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ABSTRACT

Over the last 20-30years,the extendedKalmanfilter (EKF) has
becomethe algorithmof choicein numeroushonlinearestimation
andmachinelearningapplications. Theseinclude estimatingthe
stateof a nonlineardynamicsystemaswell estimatingparameters
for nonlinearsystemidentification(e.g., learningthe weights of
a neuralnetwork). The EKF appliesthe standardinear Kalman
filter methodologyto a linearizationof the true nonlinearsystem.
This approachis sub-optimal,and can easilyleadto divergence.
Julier et al. [1] proposecdthe unscenteKalmanfilter (UKF) as
a derivative-freealternative to the extendedKalmanfilter in the
frameawork of state-estimation.This was extendedto parameter
estimationby Wan andvan der Merwe [2, 3]. The UKF consis-
tently outperformsthe EKF in termsof predictionandestimation
error, at an equal computationacompleity of O(L®)* for gen-
eralstate-spacproblems.Whenthe EKF is appliedto parameter
estimation,the specialform of the state-spacequationsallows
for an O(L?) implementation.This paperintroducesthe squae-
root unscentedalmanfilter (SR-UKF)which is also O(L?) for
generabtate-estimatioand®(L?) for parameteestimation(note
theoriginal formulationof the UKF for parameteestimationwas
O(L?)). In addition,the square-rooforms have the addedbenefit
of numericalstability andguaranteegositive semi-definitenessf
the statecovariances.

1. INTRODUCTION

The EKF hasheenappliedextensvely to thefield of nonlineares-
timation for both state-estimatiomnd parameterestimation The
basicframework for the EKF (andthe UKF) involves estimation
of the stateof a discrete-timenonlineardynamicsystem,

F(Xk, 'l.lk) + vi (1)
H(xg) + ng, 2

Xg+1 =
Ye =

wherexy, representhe unobsered stateof the system,u;, is a
known exogenousnput, andyy. is the obsered measuremersig-
nal. The processnoise vy, drivesthe dynamicsystem,and the
observatiomoiseis givenby n;. The EKF involvestherecursve
estimationof the meanand covarianceof the stateundera Gaus-
sianassumption.

In contrast, parameteestimation, sometimesreferredto as
systemidentification, involves determininga nonlinearmapping
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1L is thedimensiorof the statevariable.

vr = G(xx,w), wherex;, is the input, yy is the output, and
the nonlinearmap, G(+), is parameterizetby the vectorw. Typ-
ically, a training setis provided with samplepairs consistingof
known input anddesiredoutputs,{xx, dx }. Theerrorof thema-
chineis definedase;, = dx, — G(xx, w), andthegoalof learning
involvessolvingfor theparametersy in orderto minimizethe ex-
pectationof somegiven function of the error. While a numberof
optimizationapproachesxist (e.g., gradientdescentand Quasi-
Newton methods) parameterganbe efficiently estimatecn-line
by writing anew state-spaceepresentation
Wi+l = Wi +Tg (3
d, = G(xk,wk) + eg, (4)

wherethe parametersv; correspondo a stationaryprocesswith
identity statetransition matrix, driven by processnoiser; (the
choice of variancedeterminesconvergenceand tracking perfor
mance).Theoutputd;, corresponds$o a nonlinearobsenationon
wy,. The EKF canthenbeapplieddirectly asanefficient“second-
order”techniquéfor learningthe parameter§4].

2. THEUNSCENTED KALMAN FILTER

Theinherentflaws of the EKF aredueto its linearizationapproach
for calculatinghemeanandcovarianceof arandomvariablewhich
undegoesa nonlineartransformation.As shawvn in shavn in [1,
2, 3], the UKF addressetheseflaws by utilizing a deterministic
“sampling” approactto calculatemeanandcovarianceterms.Es-
sentially 2L + 1, sigmapoints(L is the statedimension) arecho-
senbasedn a square-rootlecompositiorof the prior covariance.
Thesesigmapoints are propagatedhroughthe true nonlinearity
without approximationandthena weightedmeanandcovariance
is taken. A simpleillustrationof theapproachs shavn in Figurel
for a 2-dimensionabkystem:theleft plot shavs the true meanand
covariancepropagationusing Monte-Carlosampling; the center
plots shav the resultsusinga linearizationapproachaswould be
donein the EKF; theright plotsshawv the performancef the nev
“sampling” approachnoteonly 5 sigmapointsarerequired).This
approachresultsin approximationghat are accurateto the third
order(Taylor seriesexpansion)or Gaussiannputsfor all nonlin-
earities.For non-Gaussiaimputs,approximationsareaccurateo
atleastthesecond-ordeffl]. In contrastthelinearizationapproach
of the EKF resultsonly in first orderaccurag.

