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ABSTRACT

Over the last 20-30years,the extendedKalmanfilter (EKF) has
becomethealgorithmof choicein numerousnonlinearestimation
andmachinelearningapplications.Theseincludeestimatingthe
stateof a nonlineardynamicsystemaswell estimatingparameters
for nonlinearsystemidentification(e.g., learningthe weightsof
a neuralnetwork). The EKF appliesthe standardlinear Kalman
filter methodologyto a linearizationof the truenonlinearsystem.
This approachis sub-optimal,andcaneasily leadto divergence.
Julier et al. [1] proposedthe unscentedKalman filter (UKF) as
a derivative-freealternative to the extendedKalman filter in the
framework of state-estimation.This wasextendedto parameter-
estimationby Wan andvan der Merwe [2, 3]. The UKF consis-
tently outperformstheEKF in termsof predictionandestimation
error, at an equalcomputationalcomplexity of �������
	 1 for gen-
eralstate-spaceproblems.WhentheEKF is appliedto parameter-
estimation,the specialform of the state-spaceequationsallows
for an �������
	 implementation.This paperintroducesthesquare-
root unscentedKalmanfilter (SR-UKF)which is also �������
	 for
generalstate-estimationand �
��� � 	 for parameterestimation(note
theoriginal formulationof theUKF for parameter-estimationwas�
������	 ). In addition,thesquare-rootformshave theaddedbenefit
of numericalstabilityandguaranteedpositivesemi-definitenessof
thestatecovariances.

1. INTRODUCTION

TheEKF hasbeenappliedextensively to thefield of nonlineares-
timation for bothstate-estimationandparameter-estimation. The
basicframework for the EKF (andthe UKF) involvesestimation
of thestateof a discrete-timenonlineardynamicsystem,��������� � � ��������� 	��! � (1)"��#� $ � ��� 	%�'& �(� (2)

where ��� representthe unobserved stateof the system, ��� is a
known exogenousinput,and "�� is theobservedmeasurementsig-
nal. The processnoise  � drives the dynamicsystem,and the
observationnoiseis givenby & � . TheEKF involvestherecursive
estimationof themeanandcovarianceof thestateundera Gaus-
sianassumption.

In contrast,parameter-estimation,sometimesreferredto as
systemidentification,involves determininga nonlinearmapping
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1 ) is thedimensionof thestatevariable.

"��*�,+ � ���-�/. 	 , where ��� is the input, "�� is the output, and
thenonlinearmap, + �10 	 , is parameterizedby thevector . . Typ-
ically, a training set is provided with samplepairsconsistingof
known input anddesiredoutputs,2 ���-�/3��54 . Theerrorof thema-
chineis definedas 6 � �73 �98 + � � � �/. 	 , andthegoalof learning
involvessolvingfor theparameters. in orderto minimizetheex-
pectationof somegivenfunctionof theerror. While a numberof
optimizationapproachesexist (e.g., gradientdescentand Quasi-
Newton methods),parameterscanbeefficiently estimatedon-line
by writing a new state-spacerepresentation. �:��� � . � �!; � (3)3��#� + � �����/.
� 	<�'6 �-� (4)

wheretheparameters.
� correspondto a stationaryprocesswith
identity statetransitionmatrix, driven by processnoise ; � (the
choiceof variancedeterminesconvergenceand tracking perfor-
mance).Theoutput 3�� correspondsto a nonlinearobservationon. � . TheEKF canthenbeapplieddirectlyasanefficient “second-
order” techniquefor learningtheparameters[4].

2. THE UNSCENTED KALMAN FILTER

Theinherentflawsof theEKF aredueto its linearizationapproach
for calculatingthemeanandcovarianceof arandomvariablewhich
undergoesa nonlineartransformation.As shown in shown in [1,
2, 3], the UKF addressestheseflaws by utilizing a deterministic
“sampling” approachto calculatemeanandcovarianceterms.Es-
sentially, =>���'? , sigmapoints( � is thestatedimension),arecho-
senbasedon a square-rootdecompositionof theprior covariance.
Thesesigmapointsarepropagatedthroughthe true nonlinearity,
without approximation,andthena weightedmeanandcovariance
is taken.A simpleillustrationof theapproachis shown in Figure1
for a 2-dimensionalsystem:theleft plot shows thetruemeanand
covariancepropagationusing Monte-Carlosampling; the center
plotsshow the resultsusinga linearizationapproachaswould be
donein theEKF; theright plotsshow theperformanceof thenew
“sampling”approach(noteonly 5 sigmapointsarerequired).This
approachresultsin approximationsthat areaccurateto the third
order(Taylor seriesexpansion)for Gaussianinputsfor all nonlin-
earities.For non-Gaussianinputs,approximationsareaccurateto
atleastthesecond-order[1]. In contrast,thelinearizationapproach
of theEKF resultsonly in first orderaccuracy.

