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ABSTRACT

Many models based on Hidden Markov Models were de-
veloped to model errors bursts in communication chan-
nels. These models allow the computation of error dis-
tributions as well as the capacity expression of a chan-
nel. In this paper, we evaluate the effect of interleaving
on the capacity of the widely used Gilbert model. An
expression of this capacity is derived and is illustrated
by simulation. This allows, when having an identified
error model, simulation in an easy manner of the ef-
fects of any interleaving depth on the capacity of the
channel.

1. INTRODUCTION

Due to the increasing complexity of networks protocols, it
is important to examine the expected performance with
an accurate model of the errors distribution. With this
aim, different models based on Hidden Markov Models
(HMM) have been developed to model communication sys-
tems. These models were successfully used to model er-
rors sources in communication channels, and especially in
the context of wireless communication channels where er-
rors occur in bursts. The first model, used to study errors
sources in binary communication channels using HMM, is
the Gilbert model [1]. Afterwards, models based on more
number of states to get a better modelling have been pro-
posed [3] [4] [5] [6] [7].

In this paper, we give an expression for the capacity of the
Gilbert channel in the presence of interleaving. This result
can be used in the context of bursty channels in order to
predict the performance.

We use a Gilbert model as it is quite simple and widely
used. Despites its simplicity, this model allows, for example,
to model block errors [8] and burst errors in the context of
ATM communications[9].

This model is composed of two states: the "bad” state B
with a crossover probability py and the good state G with
a null crossover probability.

Our paper is organized as follows. In section 2, we re-
view the Gilbert model. In section 3, we refer to the expres-
sion of the transition probability matrix in the presence of
interleaving. The expression of the capacity is derived in
section 4. Section 5 gives an expression for the capacity of

this model in the presence of interleaving. Simulations are
carried out in section 6.

2. THE GILBERT MODEL

The Gilbert model [1] [2] shown in Fig. 1is a varying binary
symmetric channel. For this model, the crossover probabil-
ities are determined by the current state of a discrete-time
stationary binary Markov process. It is composed of two
states, respectively G for good with a null error probabil-
ity, and B for bad with a crossover probability py. Due to
the underlying Markov nature of the channel it has mem-
ory that depends on the transition probabilities between
the states.
Its state transition probability matrix is:
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Thus the observation transitional probability matrices
are given by:
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Let II = (g wp) the steady state probabilities vector.
We have:
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Then, the average symbol error rate is:
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The transition matrix can be rewritten in the following

form [10] [11]:
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Fig. 1. 2-states Gilbert model

3. EFFECT OF INTERLEAVING

Interleaving is frequently used on bursty channel as mobile
ones. It allows randomization of the errors on a codeword.
Indeed, the channel coding is most efficient when the bit
errors are uniformly distributed within the transmission bit
stream.

Consider a sequence of bits divided into ! blocks of bits.
The transmitter assembles the successive block and trans-
mits the first bit of each block, followed by the second bit of
each block, and so on. The receiver performs the opposite
de-interleaving process to reproduce the original bit blocks.
This is known as an interleaving depth of [.

So, when a code is interleaved to depth I > 1, two consec-
utive symbols of a code word are spaced apart by  symbol
times. The corresponding transition matrix P’ can be ex-
pressed as [10] [11]:
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Therefore, for the interleaved channel, we have:
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4. CAPACITY OF THE GILBERT MODEL

The method used in this section is very similar to the one
given by Gilbert except that we simplify some computa-
tions.

Let the channel output Y = {y; : ¢ = 1,2, ---} be the mod
2 sum of the input X = {x; : ¢ = 1,2, - -} and the noise
Z ={z :1=1,2,-- -}, where all three are elements from
Galois field GF'(2), and it is assumed that Z is independent
of X.

The capacity of a binary burst noise channel is given by:

C=1-—H=1-H(Y/X) (5)

With H(Y/X) the entropy of the sequence of noise digits:

H(Y/X)= lim > P(z1, - zn)h(z1, - z2n)  (6)
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The entropy (6) can be calculated directly from the defi-
nition of h(z1---2»). This task can be simplified as there is
only one error-state and therefore, in case of error, we can
know the original state.

zi = 1 implies that the state at instant 7 is B, so, we
have:
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Therefore, h(z1,- - -, zn) is totally defined by each of the
2¥ h’s terms in the sum (6) which are one of the N + 1
terms:
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Let now define the error free run distribution ur =
Pr(0%/1), with wo = 1.
‘We have:
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We can then deduce the capacity C":
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The definition of the error free run is given by the follow-
ing formula [12]:
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P™(0) can be calculated by using the following spectral
representation:
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the eigenvalues of P(0) are then:
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The transform matrix 7" is composed from the matrix
P(0) left eigenvectors:
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which gives:
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And the error free run is finally given by:
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We then have the following expression for the capacity:
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5. CAPACITY OF THE INTERLEAVED
GILBERT CHANNEL

Using (9) and the results from the previous section, we can
deduce the capacity with interleaving:
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p remains the same, as interleaving does not affect the
average BER.

6. SIMULATIONS

The aim of this section is to illustrate the previous results.
This is done by simulating different interleaving depths.

Consider C'5C and C°5! the capacity of respectively
the equivalent memoryless channel and with channel state
information. We have:

CP%¢ =1 plogyp— (1 - p)logy(1 — p)

and
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with:
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It can be shown that the following inequality holds:

B¢ < 0 < ¢CS1

Mushkin [13] proposed a measure of memory. We will use
this to illustrate these inequalities. This memory is given
by:

p=g+b-1

Let us also define the good to bad ratio p of the channel
by:

s 1-b
PET

It can be easily shown that CP%° and C°*T are inde-
pendent of u as well as of [.

The real capacity of the channel does not depend on the
interleaver since this is a reversible operation [13]. How-
ever, the computed capacity is reduced with the depth of
the interleaving because the channel memory is converted
into a latent fragmented form which is not properly used in
a conventional decoder, although can be properly used as
explained in [13].

For simulations, we fix p, and by varying p in the interval
[0; 1] we illustrate the results from the previous section.

p and pg are respectively fixed to 3 and 0.5.

The following figure gives a plot of the capacity vs. p for
different interleaving depths:
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Fig. 2. Capacity variation vs. p for different interleaving
depths

As expected, the capacity is bounded by C'°°! and
CBSC.

We can also notice that when the depth of interleaving
is long enough, the capacity approaches the capacity of the
equivalent memoryless channel.

7. CONCLUSION

In this paper, we studied the effects of interleaving on the
capacity of the Gilbert channel. We gave an expression of
the capacity as a function of the Gilbert model parameters
and the depth of interleaving.

The interleaving depth has not effect on the real capac-
ity of the channel. However, when the interleaving depth
increases, the computed capacity decreases and therefore,
the effectiveness of a conventional decoder increases.

When studying the effects of interleaving, we can then
derive the expression of the capacity in a theoretical way
for any interleaving depth as soon as the initial model is
defined.
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