Thefull UKF involvesthe recursve applicationof this “sam-
pling” approachto the state-spacequations.The standardJKF
implementations givenin Algorithm 2.1for state-estimatiorand
usesthe following variable definitions: {W;} is a setof scalar

weights(W™ = A/(L+), W = X/ (L+X)+(1—a’+8)
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Figurel: Example of mean and covariance propagation. a) actual,
b) first-order linearization (EKF), ¢) new “sampling” approach (UKF).

W™ = W = 1{2L+ AN} i =1,...,20). A =

L(a® — 1) andn = /(L + )\) arescalingparametersThe con-
stanta determineghe spreadof the sigmapointsaroundx and
is usuallysetto le — 4 < o < 1. g is usedto incorporate
prior knowledge of the distribution of x (for Gaussiardistribu-

tions, 3 = 2 is optimal). Also notethatwe definethelinearalge-
bra operationof addinga columnvectorto a matrix,i.e. A +u

asthe addition of the vectorto eachcolumnof the matrix. The
superiorperformanceof the UKF over the EKF hasbeendemon-
stratedin a numberof applicationg1, 2, 3]. Furthermoreunlike

the EKF, no explicit derivatives(i.e., Jacobian®r Hessiansheed
to becalculated.

3. EFFICIENT SQUARE-ROOT IMPLEMENTATION

The most computationallyexpensve operationin the UKF cor
responddo calculatingthe nev setof sigmapointsat eachtime
update. This requirestaking a matrix square-roobf the stateco-
variancematriX, P € RE*L | givenby SST = P. An efficient
implementatiorusinga Cholesly factorizationrequiresin general
O(L?/6) computationg5]. While the square-roobf P is anin-
tegral part of the UKF, it is still the full covarianceP which is
recursvely updated. In the SR-UKF implementation,S will be
propagatedlirectly, avoiding the needto refactorizeat eachtime
step. The algorithmwill in generalstill be O(L?), but with im-
proved numericalpropertiessimilar to thoseof standardsquare-
root Kalmanfilters [6]. Furthermorefor the specialstate-space
formulation of parameteestimation,an O(L?) implementation
becomegpossible.

Thesquare-rooform of the UKF makesuseof threepowerful
linearalgebraechnique’ QRdecompositionCholesly factor up-
datingandefficientleastsquaes whichwe briefly review below:

¢ QRdecompositionThe QR decompositioror factorization
of amatrix A € RE*YN is givenby, AT = QR, where
Q € RV*" is orthogonal R € RV*" is uppertriangu-
larand N > L. Theuppertriangularpartof R, R, is
the transposeof the Cholesly factorof P = AAT, i.e,

2For notationalclarity, thetime index k£ hasbeenomitted.
3See]5] for theoreticandimplementatiordetails.

Initialize with:
%o = E[xo] Po = E[(x0 — %o)(x0 — %o0)"] (5)
Fork € {1,...,00},

Calculatesigmapoints:

Xp_1= [ﬁk—1 Xep—1+10VPro1 Xpe—1—17 Pk—l] (6)

Time update:

Xijg-1=F[X 1, up-1] (7)
2L

x5 =Y WA ki (8)
i=0

2L
Pr = WOl g1 — %5 (X1 — %3] + R

=0
Vije—1 = H[X p5,_1] ©)
2L
Vi = Z W™ V; k-1 (10)
i=0

Measurementipdateequations:

2L
Py.5. = ZWi(C)[yi,Mkﬂ — 9 1 Wikp-1 —¥2]" +R"

i=0

2L
Py, = O WX pior — %3 Wike—r — 9517 (A1)

i=0
Kk = Py Py, (12)
X =%, + Ke(yr — 3%) (13)
P, = P; — ICkukykICf (14)

whereRY =processioisecov., R"=measuremerntoisecov.

Algorithm 2.1: Standard UKF algorithm.