Thefull UKF involvestherecursive applicationof this “sam-
pling” approachto the state-spaceequations.The standardUKF
implementationis givenin Algorithm 2.1for state-estimation,and
usesthe following variabledefinitions: 2>@BA 4 is a set of scalar
weights( @DCFEHGI �KJML ���N� J 	 , @DC O/GI �KJML ���N� J 	P�Q�1? 8SR � �UT�	
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Figure1: Example of mean and covariance propagation. a) actual,
b) first-order linearization (EKF), c) new “sampling” approach (UKF).

, @ C�EHGA � @ CFO/GA � ? L 2>=-���K� J 	 4��B� ? �
�:�:�%� =>� ). J����� R � 8 ?�	 and � ��� ����� J 	 arescalingparameters.Thecon-
stant R determinesthe spreadof the sigmapointsaround �� and
is usually set to ?:� 8�����R�� ? . T is usedto incorporate
prior knowledgeof the distribution of � (for Gaussiandistribu-
tions, T � = is optimal). Also notethatwe definethelinearalge-
braoperationof addinga columnvectorto a matrix, i.e. �D� �
as the additionof the vector to eachcolumnof the matrix. The
superiorperformanceof theUKF over theEKF hasbeendemon-
stratedin a numberof applications[1, 2, 3]. Furthermore,unlike
theEKF, no explicit derivatives(i.e., Jacobiansor Hessians)need
to becalculated.

3. EFFICIENT SQUARE-ROOT IMPLEMENTATION

The most computationallyexpensive operationin the UKF cor-
respondsto calculatingthe new setof sigmapointsat eachtime
update.This requirestaking a matrix square-rootof thestateco-
variancematrix2, �������%� � , given by ¡�¡<¢ � � . An efficient
implementationusinga Cholesky factorizationrequiresin general�
��� � L¤£ 	 computations[5]. While thesquare-rootof � is an in-
tegral part of the UKF, it is still the full covariance � which is
recursively updated. In the SR-UKF implementation,¡ will be
propagateddirectly, avoiding theneedto refactorizeat eachtime
step. The algorithmwill in generalstill be �������
	 , but with im-
proved numericalpropertiessimilar to thoseof standardsquare-
root Kalmanfilters [6]. Furthermore,for the specialstate-space
formulation of parameter-estimation,an �������
	 implementation
becomespossible.

Thesquare-rootform of theUKF makesuseof threepowerful
linearalgebratechniques3, QRdecomposition, Cholesky factorup-
datingandefficientleastsquares, whichwe briefly review below:¥ QRdecomposition.TheQRdecompositionor factorization

of a matrix �¦�7� �<�¨§ is given by, � ¢ �ª©¬« , where© �!� §­� § is orthogonal,« �!� §®� � is uppertriangu-
lar and ¯�°�� . The uppertriangularpart of « , ±« , is
the transposeof the Cholesky factor of � � ��� ¢ , i.e.,

2For notationalclarity, thetime index ² hasbeenomitted.
3See[5] for theoreticalandimplementationdetails.

Initialize with:�� I �*³�´ � IPµ � I �*³�´ � � I 8 �� I 	�� � I 8 �� I 	 ¢ µ (5)

For ¶��·25? �
�:���<�¹¸º4 ,
Calculatesigmapoints:» �¤¼<����½ ����¤¼�� ����¤¼�� �'� � � �¤¼<� ����¤¼<� 8 � � � �¤¼��1¾ (6)

Time update:» �>¿ �¤¼�� �7�À´ » �¤¼����¹���¤¼�� µ (7)

�� ¼� � �/�Á AÃÂ I @ CFEHGAÅÄ AÇÆ �>¿ ��¼�� (8)

� ¼� � �/�Á AÃÂ I @ C O/GA ´ Ä AÇÆ �>¿ �¤¼�� 8 �� ¼� µ ´ Ä AÇÆ �>¿ �¤¼�� 8 �� ¼� µ ¢ � «UÈ
(9)É �>¿ ��¼�� �7$Ê´ » �>¿ �¤¼<� µ

