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ABSTRACT

Classifying textures is a problem that has been considered
by many researchers. Many of the high performance meth-
ods are based on extracting features from the textures and
performing classification in the feature space. In this paper,
we consider the application of a new directional filter bank
(DFB) to the problem of texture classification. The DFB
is used to provide a compact and efficient representation
in which fast classification can be performed using classical
statistical methods. The resulting method is shown to yield
higher performance than feature-based techniques reported
previously. Furthermore, the approach has the added at-
traction that both the computational complexity and stor-
age requirements are relatively low. Experimental compar-
isons using the Brodatz texture database are presented at
the end of the paper.

1. INTRODUCTION

Texture classification can play an important role in image
processing and computer vision problem areas. In the area
of database retrieval, for instance, texture features are often
used to search an image database to find images that are
“similar” to the sample submitted by the user [1, 2]. In re-
mote sensing and radar applications, texture features have
been used to identify forest regions and their boundaries,
and to identify and analyze various crops [3, 4]. The use
of texture features has even found use in analyzing seismic
signals [5].

Many classes of representations and features have been
proposed, attempting to maximize classification performance
with a minimal set of compact discriminates. Algorithms
using statistical features, fractal features, Markov models
and multichannel representation are some of the most pop-
ular and effective in this regard. Of particular recent in-
terest are the multichannel approaches for texture analysis,
because of their association with human visual system mod-
els of perception that involve scale and orientation.
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The work reported herein focuses on a novel multichan-
nel approach, based on the directional filter bank (DFB),
originally introduced in [6]. Improvements to the DFB were
introduced in [7] that enabled a higher quality subband rep-
resentation, which turned out to be attractive for analysis
applications. In follow-on work, this DFB was applied suc-
cessfully to automatic target recognition using both neu-
ral network and hidden Markov model classifiers [8] and
most recently to image denoising and texture segmentation
[9, 10]. Following this evolutionary trajectory, we have con-
sidered the extension of the DFB to the challenging problem
of texture classification. The discussion begins in the next
section with an overview of the particular DFB we develop
for this application and is followed by a discussion of the
classification algorithm.

2. THE BIORTHOGONAL DIRECTIONAL
FILTER BANK

The DFB partitions the frequency plane into a set of com-
plementary wedge-shaped passband regions as described in
[6]. For reasons of efficiency, we constrain the DFB to be
a tree structured filter bank with the number of subbands
given by 2n, where n is the number of stages in the tree;
this is conceptually described in Figure 1 where we show an
analysis section for n = 3. The shaded portions of frequency
planes illustrate the filter bank passband regions associated
with each stage output.

Each stage in the tree consists of a two-band filter bank
structure that splits the input image into two subband im-
ages using two complementary fan filters. The downsam-
pling matrix M is given by [ 1 1

−1 1 ], which results in out-
put images that lie on a quincunx lattice.

After the second stage, it is necessary to use unimodular
resampling matrices Ui so that the data are rearranged (but
not downsampled) to conform to a sampling lattice that
gives fan-shaped support in the frequency domain [6, 11, 7].
To realize a more natural and visualizable subband rep-
resentation, a reformulation of the DFB structure is em-
ployed, as described in [7], where specific rules on the selec-
tion of the resampling matrices are presented. The objec-
tive of the reformulation is to undo rotations and skewings
within each of the subbands that have arisen in the tree
structure. The improved representation is achieved through



backsampling matrices such that the data are rearranged on
a rectangular lattice. Backsampling will generate rectangu-
lar nonuniform subbands which are easier to manipulate.

The DFB representation described above is only half
of the challenge in our application. The second half deals
with the actual implementation of fan-shaped filters with
the perfect reconstruction (PR) property. In our DFB we
keep the tree structure and use the two-band fan filter bank
described in [12], which allows efficient implementation of
diamond and fan filters in the polyphase domain. However,
we employ the digital ladder structure shown in Figure 2,
which was originally proposed by Mitra et al. in 1973 [13].

This allows for perfect reconstruction using N-order FIR
filters and with about half the computational complexity
required for the comparable filters used in [6]. The 1-D filter
bank is generalized to two dimensions by a simple 1-D to
2-D transformation. The expressions for the corresponding
2-D diamond filters are
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F0(z0, z1) = −H1(−z0,−z1) (1)

F1(z0, z1) = H0(−z0,−z1),

where β(z) is a linear phase filter with even length N. Fan
filters are obtained by letting z0 → −z0 in equation (1).

Most natural images have spectral characteristics sim-
ilar to those of an AR(1) process, that is, predominately
low frequency with a moderate spectral rolloff. Edge and
texture information is generally spread across the full spec-
trum. As it turns out, practical DFBs present a problem for
this application regarding the way they handle DC. Ideally,
the passband wedges associated with M-band DFB filters
contain infinitely sharp passbands that split the DC signal
energy evenly across all M-bands. However, for real world
DFBs, the partitioning at the point of DC does not have
infinite precision, resulting in an uneven distribution of DC
energy among the bands. Given this non-uniform distri-
bution of DC energy, we separate the input images before
hand into low frequency and upper frequency component
images using the structure shown in Figure 3 and restrict
the decomposition to the upper frequency component. The
filter Lωc(ω0, ω1) is a lowpass 2-D separable filter whose
1-D prototype has a cutoff frequency at ωc. For the case
of texture classification, this “preprocessing” helps remove
the problem of DC energy division among the subbands
and allows the representation to focus texture information,
unbiased by misplaced DC energy.