R = 87, suchthatR”R = AA”. We usetheshorthand
notationqr{-} to donatea QR decompositiorof a matrix
whereonly R is returned. The computationatompleity
of aQR decompositioris O(NL?). Notethatperforminga
Cholesly factorizationdirectlyon P = AA™ is O(L?/6)
plusO(NL?) toform AAT.

e Cholesk factorupdating If S is theoriginal Cholesly fac-
torof P = AA7T, thenthe Cholesky factorof the rank-
1 update(or downdate)P + /vuu” is denotedasS =
cholupdat¢S, u, +v}. If u is a matrix and not a vector
thenthe resultis M consecutie updatesof the Cholesly
factorusingthe M columnsof u. Thisalgorithm(available
in Matlabaschol updat e) is only ©O(L?) perupdate.

o Efficientleastsquaes. The solutionto theequation
(AAT)x = A"b alsocorrespondso the solutionof the
overdeterminedeastsquareproblemAx = b. Thiscan
be solved efficiently usinga QR decompositiowith pivot-
ing (implementedn Matlab’s’/’ operator).

The completespecificationof the new square-roofilters is
givenin Algorithm 3.1 for state-estimatioand3.2 for paramater




estimation. Below we describethe key partsof the square-root
algorithms,andhow they contrastwith the stardardmplementa-
tions.

Square-Root State-Estimation: As in the original UKF, the
filter is initialized by calculatingthematrix square-rootf thestate
covarianceoncevia a Cholesly factorization(Eqn.16). However,
the propagtedandupdatedCholesly factoris thenusedin subse-
guentiterationsto directly form the sigmapoints. In Eqn.20 the
time-updateof the Cholesly factor S, is calculatedusinga QR
decompostiorof the compoundmatrix containingthe weighted
propagatedsigmapoints and the matrix square-roobf the addi-
tive processnoise covariance. The subsequen€holesly update
(or downdate)in Egn. 21is necessargincethethezeroth weight,
WO(”), may be negative. Thesetwo stepsreplacethe time-update
of P~ in Eqn.9, andis alsoO(L?).

The sametwo-stepapproachis appliedto the calculationof
the Cholesly factor Sy, of the obseration-errorcovariancein
Eqns.24 and 25. This stepis O(LM?), where M is the obser
vation dimension. In contrastto the way the Kalmangainis cal-
culatedin the standardJKF (seeEqn.12), we now usetwo nested
inverse(or leastsquaeg solutionsto the following expansionof
Eqn.12, Kx(Sy,S7,) = Px,y,. SinceSy is squareandtrian-
gular, efficient “back-substitutions’can be usedto solve for Ky
directly without the needfor a matrix inversion.

Finally, theposteriomeasurementpdateof theCholesk fac-
tor of the statecovarianceis calculatedn Eqn.29 by applying M
sequentialCholesl downdatesto S, . The downdatevectorsare
thecolumnsof U = K Sy, . Thisreplaceshe posteriorupdateof
P in Egn.14, andis alsoO(LM?).

Squar e-Root Parameter-Estimation: Theparameteestimation

algorithmfollowsasimilarframenork asthatof thestate-estimation
square-rooUKF. However, an O (M L?) algorithm,asopposedo
O(L?®), is possibleby taking advantageof the linear statetransi-
tion function. Specifically thetime-updateof the statecovariance
is givensimplyby P, = Pw,_, + Rj_;. Now, if weapplyan
exponentialweightingon pastdat#, the processhoisecovariance
isgivenby R}, = (y~' — 1)Pw, , andthetime updateof thestate
covariancebecomes,

P;vk =Pw,_, + (7_1 - l)Pwk—l = 7_1Pwk_1- (15)
Thistranslateseadilyinto thefactoredorm, S, = v~ */?Sw, _,
(seeEqn. 32), and avoids the costly O(L3) QR and Cholesly
basedupdatesiecessaryn the state-estimatiofilter.

4. EXPERIMENTAL RESULTS

Theimprovementn errorperformancef the UKF overthatof the
EKF for both stateand parameteestimationis well documented
[1, 2, 3]. The focus of this sectionwill be to simply verify the
equivalenterror performanceof the UKF and SR-UKF, andshav
the reductionin computationakostachieved by the SR-UKF for
parameteestimation.Figure2 shavs the superiomperformancef
UKF andSR-UKFcomparedo thatof the EKF on estimatingthe
Mackey-Glass-30chaotictime seriescorruptedby additive white
noise(3dB SNR).Theerrorperformancef the SR-UKFandUKF
areindistinguishableandare both superiorto the EKF. The com-
putationalcompleity of all threefilters areof the sameorderbut

4This is identical to the approachusedin weightedrecursie least
squaregW-RLS). « is a scalarweightingfactorchoserto beslightly less
thanl,i.e. v = 0.9995.