�" ¼� � �/�Á AËÂ I @ C�EHGAÍÌ A�Æ �¤¿ �¤¼�� (10)

Measurementupdateequations:

�
ÎÏPÐ ÎÏPÐ � �/�Á AÃÂ I @ C O/GA ´ Ì AÇÆ �>¿ ��¼�� 8 �" ¼� µ ´ Ì A�Æ �¤¿ �¤¼�� 8 �" ¼� µ ¢ � «�Ñ
�­Ò Ð Ï Ð � �/�Á AÃÂ I @ C O/GA ´ Ä AÇÆ �>¿ �¤¼�� 8 �� ¼� µ ´ Ì AÇÆ �>¿ �¤¼<� 8 �" ¼� µ ¢ (11)Ó �Ô� � Ò Ð
ÏPÐ � ¼��ÎÏPÐ ÎÏPÐ (12)����Ô� �� ¼� � Ó � � "�� 8 �" ¼� 	 (13)� �Ô� � ¼� 8 Ó � �
ÎÏPÐ ÎÏ5Ð Ó ¢� (14)

where « È =processnoisecov., « Ñ =measurementnoisecov.

Algorithm 2.1: Standard UKF algorithm.

±«Õ� ¡ ¢ , suchthat ±« ¢ ±«Ö� ��� ¢ . We usetheshorthand
notationqr2�0 4 to donatea QR decompositionof a matrix
whereonly ±« is returned.The computationalcomplexity
of aQRdecompositionis �
��¯×� � 	 . Notethatperforminga
Cholesky factorizationdirectly on � � ��� ¢ is ����� � L>£ 	
plus ����¯×����	 to form ���Ø¢ .¥ Cholesky factorupdating. If ¡ is theoriginalCholesky fac-
tor of � � ���Ø¢ , then the Cholesky factorof the rank-
1 update(or downdate) �Ù�ÛÚ Ü ��� ¢ is denotedas ¡ �
cholupdate2P¡ �/��� �ÔÜ 4 . If � is a matrix andnot a vector,
then the result is Ý consecutive updatesof the Cholesky
factorusingthe Ý columnsof � . Thisalgorithm(available
in Matlabascholupdate) is only �
���9�
	 perupdate.¥ Efficientleastsquares.Thesolutionto theequation������¢�	 �*� ��¢<Þ alsocorrespondsto the solutionof the
overdeterminedleastsquaresproblem � �º� Þ . This can
besolvedefficiently usinga QR decompositionwith pivot-
ing (implementedin Matlab’s ’/’ operator).

The completespecificationof the new square-rootfilters is
givenin Algorithm 3.1 for state-estimationand3.2 for paramater-



estimation. Below we describethe key partsof the square-root
algorithms,andhow they contrastwith the stardardimplementa-
tions.

Square-Root State-Estimation: As in theoriginal UKF, the
filter is initializedby calculatingthematrixsquare-rootof thestate
covarianceoncevia a Cholesky factorization(Eqn.16). However,
thepropagtedandupdatedCholesky factoris thenusedin subse-
quentiterationsto directly form thesigmapoints. In Eqn.20 the
time-updateof theCholesky factor, ¡ ¼ , is calculatedusinga QR
decompostionof the compoundmatrix containingthe weighted
propagatedsigmapointsand the matrix square-rootof the addi-
tive processnoisecovariance. The subsequentCholesky update
(or downdate)in Eqn.21 is necessarysincethethezero’th weight,@ C O/GI , may benegative. Thesetwo stepsreplacethe time-update
of � ¼ in Eqn.9, andis also �������
	 .

The sametwo-stepapproachis appliedto the calculationof
the Cholesky factor, ¡�ÎÏ , of the observation-errorcovariancein
Eqns.24 and25. This stepis ������Ý � 	 , where Ý is the obser-
vation dimension.In contrastto theway theKalmangain is cal-
culatedin thestandardUKF (seeEqn.12),wenow usetwo nested
inverse(or leastsquares) solutionsto the following expansionof
Eqn.12,

Ó � �ß¡�ÎÏPÐ ¡%¢ ÎÏ Ð 	 � � Ò Ð:ÏPÐ . Since ¡9ÎÏ is squareandtrian-
gular, efficient “back-substitutions”canbe usedto solve for

Ó �
directlywithout theneedfor amatrix inversion.

