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ABSTRACT

The study of parameter estimation under additive and mul-

tiplicative noise terms constitutes an interesting signal pro-

cessing research topic with important consequences in the

development of high-performance digital communication re-

ceivers. In this sense, the paper addresses the analysis of

non-assisted digital synchronizers based on up to fourth-

order moments and it shows how this alternative outper-

forms the conventional second-order techniques. The study

is performed for MSK (Minimum Shift Keying) as a partic-

ular case of the binary CPM modulations. In the paper this

transmission scheme is adopted because it allows a simple

extension to any linear digital modulation and to any multi-

ple access modulation, as well. Simulation results show that

the higher-order techniques exhibit a parameter estimation

variance closer to the so-called Modi�ed Cramer-Rao bound

for moderate to high SNR if compared to second-order tech-

niques.

1. INTRODUCTION

The study of digital synchronization methods has been an

important research area during the last decade ([1] and ref-

erences herein). Non-Data-Aided (NDA) synchronization,

i.e. parameter estimation when the transmitted symbols

are unknown, is particularly interesting. These techniques

have to cope with a multiplicative random term associated

with the unknown transmitted symbols as well as the usual

thermal AWGN.

Most of the NDA methods have been proposed based

on heuristic reasoning and ad hoc designed for each speci�c

modulation format. Recently, the authors ([2],[3],[4] and

references therein) have studied the formulation of anyNDA

synchronization technique for timing and frequency error

estimation based on second order moments under a common

analysis framework, independently of considering single or

multiple access modulations [5].
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The main contributions of these previous works can

be summarized in two points. On the one hand, it has

been shown that any second-order based NDA technique is

lower bounded by the Gaussian Unconditional Cramer-Rao

Bound (UCRBG) despite the non-gaussian nature of the

transmitted symbols. On the other hand, the UCRBG can

be attained by adopting an adequate compression of the

Likelihood function.

In [2] and [3] the authors showed that for low SNRs, the

UCRBG and the exact UCRB are asymptotically equiva-

lent. In other words, it has been shown that the so-called

(optimistic) Modi�ed Cramer-Rao Bound (MCRB) [6] may

not be attained by a NDA method for low SNRs. Mengali

et al. presented in [1] (Section 9.4) an ad hoc fourth order

synchronizer based on intuitive reasoning capable of out-

performing the UCRBG for moderate to high SNRs. This

interesting result motivated the present work. The main

goal of this paper is the development of a new analysis

framework for the design of fourth order NDA timing and

frequency synchronizers trying to unify the NDA synchro-

nization theory under a common perspective. Simulations

have shown that the use of high-order statistics signi�cantly

improves the digital synchronizer performance for moderate

to high SNRs.

The structure of the paper is the following. The signal

model and the problem statement are presented in Section

2. Section 3 describes the compression of the Likelihood

function in order to remove the random term given by the

transmitted symbols, also referred to as nuisance parame-

ters. Section 4 contains the most interesting contribution

of the paper by describing the (so-called) pseudo-symbols

extraction and decorrelation procedure. Simulations results

can be found in Section 5 and, �nally, conclusions are drawn

in Section 6.

2. DISCRETE-TIME SIGNAL MODEL

The complex envelope for the received MSK signal can be

expressed as a linear modulation using the Laurent expan-

sion [2] [1]:

r(t) =

1X
n=�1

cng(t� nT � � ) + w(t) (1)



and its sampled form is:

r(kTs) =

1X
n=�1

cng(kTs � nT � �) + w(kTs) (2)

where fcng are the MSK transmitted pseudo-symbols, g(t)

the MSK pulse shape, T is the symbol period, Ts is the

sampling period, � is the symbol timing error of the received

signal and w(t) is the complex additive white Gaussian noise

(AWGN) term with zero mean and variance �
2

w. Perfect

phase and frequency knowledge is assumed. fcng and g(t)

have the following expressions [1]:
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e
j
�
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g(t) = sin( �t
2T
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where the initial phase � can take the values f0; �
2
; �;

3�

2
g

and faig are the binary MSK symbols. In order to simplify

the analysis, the pulse g(t) is assumed to pass through the

anti-aliasing �lter of bandwidth 1=T without distortion.