3. TEXTURE CLASSIFICATION WITH THE
DIRECTIONAL FILTER BANK

Multichannel approaches have been of special interest since
there is strong experimental evidence that preattentive tex-
ture discrimination in humans is done by groups of visual
cortex cells tuned to respond to specific orientations and
spectral location (i.e. they work as bandpass filters). The
use of 2-D Gabor bases [14, 15], wavelet transforms [16, 17],
wavelet frames [18] and the 2-D dual-tree complex wavelet
transform (DT-CWT) [19] conform to this framework, and

have been successfully used to segment and classify tex-
tures.

A drawback of multichannel approaches like Gabor func-
tions and wavelet frames (shift invariant wavelet transforms),
is that they are expensive to compute and highly redun-
dant. More recently, good results have been obtained using
the discrete wavelet transform (DWT) and wavelet pack-
ets (WP) [17] which reduced the storage and computa-
tional complexity. However, these maximally decimated
systems are limited in their orientation selectivity, and re-
quire higher complexity at the classification stage in order
to perform competitively. For instance, in [17] the features
have to be extracted by doing a quadtree search of the sub-
band tree. A more recent effort using the 2-D DT-CWT
has again shown the relevance of exploiting directional in-
formation for the texture classification [19]. This newer
representation is still overcomplete and is limited to analy-
sis in six directions. The proposed DFB fits perfectly in the
multichannel framework by providing excellent directional
selectivity while remaining maximally decimated. In fact
we have used it succesfully for texture segmentation [10].

The texture classifier we use is an adaptation of a com-
monly used statistical scheme based on Bayes distance given
by equation (3). Good classification results for a variety of
multichannel decompositions have been reported [18, 17],
often achieving perfect classification rates with the proper
number of features.

The classification experiments were performed on the
30 Brodatz textures [20] used in the experiments of [17].
From each 512× 512 texture class, one hundred 256 × 256
samples where extracted. Each sample was processed with
the structure of Figure 3, setting ωc = π/2. The variance
of each subband was estimated and grouped in a vector

vk` = (v1, ....., v8). (2)

The index k denotes the texture sample k = 1, 2..., 30, and
` = 1, 2...100 corresponds to each sample.

A common assumption in pattern recognition is that the
conditional probability functions of the class features have
a mutivariate Gaussian distribution with mean vectors and
covariance matrices (mk,Ck), for k = 1, 2, . . . , 30. The
classification of a vector of subband variances v is done by
assigning it to the class with minimum distance value

dk(v) = (v −mk)T C−1
k (v −mk)− log(det(Ck)). (3)

Under this assumption, this distance is equivalent to the
minimum error Bayes classifier. Each feature vector was
tested using the leave-one-out method to estimate the dis-
tance parameters.

We obtained 100% classification with the 8 features.
The same experiment was performed using the `1 norm and
a robust variance estimate commonly used in the wavelet
denoising literature [21]. In both cases, again, we achieved
100% correct classification. All the experiments were re-
peated with ωc = π/4, and similar results were obtained.

Hence, we see that for this type of classifier, the DFB
provides and extremely effective feature set for texture dis-
crimination.



4. FEATURE REDUCTION

It is always desirable to achieve the best possible perfor-
mance with the smallest possible number of features in or-
der to keep low computational and storage requirements. In
this section, we study the performance of the DFB classifier
when it is modified so that a partial set of the features is
used.

We repeat the classification experiment described in the
previous section. However, we start with a reduced feature
vector given by vk` = (v1), i.e., the variance of the first
channel. Note that the ordering of the features in equation
(2) is completely arbitrary. Next, we repeat the classifica-
tion experiment with two features (v1 and v2) and continue
adding features until we reach eight features. The results
of this experiment are plotted in Figure 4 together with
results from similar experiments reported in [17]. We see
that starting from one feature the DFB performs way above
than the other schemes with 70.7% correct classification.
With just two features, the correct classification goes up to
98.73%. From here on the classification rate increases until
100% is achieved with just seven features.

It is important to note that we have not rank ordered
the channels according to their energy content, as in [17],
to form the reduced feature sets. An important difference
that we believe contributes to the improved performance is
that we are retaining orientation information in the process
of extracting the energy features.

5. SUMMARY

We have introduced a new multichannel texture classifica-
tion scheme using a flexible and efficient directional decom-
position. We have shown the performance of the feature
set is attractive relative to other schemes reported in liter-
ature in the sense that less computational effort is required
to achieve high classification rates. Our current efforts are
focussed on taking advantage of the directional selectivity
of the system to add rotation invariance to the classification
algorithm.
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Fig. 1. The tree-structured directional filter bank concept
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