Finally, theposteriormeasurementupdateof theCholesky fac-
tor of thestatecovarianceis calculatedin Eqn.29 by applying Ý
sequentialCholesky downdatesto ¡ ¼� . Thedowndatevectorsare
thecolumnsof à � Ó � ¡9ÎÏ Ð . Thisreplacestheposteriorupdateof� � in Eqn.14,andis also ������Ý � 	 .

Square-Root Parameter-Estimation: Theparameter-estimation
algorithmfollowsasimilarframework asthatof thestate-estimation
square-rootUKF. However, an �
�áÝ����
	 algorithm,asopposedto�
��� � 	 , is possibleby taking advantageof the linear statetransi-
tion function. Specifically, thetime-updateof thestatecovariance
is givensimplyby � ¼â�Ð � � âãÐ
ä å � «Uæ�¤¼�� . Now, if we applyan
exponentialweightingon pastdata4, theprocessnoisecovariance
is givenby « æ � � �èç ¼�� 8 ?
	1� â Ð , andthetimeupdateof thestate
covariancebecomes,� ¼â�Ð � � âãÐ
ä å �7�èç ¼<� 8 ?�	1� âãÐ
ä å � ç ¼<� � â�Ð:ä å � (15)

Thistranslatesreadilyinto thefactoredform, ¡ ¼â�Ð � ç ¼<�ßé ��¡ â�Ð
ä å
(seeEqn. 32), and avoids the costly �
��� � 	 QR and Cholesky
basedupdatesnecessaryin thestate-estimationfilter.

4. EXPERIMENTAL RESULTS

Theimprovementin errorperformanceof theUKF over thatof the
EKF for both stateandparameter-estimationis well documented
[1, 2, 3]. The focus of this sectionwill be to simply verify the
equivalenterrorperformanceof theUKF andSR-UKF, andshow
the reductionin computationalcostachieved by the SR-UKF for
parameter-estimation.Figure2 shows thesuperiorperformanceof
UKF andSR-UKFcomparedto thatof theEKF on estimatingthe
Mackey-Glass-30chaotictime seriescorruptedby additive white
noise(3dBSNR).Theerrorperformanceof theSR-UKFandUKF
areindistinguishableandarebothsuperiorto theEKF. Thecom-
putationalcomplexity of all threefilters areof thesameorderbut

4This is identical to the approachused in weightedrecursive least
squares(W-RLS). ê is a scalarweightingfactorchosento beslightly less
than1, i.e. êìëîíPï ð
ð
ð
ñ .

Initialize with:�� I �ò³�´ � IPµ ¡ I � chol ó ³�´ � � I 8 �� I 	�� � I 8 �� I 	 ¢ µõô (16)

For ¶��·25? �
�:���<�¹¸º4 ,
Sigmapoint calculationandtimeupdate:» �¤¼��9�ö´ �����¼�� �����¼�� �!� ¡ � ����¤¼<� 8 � ¡ � µ (17)» �¤¿ �¤¼�� �7�À´ » �¤¼�� ��� �¤¼<� µ (18)

�� ¼� � �/�Á AÃÂ I @ CFEHGA÷Ä AÇÆ �>¿ �¤¼�� (19)

¡ ¼� � qr øúù1û @ CFO1G�ýü » �/þ �/� Æ �>¿ �¤¼�� 8 �� ¼�ãÿ Ú « È����
(20)¡ ¼� � cholupdateó ¡ ¼� � Ä I Æ � 8 �� ¼� � @ CFO/GI ô (21)É �¤¿ �¤¼�� �7$Ê´ » �>¿ �¤¼�� µ (22)

�" ¼� � �/�Á AÃÂ I @ C�EHGA Ì AÇÆ �>¿ ��¼�� (23)

Measurementupdateequations:

¡ ÎÏ Ð � qr øØù û @ CFO/G� ´ É �/þ �/� Æ � 8 �" � µ � « Ñ� ��� (24)

¡ ÎÏ Ð � cholupdateó<¡ ÎÏ Ð � Ì I Æ �®8 �" � � @DC O/GI ô (25)

� Ò Ð
ÏPÐ � �/�Á AËÂ I @ CFO/GA ´ Ä A�Æ �>¿ �¤¼<� 8 �� ¼� µ ´ Ì AÇÆ �>¿ �¤¼�� 8 �" ¼� µ ¢ (26)Ó � � ���­Ò Ð Ï Ð L ¡ ¢ ÎÏ Ð 	 L ¡ ÎÏ Ð (27)����­� �� ¼� � Ó � � "�� 8 �" ¼� 	à � Ó � ¡9ÎÏ Ð (28)¡ �­� cholupdate�(¡ ¼� � à � -1 � (29)

where « È =processnoisecov., « Ñ =measurementnoisecov.

