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Abstract 
 
This paper studies the adaptive wavelet design for fabric defect 
detection. In order to achieve translation invariance and more 
flexible design, the wavelet design focused on nonsubsampled 
wavelet transform. We design the wavelet filters under the 
constraints that the analysis filters are power complementary, 
and the wavelet has only one vanishing moment, which 
corresponds to a multiscale edge deteter. Based on lattice 
structure factorization, the design of power complementary 
filter turn out to be unconstrainted optimization of lattice 
coefficients. Adaptive wavelets are designed for five kinds of 
fabric defects in the experiments. Comparing the proposed 
method with adaptive wavelet design for defect detection based 
on orthogonal wavelet transform, our design largely improve 
the ratio of wavelet transform energy between the defect area 
and the background, and achieve a robust and accurate 
detection of fabric defects. 
 
 

1. Introduction 
 

In textile industry, inspection of fabric defects plays an 
important role in the quality control. However, the current 
inspection task is primarily performed by human inspectors and 
this intensive labour cannot always give consistent evaluation 
of products. Fabric Automatic Visual Inspection(FAVI) system 
is an attractive alternative to human vision inspection. Based on 
advances in computer technology, image processing and pattern 
recognition, FAVI system can provide reliable, objective and 
stable performance on fabric defects inspection. For fabric 
defects detection techniques, there are two main directions. One 
is statistical texture analysis,  which is based on the visual 
textural properties of the fabric. This approach is weak in small 
defects detection since the detection primarily depends on 
statistical texture property. The other direction adopts wavelet 
transform and addresses fabric defects detection on multiscale 
analysis. Wavelet analysis, which has the characteristic of 
preserving the locality of position-frequency event in signal 
representation[1], can supply a multiscale position-frequency 
representation of the fabric image. Hence it is more suitable for 
the analysis and detection of fabric defects. Wavelet transform 
has been widely applied in fabric defects detection[2-7]. All 
these work show that defect detection based on wavelet 
transform has better performance and less computation than 
statistical texture analysis approaches, especially for some small 
fabric defects. 

There also exist problems in wavelet transform approach. 
As it is expected, after performing wavelet transform on fabric 
image, defect areas should give significantly larger response 
than the background in certain scale or some scales to enable 
easy detection, while the response from the background fabric 
texture will probably disturb the detection of defects and cause 
false alarm. Jasper et al. [6], and Gong[7] try to solve this 
problem by adaptive wavelet design for specific fabric texture. 
They derive an orthogonal wavelet bases directly from the 
texture data of the defect-free image, such that the wavelet filter 
gives a close to zero response to that texture, while disturbances 
in the texture due to noise and defects will produce a nonzero 
output. Comparing to Daubechies wavelets, the adaptive 
wavelet bases they designed has achieved better performance in 
enhancing the response from the defect area. In fact, their 
method is based on the assumptions that the degree of 
orthogonality between defect area and background texture is 
strong and the design freedom of the wavelet filter is large 
enough to meet the design specification. However, our 
experiment results has shown that defect area is highly related 
to background fabric texture. It is not suitable to separate them 
with orthogonal wavelet transform. Also orthogonal wavelet 
transform imposes considerable constraints on the wavelet filter 
design. Furthermore critically sampling of orthogonal wavelet 
transform destroys shift invariance, which is important for 
fabric defects detection. In order to obtain a shift invariant 
decomposition and more freedom on the wavelet bases design, 
we study the adaptive wavelet design for fabric defect detection 
which is addressed on nonsubsampled wavelet transform. The 
experiment results show that, comparing the proposed method 
with adaptive wavelet design for defect detection based on 
orthogonal wavelet transform, our design largely improve the 
ratio of wavelet transform energy between the defect area and 
the background and achieve a robust and accurate detection of 
fabric defect. 
 

2. Nonsubsampled octave band filter bank 
and discrete wavelet frame 

 
A nonsubsampled octave band filter banks is shown in Figure 1. 
H(z) and G(z) denote the z-transform of low-pass filter h and 
high-pass filter g respectively. The signal is iteratively 
decomposed on the low-pass analysis channel. Based on this 
structure, one can devise a discrete time wavelet transform and 
obtain a redundant signal representation. This overcomplete 
wavelet representation is also called a discrete wavelet frame. 
Comparing to critically sampled octave band filter banks,  



 
nonsubsampled version achieves translation invariance, which 
is especially desirable in pattern recognition applications, such 
as fabric defect detection. And nonsubsampled version also has 
less constraints for perfect reconstruction which allows for 
more flexible design. This overcomplete signal expansion has 
been applied in texture classification and segmentation[8,9], 
multiscale edges detection[10] and singularity detection[11]. 