Initialize with:

%0 = E[xo] So = chol{]E[(xo — %o) (%0 — ;zo)T]} (16)
Fork € {1,...,00},

Sigmapoint calculationandtime update:

X1 =[Xp—1 Xp—1+9Sk Xp_1 — nSk] 17
Xijp—1 = F[Xg_1,up 1] (18)
2L
%, =Y WA ke (19)
1=0

S, = qr{ [\/ Wl(c) (xl:QL,k|k—1 - fi;;) % R"] }
(20)
Sy = cholupdate[s,; . Kok — %p , W(gc>} (1)
Vijp—1 = H[X 4] (22)

2L
Ve =3 W Vi (23)
1=0
Measurementipdateequations:
S5 = ar{ [V Wi -vd vRE|} @
S5, = cholupdatqSg, , Yo — &, W7} (29)
2L
Pry = O WX pier — %7 [WVikpe—1 — 951" (26)
1=0
Kr = Pxuys /sgk)/syk (27)
X =%, + Ke(ye —97%)

U = K Sy, (28)
Sk = cholupdatgS; , U, -1} (29)

whereRY =processioisecov., R*=measuremerntoisecov.

Algorithm 3.1: Square-Root UKF for state-estimation.

the SR-UKF is about20% fasterthan the UKF and about 10%
fasterthanthe EKF.

The next experimentshavs the reductionin computational
costachiezedby thesquare-rootinscentedKalmanfilters andhow
that comparesto the computationalcompleity of the EKF for
parameteestimation. For this experiment,we usean EKF, UKF
and SR-UKF to train a 2-12-2 MLP neuralnetwork on the well
known Madkay-Robot-Arm benchmarkproblemof mappingthe
joint anglesof a robot arm to the Cartesiancoordinatesof the
hand. The learningcurves (meansquareerror (MSE) vs. learn-
ing epoch)of the differentfilters areshavn in Figure3. Figure4
shavs how the computationalkcomplexity of the differentfilters
scaleasafunctionof the numberof parametergweightsin neural
network). While the standardJKF is O(L?), boththe EKF and
SR-UKFareO(L?).

Shitp://wol.ra.phycam.ac.uk/mackay




Initialize with:
Wo = E[w] Sw = choI{E[(w — Wo)(w — wo)T]} (30)

Fork € {1,...,00},

Time updateandsigmapoint calculation:

Wi = Wi 31)
Swe =7 " S, (32)
Wiik—1 = [VAV,: Wy +NSw, W, — ’qs‘;k] (33)
Dyjk—1 = G[xr, Wep—1] (34)
2L
dy = ZWi(m)Di,k|k—l (35)
=0

Measurementipdateequations:

Sa, = qr{ [\/VW [’DmL,k - &k] \/ﬁ] } (36)

Sdk = cholupdate{Sdk y Do,k — ak s Wéc)} 37)
2L .

Pud, = O W Wikjkor — Wi D epe—1 — di]”  (38)

=0

K = (Pwkdk/SZk)/sdk (39)

Wi = Wi + Kr(dy — dg) (40)

U = KxSa, (41)

Sw, = cholupdatgS,, , U, -1} (42)

whereR®=measurememntoisecov (this canbe setto anarbitrary
value,e.g, .51.)

Algorithm 3.2: Square-Root UKF for parameter-estimation.

Estimation of Mackey-Glass time series : EKF
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Figure2: Estimation of the Mackey-Glass chaotic time-series with
the EKF, UKF and SR-UKF.

5. CONCLUSIONS

The UKF consistentlyperformsbetterthan or equalto the well
known EKF, with the addedbenefitof easeof implementationn
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Figure 3: Learning curves for Mackay-Robot-Arm neural network
parameter-estimation problem.
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Figure4: Computational complexity (flops/epoch) of EKF, UKF and
SR-UKF for parameter-estimation (Mackay-Robot-Arm problem).

that no analyticalderivatives (Jacobian®r Hessiansheedto be
calculated. For state-estimationthe UKF and EKF have equal
compleity andarein general?(L?) . In thispaperweintroduced
square-rooformsof the UKF. Thesquare-rooUKF hasbetternu-
mericalpropertiesandguaranteepositive semi-definitenessf the
underlyingstatecovariance.ln addition,for parameteestimation
anefficient O(L?) implementatioris possiblefor the square-root
form, which is again of the samecompleity as efficient EKF
parameteestimationimplementationsin this light, the SR-UKF
is the logical replacementor the EKF in all stateandparameter
estimationapplications.
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