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ABSTRACT

The Modified FX-LMS (MFX-LMS) algorithm has been
the subject of some research. It effectively removes the de-
lay from the adaptation mechanism allowing faster conver-
gence rates than the FX-LLMS. It also allows the use of more
sophisticated algorithms such as the RLS or the Kalman.
Although this is true for perfect secondary path modeling,
there is no extensive study of the influence of secondary
path modeling errors in this algorithm. This paper tries to
do just that. It shows that it’s maximum allowed step-size
is in fact almost independent of the delay in the secondary
path, even in the presence of modeling errors. It also shows
that for very large delays the algorithm is stable for phase
errors of £60° and for an estimated amplitude of more than
half of the correct one.

1. INTRODUCTION

The most successful algorithm for Active Noise Control is
the Filtered-X least-mean-square algorithm (FX-LMS, fig. 1)
but it suffers from slow convergence due to high sensitivity
to: eigenvalue spread and delay in the error path [5]. In fact
it’s maximum allowed step-size has been shown to be ap-
proximately equal to the inverse of the power of the filtered
reference signal times the filter length plus the secondary
path delay, 1/(P,(L + A)) [3]. The Modified Filtered X-
LMS (MFX-LMS) algorithm [2][9] (fig. 2) does not have
this problem, namely if S = S then it corresponds to an ex-
act implementation of the LMS algorithm. Also, the config-
uration on fig. 2 allows the use of other algorithms, such as
the Kalman or the RLS [4][6][7] to improve on the tracking
abilities of the LMS. The effect of secondary-path modeling
errors on the FX-LLMS has already been studied by several
researchers [8][10][11][1]. The results from [10] show that
the maximum allowed step size is proportional to cosine of
the phase error, but the combined effect of delay and sec-
ondary path modeling errors haven’t been considered. On
the other hand, the effects of modeling errors on the Mod-
ified FX-LMS algorithm haven’t had much attention. This
paper tried to study just that, and compare the results with
the FX-LLMS algorithm. The paper will process as follows:
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first an analysis of the stability of the MEX-LMS for very
small step sizes will be made, with results similar to the FX-
LMS. Then stability bounds for the step size, in function of
phase errors and amplitude errors, for the case of very large
delays will be obtained. Finally the same analysis will be
made for the FX-LMS, and the results will be compared.
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Fig. 1. The Filtered-X LMS algorithms for ANC.
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Fig. 2. The Modified Filtered-X LLMS algorithm for ANC.

2. ANALYSIS OF THE MODIFIED
FILTERED-X LMS

A good way to simplify the analysis, and following the path
of other researchers [8][10], is to make the calculations in
the frequency domain. However, if we want to compare



both algorithms, then a pure frequency domain analysis isn’t
enough. In fact one of the major differences between them
is that Modified Filtered-X LMS algorithm isn’t sensitive
to secondary path delay (at least when there is no modeling
errors of the secondary path) while the Filtered-X LMS is.
So, in order to take this issue into account a mixed time-
domain frequency-domain analysis will be made, where the
secondary path filters are described by an amplitude and
phase at a given frequency, plus an integer delay. So S,
and S, will be described by respectively: S , GS, dand S ,
s, d.

In this case, any of the algorithms used in fig. 1 or fig. 2
can be written as:

w(n) = w(n—1)+puln—d)Sia*(n) (1)

This gives for the MFX-LMS algorithm:
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The discussion will be limited to convergence of the mean.
So, replacing «(n) in eq. 1, taking expected values and
letting R;; = E[u(n — d)u(n —d)] and R;, = Elu(n —
d)u(n — d)], it is obtained:
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Taking the Z-Transform, the poles of the system are given
by:
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This equation allows us to write p as a function of z, u =
['(z). This is an interesting property. It means that for any
given pole there is only one step size that can result in a
system with that pole. The inverse is obviously not true,
since for any given step size the algorithm has obviously
several modes of convergence, or poles. Zero step size is an
exception, the only pole is z = 1 for this case. The same is
true for very small step sizes. In this case the function can
be inverted, and using the rule for derivative of the inverse a
linear approximation for very small step-sizes can be made.

zxl—pe Ws=99)R, S )

This equation tells us that, for positive but very small step-
sizes the algorithm is stable if and only if: d = d (or else

R, may be negative) and the phase error is less than 90°.
These results are very intuitively satisfying, and in agree-
ment with previous results for the FX-LMS algorithm.