The cascade of  filtering operations in the nonsubsampled 
octave band filter bank shown in Figure 1 can be described as 
the following equivalent filter sequences 
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Here ( )zH0 is defined as 1. In this paper, we use two oriented 

two-dimension wavelets ( )yxi ,1ψ  and ( )yxi ,2ψ  for fabric 
defect detection, which are constructed as follows 
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where ( )21

1 , zziψ  and ( )21
2 , zziψ  have horizontal and vertical 

orientation respectively, and i is the scale index. If the highpass 
filter G(z) has exact one zero at z=1, then we can detect 
multiscale edges in an image based on wavelet transform 
modulus[10]. 
 

3. Wavelet filter design 
 
Based on nonsubsampled octave band filter banks, we study the 
filter design under the constraint that H(z) and G(z) are power 
complementary, i.e., H(z) and G(z) satisfy 

 

( ) ( ) ( ) ( ) 111 =+ −− zGzGzHzH      ( )3  
 
which corresponds to tight frames in the space of square 
summable sequences[13]. 

We also impose the following constraints on H(z) and G(z) 
 

( ) 01 =−H  and ( ) 01 =G   ( )4  
 

where H(-1)=0 is required for meeting regularity constraint. By 
choosing G(1)=1, we will construct a wavelet with one 
vanishing moment, which is equivalent to a mutliscale edge 
detecter. 

We have tried two approaches in designing filters H(z) and 
G(z) satisfying constraints (3) and (4). The first is based on 
spectral factorization, and the second is based on lattice 
structures. Spectral factorization approach[12] designs the 
autocorrelation function ( ) ( )1−zHzH  of the low-pass filter H(z), 
then perform spectral factorization on ( ) ( )1−zHzH  and 

( ) ( )1−zGzG  to obtain filters H(z) and G(z). For meeting the 
design specification, optimization procedure will be performed 
on the coefficients of ( ) ( )1−zHzH . However, spectral 
factorization approach becomes increasingly inaccurate and 
time consuming when the order of the filter autocorrelation 
function is high. Moreover, optimization procedure based on 
coefficients of ( ) ( )1−zHzH  is a constrainted optimization since 
those coefficients  which lead to complex filters should be 
avoided. 

An alternative and numerically well-conditioned design 
procedure is based on lattice structure[14], which perform a 
cascade-form factorization for [H(z) G(z)] 
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With this design method, power complementary property (3) is 
structurally satisfied. And under the constraints (4) in this 
factorization structure, we will have m-1 independent free 
parameters to choose in designing filters with length m+1. With 
lattice structure factorization, the design of power 
complementary filters turns out to be unconstrainted 
optimization of the lattice coefficients. 
 

4. Objective function and optimization 
method 

 
The goal of adaptive wavelet design is to maximize the ratio of 
wavelet transform energy between defect area and the defect-
free background at certain scale, such that the defect area can be 
easily segmented out of the background by a simple threshold 
classifier. Based on this assumption, our objective function is 
designed as follows 
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where Dµ  is the mean energy of wavelet transform coefficients 
at certain scale within defect area and Nµ  is the mean energy of 
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Figure 1.  A nonsubsampled octave band filter bank.



wavelet transform coefficients of the defect-free image, at same 
scale as Dµ . 

Based on lattice structure factorization, the maximization of 
the objective function J with respect to lattice rotation angles is 
complicated since J is not strictly convex or concave, having a 
number of local maxima. Several optimization techniques have 
been tried, they are quasi-Newton method, ring algorithm[15] 
and Nelder-Mead Simplex algorithm. Quasi-Newton method is 
selected because its convergence is relatively fast, especially for 
high order lattice structure. 

 
5. Experiment results 

 
Adaptive wavelet filters have been designed for the detection of 
five kinds of fabric defects. These defects are Wrong Draw, 
Broken End, Mispick, Thin Bar and Slack End. All the design 
are performed on scale 2. Filter design in scale 1 does not lead 
to satisfactory result, since the wavelet we design is equivalent 
to multiscale edge detecter, scale 1 is too fine and noisy. 
Designing on scale larger that 2 also can yield large ratio of 
wavelet transform energy between defects area and the 
background, while the location of the defect area is not as 
precise as in scale 2, since the resolution become lower and 
filter length become longer. In choosing the filter length, we 
prefer shorter filter as it can provide a more accurate location of 
the defect area and lower computational cost, but it also 
provides less free parameters for design. In designing the filter, 
we evaluated a number of filter sizes which range from 3 to 20 
and selected the best candidate. Normally filter length larger 
that 12 can lead to a good optimization result. In our 
experiment, it is found that, optimization based on the wavelet 
transform component, whose direction is along with the 
orientation of the defect distribution (nearly horizontal or 
vertical direction), can result in a larger ratio of wavelet 
transform energy between defects area and the background and 
a more precise location of the defect area than on the other 
component. In fact, there are two kinds of edges in locating the 
defect area. One is the edges between the defect area and the 
background fabric image, and the other kind of edges is the 
texture edges of texture primitives within the defect area, which 
is different from the edges of background fabric texture in size 
and orientation. Defect areas  normally have small width. If the 
defect area is not strongly different from the background in gray 
scale,  it is very difficult to locate the edges between the defect 
area and the background. Alternatively, along the orientation of 
the defect area, we have enough size to evaluate the texture 
properties of defect area in that direction. Edges within defect 
area and the background response differently to edge detective 
wavelet, and this difference can be enlarged by wavelet design, 
which leads to a robust detection of the defect area.  