Algorithm 3.1: Square-Root UKF for state-estimation.

the SR-UKF is about20% fasterthan the UKF and about10%
fasterthantheEKF.

The next experimentshows the reductionin computational
costachievedby thesquare-rootunscentedKalmanfiltersandhow
that comparesto the computationalcomplexity of the EKF for
parameter-estimation.For this experiment,we useanEKF, UKF
andSR-UKF to train a 2-12-2MLP neuralnetwork on the well
known Mackay-Robot-Arm5 benchmarkproblemof mappingthe
joint anglesof a robot arm to the Cartesiancoordinatesof the
hand. The learningcurves (meansquareerror (MSE) vs. learn-
ing epoch)of thedifferentfilters areshown in Figure3. Figure4
shows how the computationalcomplexity of the different filters
scaleasa functionof thenumberof parameters(weightsin neural
network). While the standardUKF is �
��� � 	 , both the EKF and
SR-UKFare �������
	 .

5http://wol.ra.phy.cam.ac.uk/mackay



Initialize with:�. I ���U´ . µ ¡ â	� � chol ó �U´ � . 8 �. I 	�� . 8 �. I 	 ¢ µßô (30)

For ¶Ø��2�? �
�:�
��� ¸*4 ,
Time updateandsigmapoint calculation:�. ¼� � �.
�¤¼<� (31)¡ ¼â Ð � ç ¼<�ßé � ¡ â Ð
ä å (32)
 �¤¿ �¤¼�� ��� �. ¼� �. ¼� �î� ¡ ¼â�Ð �. ¼� 8 � ¡ ¼â�Ð�
 (33)� �¤¿ �¤¼�� ��+·´ ���(� 
 �>¿ �¤¼<� µ (34)

�3��À� �/�Á AÃÂ I @ CFEHGA�� AÇÆ �>¿ �¤¼�� (35)

Measurementupdateequations:

¡�� Ð � qr øúù û @ CFO/G� ½ � �/þ �/� Æ � 8 �3��
¾ Ú «�� ��� (36)

¡�� Ð � cholupdateó<¡�� Ð � � I Æ � 8 �3��
� @ CFO1GI ô (37)

� â Ð � Ð � �/�Á AËÂ I @ CFO1GA ´ � A�Æ �>¿ �¤¼<� 8 �. ¼� µ ´ � AÇÆ �>¿ ��¼�� 8 �3 � µ ¢ (38)Ó �À� ��� â�Ð � Ð L ¡ ¢� Ð 	 L ¡�� Ð (39)�.
�Ô� �. ¼� � Ó � � 3�� 8 �3�� 	 (40)à � Ó � ¡�� Ð (41)¡ â Ð � cholupdate� ¡ ¼â Ð � à � -1 � (42)

where « � =measurementnoisecov (this canbesetto anarbitrary
value,e.g., � ��� .)

Algorithm 3.2: Square-Root UKF for parameter-estimation.
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Figure2: Estimation of the Mackey-Glass chaotic time-series with
the EKF, UKF and SR-UKF.

5. CONCLUSIONS

The UKF consistentlyperformsbetterthan or equalto the well
known EKF, with the addedbenefitof easeof implementationin
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Figure 3: Learning curves for Mackay-Robot-Arm neural network
parameter-estimation problem.
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Figure4: Computational complexity (flops/epoch) of EKF, UKF and
SR-UKF for parameter-estimation (Mackay-Robot-Arm problem).

that no analyticalderivatives (Jacobiansor Hessians)needto be
calculated. For state-estimation,the UKF and EKF have equal
complexity andarein general�
��� � 	 . In thispaper, weintroduced
square-rootformsof theUKF. Thesquare-rootUKF hasbetternu-
mericalpropertiesandguaranteespositivesemi-definitenessof the
underlyingstatecovariance.In addition,for parameter-estimation
anefficient �������:	 implementationis possiblefor thesquare-root
form, which is again of the samecomplexity as efficient EKF
parameter-estimationimplementations.In this light, theSR-UKF
is the logical replacementfor theEKF in all stateandparameter-
estimationapplications.
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