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ABSTRACT sphere decoding (SD) algorithm of [5], reduced complexity (rel-
ative to exhaustive search) and near-optimum (in the maximum
likelihood (ML) sense) performance were purported in [4] based
on simulations.

In this paper, we present a unified approach to constructing
CR codes. We compare real with complex CR precoders in
terms of performance and complexity. We also apply SD to re-
duce the ML decoding complexity. In addition to diversity and

We present a unified approach to constructing linear space-time,
(ST) block codes based on unitary constellation-rotating (ST-CR)
precoders. We show that with an arbitrary numbefbftransmit

and N-receive antennas, ST-CR precoders achieve 1 symbol/secs-l-_
rate and enjoy maximum diversity gaild N over both quasi-static
and fast fading channels. We also compare real with complex ro-
tations to delineate the tradeoff between performance and Com-q4ing gains, the maximum mutual information criterion of [7]
E(l)ed)?r% ggiargssegsovr:/ezlil Z;rr}ﬁlflgrenia(tjiizot?leerérgt?cS;gggc?;\/i;stlﬁé ?)?g is employed to evaluate the performance of ST-CR precoders and
posed ST-CR scheme. Compared with ST orthogonally designedcompare them with the ST-OD codes of 1, 12].

(ST-OD) codes, ST-CR precoding provides larger coding gain and

maximum mutual information. Though ST-OD codes afford sim- 2. ST-CR PRECODING

pler decoding, the tradeoff between performance and rate versus . . . . . .
complexity favors the ST-CR codes whe, N or the spectral We consider a wireless link with/ transmit andV receive anten-

efficiency of the system increase. nas over Rayleigh fading channels. The data streafrom the
constellation sef is first parsed intdp-dimensional signal vec-
torss, and then linearly precoded by7a x Ty rotation matrix
1. INTRODUCTION @. The precoded bloc®s is fed to a ST encoder. The ST en-

. ) ) ) . ) . coder map®stoanM x Ty signal matrixS. The(m, i)th entry
Q onsidered as a major effective technigue in combating fading -
a

p” it di . h h b idel died>m = umiBTs, is transmitted through thenth antenna at the
effects, transmit diversity schemes have been widely studied ;, time interval, wherex,,.; is a weighting coefficien? denotes
nd applied in practice (see [1,12] and references therein). In par-

icul it di itV based : di the ith row of ®, and T is chosen to be equal t/. Defining
ticular, transmit diversity based on space-time coding acidss [Ulm: := wm: andD, := diag{87s, ...,0%,s}, we can write

antennas quds to significant !mprovement in performance whengaar « A/ transmitted sighal matri§ as
appropriate signal processing is employed at the receiver.

ST trellis codes enjoy maximum diversity and large coding S = UD.. (1)
gains but decoding complexity grows exponentiallylihand in
the transmission rate [13]. The latter can be prohibitive when using The signak,,; received by antenna at theith time interval after
large size constellations. On the other hand, ST-OD block codesreceive-filtering and symbol rate sampling is given by:
can afford a low complexity linear decoding scheme [1,12]. But

for complex constellations and/ > 2, ST-OD codes can only o - b o7 _ o
achieve rate of /2 symbol/sec except for the sporadic codes with Tni = 2:1 nmUmibi S + Wni, @
=

rate 3/4 symbol/sec that are known so far only fof = 3,4.
Moreover, the complexity of encoding and decoding grows con- whereh,,,,, are fading coefficients (between theth transmit and
siderably ford/ > 8. nth receive antenna), which are assumed to be: i.i.d. zero mean
A new class of ST block codes based on constellation-rotating complex Gaussian random variables with variance 0.5 per dimen-
precoders was introduced recently in [6, 14]. It turns out that sjon; constant during th&, symbol interval quasi-static fadiny
for any M and N, there exist ST-CR precoders that can achieve and available to the receiver. Moreover,; are assumed to be
maximum diversity gaind/ N and transmission rate af sym- independent samples of a zero mean complex Gaussian random
bol/sec [14]. The complex rotations of [14] offer the potential to variable with variance® /2 per dimension. LeK be theN x M
improve coding gain relative to the real rotations considered in [6]. received signal matrix witlin, i)th entry [X]ni = xni; Ho the
Unitary CR precoders are available in closed form with= 2 N x M channel matrix WithHo | m = hnm; andW the N x M
transmit antennas and for BPSK constellations [6, 14]. However, noise matrix with'W],.; = w,:. Applying these notational con-
finding maximum diversity CR precoders with large coding gains ventions, under the quasi-static fading assumption, we can write
for M > 2 requires computer search which can be feasible only (2) in matrix form as follows:
for small size constellations [14]. Based on the algebraic codes L _
of [3], ST-CR codes were independently presented in [4] only for X=H,S+W =H,UD; + W. 3)