Using adaptive wavelet filter, the detection results for fabric 
defects Mispick and Broken End are shown in Figure 2 and 
Figure 3. For the purpose of displaying the energy of the 
wavelet transform, their values have been linearly mapped to 
the gray level of interval 0~255. The threshold is selected as 

σµ 5.3+ , where µ  and σ are the mean and standard deviation 
of the energy of  same wavelet transform on defect-free image. 
As the experiment results show, the adaptive wavelet response 
much differently to the defect area and the defect-free 
background area, and we can achieve good detection of the 
defect areas. 

For comparative study, we also implement the orthogonal 
wavelet design for fabric defect detection. The design procedure 
here follows along the same lines as Jasper[6] and Gong[7]. 
Lattice structure is used for orthogonal wavelet design[7]. 
Experiment results show that, comparing with Daubechies 
wavelet, the response from defect area in detail space is 
enhanced, while the disturbance from background is still not be 
efficiently suppressed, and it is difficult to find a suitable 
threshold to segment the defect areas out of the background. 
This result imply that the defect area is closely related to the 
background fabric texture, and it is not feasible to separate them 
by orthogonal wavelet transform. 

It has been verified in our experiment that equation (6) is 
closely proportional to the detection  performance, that is, larger 
value corresponds to more accurate and easier detection of 
fabric defects. Comparison based on this criterion for adaptive 
wavelet design of nonsubsampled wavelet transform, adaptive 
wavelet design of orthogonal wavelet transform and Daubechies 
wavelet is shown in Table 1. The filter length of the quadrature 
mirror filter for adaptive wavelet in orthogonal wavelet 
transform is 12, and we choose the detail space in which the 
value of equation (6) is larger than the other two detail spaces. 
 

6. Conclusions 
 
In this work, we study the wavelet design for fabric defect 
detection based on nonsubsampled wavelet transform. 
Comparing with orthogonal wavelet transform, nonsubsampled 
wavelet transform has the advantages of translation invariance 
and more flexible for the wavelet design. The adaptive wavelets 
we design largely improve the ratio of wavelet transform energy 
between defect areas and the background fabric texture and 
achieve robust and accurate detection of fabric defects. From 
our experiment results, we can conclude that it is not suitable to 
segment the defect area out of the background by orthogonal 
wavelet transform since they are highly related, and the 
adaptive design of orthogonal wavelet for defect detection has 
limited performance. For power complementary filter design, 
lattice structure factorization formulate the design as 
unconstrainted optimization of the lattice coefficients, which is 
more efficient than spectral factorization method. We also find 
that, by using a wavelet with the ability of multiscale edge 
detection, it is an efficient approach to locate the defect areas 
based on the wavelet transform response on the texture edges 
along the defect orientation within the defect area and the 
background fabric texture.  
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Table 1. Comparison based on equation (6)  for adaptive wavelet design of nonsubsampled wavelet transform, adaptive wavelet 
design of orthogonal wavelet transform and Daubechies wavelet(D12). 

Fabric Defect Adaptive wavelet 
design for 
nonsubsampled WT 

Adaptive wavelet 
design for 
orthogonal WT 

Daubechies wavelet 
(D12) 

Wrong Draw 2.81 1.57 1.04 
Broken End 4.39 2.24 1.39 
Slack End 3.19 1.67 1.11 
Thin Bar 3.65 2.18 2.15 
Mispick 11.66 1.70 1.62 

 

Figure 2. (a) Original fabric image, containing defect Mispick  (b) Nonsubsampled wavelet transform in 
horizontal direction at scale 2, using adaptive wavelet  (c) Thresholding of (b). (d) Orthogonal wavelet transform, 
using adaptive wavelet.  (e) Orthogonal wavelet transform, using Daubechies wavelet(D12). 

Figure 3. (a) Original fabric image, containing defect Broken End.  (b) Nonsubsampled wavelet transform in 
vertical direction at scale 2, using adaptive wavelet  (c) Thresholding of (b). (d) Orthogonal wavelet transform, 
using adaptive wavelet.  (e) Orthogonal wavelet transform, using Daubechies wavelet(D12). 

(a) (c)(b) (d) (e)

(a) (c)(b) (d) (e)