Considering a block (observation window) ofM samples

and following the approach in [2], we can write equation (2)

in vectorial notation as:

ri(�) = A(�) � xi +wi (4)

where

xi =
h
ci : : : ci+K�1

i
T

an =
h
g(�nT � �) : : :

: : : g ((M � 1)Ts � nT � �)
i
T

A(�) =
h
a0 : : : aK�1

i
T

wi =
h
w(iT ) : : : w (iT + (M � 1)Ts)

i
T

(5)

and i is the block index, which will be omitted in subsequent

sections.

3. COMPRESSED ML FORMULATION

The ML synchronizer selects the receiver timing �
0 that

minimizes the following log-ML cost function [2]:

C(�; � 0;x) = kr(�)�A(�
0

)xk2 (6)

This function also depends on the vector of transmitted

pseudo-symbols x, which is unknown at the receiver unless

Data-Aided (DA) schemes are applied. Decision-Directed

(DD) schemes replace x with the symbols decided at the

decoder output but these decisions are not yet reliable in

presence of timing errors. In NDA synchronizers the data

nuisance can be removed in two di�erent ways [2]:

1) UML synchronizers: they consider that vector x is ran-

dom and compute the expectation of the (exponential)ML

function with respect to x.

2) Compressed ML synchronizers: they compress the ML

function introducing into (6) one estimation of vector x.

We will apply the second approach. The compressed

log-ML cost function becomes then:

C(�; � 0) = kr(�)�A(�
0

) � x̂(r(� ); � 0)k2 (7)

If we consider that the timing error " = � � �
0 is small

(tracking condition), we can design x̂(r(�); � 0) to be optimal

(under the criterion given in section 4) around �
0 = � so

that we can assume that x̂(r(� ); � 0 ' � ) is independent

of the search parameter � 0. Thus only the cross terms of

the square in (7) depend on �
0 and (7) can be rewritten as

follows:

C(�; � 0) = F(�)� 2 � Re(r(�)HA(�
0

) � x̂(r(� ); � 0 ' �)) (8)

where F(�) includes all those terms which only depend on

� .

The derivative of (8) with respect to � 0 has the following

expression no matter what speci�c estimator x̂(r(�); � 0) is

used:

rC(�; � 0) = �2 �Re(r(� )HD(�
0

)x̂(r(� ); �
0

)) (9)

where

D(�
0

) =
@

@� 0
A(�

0

) (10)

This gradient can be used to construct the following timing

error discriminator:

�̂ = � �Re
�
r(�)HD(� 0) � x̂(r(� ); � 0)

�
(11)

where � is a constant selected to ensure the discriminator S-

curve (expected value of �̂) has unitary slope around � = �
0

(no bias). That is,

@Er ("̂)

@�

����
�=� p

= 1 (12)

The S-curves of the considered discriminators are plotted

in section 5 (Figure 2).

4. ESTIMATION OF THE PSEUDO-SYMBOLS

The best linear estimator under a minimum mean-square

error (MMSE) criterion was used in [2] [5] to derive the

MCV-CML discriminator that attains the UCRBG (Gaus-

sian Unconditional Cramer Rao Bound) in the whole Eb/No

range. Its expression is:

x̂(r(� ); � 0) = C(� 0) � r(� )

C(� 0) = argmin
C(� p)Ex;r(kx�C(�

0) � r(� )k2)

C(� 0) = A(� 0)H(A(� 0) �A(� 0)H + �
2

wI)
�1

(13)

It is well-known that this estimation would only be optimal

if x was Gaussian. In general, the minimum mean-square

error estimator is x̂ = E(x=r) [7]. This estimator uses all

the statistics of the data x whereas in (13) only the second

order statistics are considered.



The fourth-order discriminator proposed by Mengali et

al. ([1], section 9.4) showed that high-order discrimina-

tors variance could be below the UCRBG and close to the

Cramer Rao Bound (CRB) [4]. This result prompted us to

incorporate in (11) a third-order MMSE estimator of the

pseudo-symbols x̂ (MCV3 ) with the aim of devising the

optimal fourth-order discriminator that followed the equa-

tion (11). This discriminator will be named MCV3-CML

hereafter.

The general expression of a third-order estimator can

be stated as follows :

x̂ = K0 +K1 � r+K2 �R2 +K3 �R3 (14)

In the last equation, dependencies with respect to � and �
0

have been omitted and non-linear terms have been intro-

duced with the following notation:

R2 = r
�N

r

R3 = r
N
R2 = r

N
r
�N

r

(15)

where
N

stands for the Kronecker product of matrices.