Assuming these conditions are met, it still remains to
determine what are the maximum allowed step-sizes that
guarantee stability. In order to do this a different approach
has to be taken. The limiting values are when the poles of
the system lie on the unit circle, that is z = e 7=t The
poles are the values of z for which u = I'(2), as given by
eq- 3, is a real number. So, to get the desired result one can
first calculate the values of 6, for which p is real, and then
calculate 4 = |I'(e~%%)|. In order to obtain analytical re-
sults some simplification where made, which give sufficient
conditions for stability, but that are only necessary for very
large delays.

The absolute value of y is given by:
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This function is plotted in fig. 3. A lower bound for this is:
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To determine the values of 6, of the poles of the system,
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Fig. 3. Plot of |u| and Im() vs 6, for the MFX-LMS al-
gorithm and phase error of 18°. The amplitude follows a

1 — cos(6,) trend.

one must make the imaginary part of u equal to zero, as in
eq. 7. In fig. 3 it it can be seen that the smallest values for
6 is the one which results in a lower limit for the step-size.
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Making Afs = g — és, and, if there are no amplitude
errors, then this expression simplifies to:
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)]
which has as a lower bound:
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The roots of this equation correspond to lower bounds for
the values of 8, of the poles of the system. So replacing
these values in the lower bound for ||, and since this grows
with 6, finally, a bound for the value of step-size which
assures stability is obtained:
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following a similar approach, but now ignoring phase errors,
the following expression is obtained:
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This equations are plotted in fig. 4. It can be seen that it is
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Fig. 4. Value of u which assures stability versus phase and
amplitude modeling errors for the MFX-LMS

possible to stabilize the algorithm as long as the phase errors
are less than 60° and the estimated amplitude is more than
half of the real one. It should also be noted that although
these are only bound on the step-size for finite d, they should
be very close to the actual limits for very large delay.

In fig. 5 is presented the result of computer simulations.
The chart was obtained with a time domain implementation
of the FX-LMS algorithm, using a synchronous sinusoid
as the reference signal, and a delay of twenty samples in

the secondary path. As expected the convergence is much
slower for the case of 50° phase error. The values for the
errors in the secondary that maintained the stability of the
algorithm where almost exactly the ones predicted.
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Fig. 5. Experimental results for the convergence of the
MFX-LMS algorithm for secondary modeling phase-errors
of 50° and 0°.

3. ANALYSIS OF THE FILTERED-X LMS

The Filtered-X LMS algorithm has been extensively ana-
lyzed, so this will only be a brief exposition of the results
obtained using a similar approach as before. For this case
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Taking the Z-Transform to obtain the equation for the poles,
and then doing, as before, a linear approximation for very
small step-sizes the exact same equation as in 4 is obtained,
confirming that both algorithms perform the same way for
small step-sizes. The values of the maximum allowed step-
sizes are different however. Making z = e~ 9=t as before,
the amplitude of y is given by:
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and the imaginary part is:
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Calculating the zeros and replacing in |u| gives for the max-
imum allowed step size:
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Fig. 6. Plot of |u| and Im(u) vs 6, for the FX-LMS algo-
rithm and a phase error of 18°. The amplitude follows a

1 — cos(,) trend.

This equation is plotted in fig. 7 for several values for the
secondary path delay. For d = 0 the shape is of a cosine, as
shown in [10]. For higher delays, the maximum value for
the step size is decreased, and the function assumes a more
linear behavior.
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Fig. 7. Value of u which assures stability versus phase and
amplitude modeling errors for the FX-LMS algorithm.

4. CONCLUSION

For very small step-sizes, both the FX-LMS and the Modi-
fied FX-LLMS algorithm are stable as long as the secondary
path model has a phase error smaller than 90°. However,
the maximum allowed step-size of the Modified FX-LMS
algorithm is almost independent of the secondary path de-
lay, even in the presence of modeling errors, which is not
the case for the FX-LMS algorithm. Quantitative bounds
for the step-size which insure stability in the presence of
modeling errors and large delays were derived for both the
algorithms. Namely, the MFX-LMS algorithm is stable for

phase errors of £60° and for an estimated amplitude more
than half of the correct one, even for arbitrarily large values
of the secondary path delay.
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