real precoders and for certain specific choices\bf Using the . . o
P P 9 Matrix U was chosen to be identity in [6, 14]. We restfi¢tto

*Supported by the NSF Wireless Initiative grant no. 99-79443 be a unitary matrix in this paper. SinEE, is a complex Gaussian




maitrix with i.i.d. entries having zero mean and equal variance, the Using the ve¢-) operator to put the columns &* one after the

distribution of H, U is the same as the distribution Bf,. Thus, other, we can rewrite Eq. (6) as

the average probability error rate is not affected by the choices of ~

U. However, U could be used to alleviate high power amplifier diaghl)

non-linearity problems by selecting its rows to have constant mod- % . xT) = . ) w7

ulus entries (note that with; only, (3) corresponds to a TDMA- X i= vec(X") . :_T s =+ vec( )

like transmission with each antenna pausing¥6r— 1 out of M diagthy, )

time slots). = HOs+w, (7)
3. DESIGN CRITERIA whereh] denotes thej-th row of H corresponding to thg-th

receiver, andd is an M N x M block diagonal matrix. The re-

Under quasi-static fading, our approach is to minimize the pair- ¢€ived vector in (7) is equivalent to a received block frafun-
wise error probability (PEP) in the ML detection of the codeword €oded transmit-antennas 14V receive-antennas with a channel

s (detected erroneously & according to the following design ~ Matrix H that is almost always full rank. One can apply either
criteria (see also [13, 14]): successive interference cancellation (SIC) of [8, 10], or the sphere

decoder (SD) [5] which has polynomial complexity i regard-

o Diversity criterion: Maximize the minimum rank of D, — less of the constellation size. Thanks to the special structuie of

D; over all distinct pairs ofs, 5} with D; := d""}g{ngSv =2 in(7), applying a maximum ratio combiner at the receiver yields:

07,5} (L is called the diversity gain). The maximum diversity

gain in our setting will turn out to b&/ N . x = H"%
o Caoding criterion: Maximize the minimum of thé-th root of the N N

sum of determinants of all x [ principal cofactors of D, — - diag(z ot |%, .. Z onat|2)®s + 1

D;)(D, — D;)" taken over all the distinct paifs, s}. e e

Consider® to be anM x M rotation matrix with entries from :=D(h)®s + 7,

R (real) orC (complex) satisfying®* ® = I,,, whereH denotes
conjugate transpose of a matrix. Given a constellafidhat en- wheren := H"w is anM x 1 Gaussian noise of uncorrelated
tries ofs are drawn from, we define the sét:= {@s,s € (M} entries of possiblly different variances. The latter can be pre-
to be a rotated version ¢ by ®. Special rotations were de-  whitened to obtain
signed in [9] so that: given an/-dimensional constellatio®, if L L
avector®s € Q has its componen®Ts, . .., 07%;s all different y=D"2(h)x=D?(h)®s + w, (8)
from those of any other vector i@, then according to the diversity
criterion, the minimum rank 0P, — Dj; is equal toM. Hence, with w being anM x 1 AWGN vector. When® is real ands is
by selecting special CR precode®s we can achieve maximum  complex, we use the SD to decode separately real and imaginary
transmit diversityM/ . parts ofy [5]. When both® ands is complex, one should write

It was proved in [14] that for any finite constellation there an M -dimensional complex vectgy as a2 -dimensional real
exists at least one linear unitary precoder achieving the maxi- vector. The decoding complexity will increase because we need to

mum transmit diversityl/. Based on this fact, the matr@ that apply the SD for &M -dimensional vector.
achieves maximum diversity and coding gains is found by maxi-
mizing the minimum product distance defined as follows: 5. ST-CR PRECODER PROPERTIES
Dit.min i= min H |0£(S —3)]. 4) In this section, we assess the perfo_rmance of ST-CR precoding and
s#s L compare it with competing alternatives.

