet(D12).

Fabric Defect Adaptive wavelet Adaptive wavelet Daubechies wavel et
design for design for (D12)
nonsubsampled WT | orthogonal WT

Wrong Draw 2.81 1.57 1.04

Broken End 4.39 224 1.39
Sack End 3.19 1.67 1.11
Thin Bar 3.65 2.18 2.15
Mispick 11.66 1.70 1.62
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Figure 2. (@) Original fabric image, containing defect Mispick (b) Nonsubsampled wavelet transform in
horizontal direction at scale 2, using adaptive wavelet (c) Thresholding of (b). (d) Orthogonal wavelet transform,
using adaptive wavelet. (e) Orthogonal wavelet transform, using Daubechies wavelet(D12).
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Figure 3. (a) Origina fabric image, containing defect Broken End.
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(b) Nonsubsampled wavelet transform in

(d)

vertical direction at scale 2, using adaptive wavelet (c) Thresholding of (b). (d) Orthogonal wavelet transform,
using adaptive wavelet. (e) Orthogonal wavelet transform, using Daubechies wavelet(D12).