Matrices K0, K1, K2 and K3 in (14) must be selected

to minimize the mean-square error, that is:

fK0;K1;K2;K3g = argmin K0;K1;K2;K3
Ex;r

�
kx� x̂k2

�
(16)

It can be shown that the solution to (16) are these two

equation systems:

K0 + K2 � �R2 = 0

K0 � �R
H

2 + K2 � �R4;2 = 0
(17)

K1 � �R2;1 + K3 � �R4;1 = �Rxr

K1 � �R4;3 + K3 � �R6;3 = �RxR3

(18)

in which the following notation has been used:

Rn =

(
r
N
Rn�1 if n is odd

r
�N

Rn�1 if n is even

�Rn = E(Rn)

Rn;m = Rn�mR
H

m (n > m > 0)

�Rn;m = E(Rn;m)

�Rxr = E(xrH)

�RxR3
= E(xRH

3 )

(19)

where by de�nition R1 � r

Both equation systems, (17) and (18), are underdeter-

mined, i.e., have in�nite solutions, because matrices R4;m

and R6;m have repeated elements. For example, the next

three elements of matrices R4;m are in fact the same mo-

ment:

E(ri �r
�

j �rk �r
�

l ) = E(rk �r
�

l �ri �r
�

j ) = E(ri �r
�

l �rk �r
�

j ) (20)

The minimum norm solution can be deduced by using the

singular values decomposition (SVD) [7]. Notice also that
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Figure 1: Mean-square error of the estimated symbols for

MCV and MCV3

K0 = 0 and K2 = 0 are the minimum norm solutions for

K0 and K2 in (17).

Matrices Rn;m, Rxr and RxR3
are dependent on the

modulation and can be computed easily when data windows

are not very large. In Figure 1 MCV and MCV3 mean-

square error is compared for a window of size M=4. Their

performance is not good because of the short window, but

the improvement of the third order estimator is appreciable,

mainly as Eb/No increases.

5. SIMULATION RESULTS

In this section the fourth order closed-loop timing discrim-

inator presented in this paper (MVC3-CML) is simulated

and compared with the DA (Data-Aided) scheme and the

MCV-CML discriminator in terms of tracking variance for

the AWGN channel and the MSK modulation described in

Section 2.

The discriminator has been designed for a small window

size (M=4) and a sampling rate equal to 2=T . Despite the

small window size, good results are achieved for medium to

high SNRs as depicted in Figure 3.

Several important conclusions can be drawn from Fig-

ure 3:

1) For medium to high SNRs, the MCV3-CML variance is

lower than that one of MVC-CML because the third-order

term in (14) improves the symbols estimation without ap-

preciable noise enhancement;

2) It has been veri�ed that the fourth-order term in (11) re-

mains signi�cant as �2w increases because linear estimators

can not comply with the second equation in (18);

3) For low SNRs, MCV3-CML variance tends toward that

one of the MCV-CML quadratic solution and even becomes

slightly higher at very low SNRs (� 0:77dB). This seems
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Figure 2: S-curve for DA, MCV-CML and MCV3-CML. In

all the cases the sampling rate is 2=T .

reasonable because, under the assumption that the sym-

bols are unknown, the ML estimator becomes asymptoti-

cally quadratic at low SNR [2];

4) Both MCV3-CML and MCV-CML variance grows pro-

portionally to �2w at high SNRs and to �4w at low SNRs.

In Figure 2 the S-curves of the three discriminators are

plotted. It can be easily proved that the slope of the S-curve

for the MCV-CML and MCV3-CML algorithms depends

on the noise variance �
2

w and hence the parameter � in

(11). Figure 2 also shows that the MCV3-CML acquisition

behaviour is a little worse.

6. CONCLUSIONS

In this paper a new general approach for the design of fourth

order NDA timing synchronizers has been presented. Notice

that this approach can also be applied to frequency estima-

tion and to any other parameter embedded in a communi-

cation signal. The methodology proposed here is attractive

because the discriminator structure does not depend on the

modulation scheme. The only term dependent on the mod-

ulation is the estimator of the (pseudo-)symbols x̂ that can

be designed separately.

The core of the paper is devoted to improving the decor-

relation of the (pseudo-)symbols by using a statistical third

order estimator. This estimator gains bene�t from the

fourth and sixth order statistics of the received data which

are function of the noise variance and the symbols distri-

bution. Simulations show that the fourth order discrimina-

tor behaviour is better at high SNRs and converges to the

quadratic discriminator at low SNRs.
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Figure 3: Normalized timing variance (�2�=T
2) for the

studied discriminators: DA, MCV-CML, MCV3-CML and
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