As we only conside® to be a rotation matrix, the resulting opti- 51, performance Evaluation
mization problem can be formulated as follows [c.f. (4)]:
We first state the optimality features of our ST-CR precoders:

M
@op: = arg maxmin H 6% (s — 3). (5) Proposition 1 Given a CR precode® with Dy min > 0, the
F @eM_y S#% o " ST-CR code given by (1) achieves full transmit diversity gain; its

coding gain is given by

The design of the rotatio® was carried out in [6,14] by using 2/M
computer search on parsimonio@s parameterizations for small CGu = (Dmmin)” ™. 9)
values of M and small size constellations. But & and/or the . ) . o
size of constellations grows large, computer search is not feasible.The proof is straightforward sincBs,min > 0 implies that the
In [3, 9], matrix® was constructed by applying algebraic number Minimum rank ofD, — D; is M over all distinct pairgs, 5 }.

theory tools for some specific values bf. Finding the optimal _In addition to Proposition 1, ST-CR has the following attrac-
O, in (5) for any givenM remains an interesting problem. tive properties:
1. ST-CR precoders are delay-optimal; i.e., the sigeof
4. ST-CR DECODING the ST encoded blocks is equal #d, and transmission
achieves a rate of 1 symbol/sec. For example, whes: 5
The received signal (3) can be written as and complex constellations are used, ST-OD codes require

~ ~ ~ To > 16, while for ST-CR codes]o = 5. In general,
X=H,UD,+W :=HD,+W ST-CR has smaller encoding delays than ST-OD.



2. Since by construction, ové, = M periods, thel/ trans- M 2 3 4
mitted symbols are all different, the ST-CR code (1) is also| __ CGm, £ (real) 0.895,48 || 0.547,432 | 0.316, 2560
suitable for fast fading (i.e., it is “smart and greedy” as | CGum, £ (complex) 1,48 0.620,280 | 0.5,3136
codes suitable for fast fading were termed in [13]). Gain [dB] 0.484 0.544 1.99

Remark:When® is complex,Dr,min iS given by (4) and hence ) )
the coding gain (9) increases because we have more dimensions ~ Table 1: Coding gains of ST-CR codes faf = 2, 3, 4.
to optimize over the rotation parameters. Another parameter that
should be taken into account is theoduct kissing numbes: 5
which is the number of pairés, s} in the constellation with dis-
tance equal taDy min. Our experience is that one should use
complex rotations whei increases, so that the increase in com-
plexity (from M to 2M dimensions) is worth the performance en-
hancement. This point will be validated by Example 2 in Section
6.

Comparisons of ST-OD and ST-CR (M=3,4 and 2 Bits/Sec)
T T

5.2. Mutual Information Comparisons

Symbol Error Rate (SER)

In this subsection, we will prove that ST-CR precoders can achieve
higher mutual information than ST-OD. First, we state without
proof the following lemma.

Lemma 1. Consider two random variable&¥,Y > 0 (a.s.) with E?i?difgg
X =U5"+ f(3) andY = V7" + g(7), where f(7), g(7) Ll inrer
are two polynomials degree m and < n respectively and both s 10 15 20
have with nonnegative random coefficients. MoreoUel/, W , SR
are random variables> 0 (as.),7 > 0, m —n > 0, and Figure 1: One receive antennd (= 1)
E(WV + S, gi), and |E(log U)| are bounded, wherg;(i =
0,.. — 1) denotes théth coefficient of; (7). It then holds that
E(log X) > F(log Y) for sufficiently large values of. 6. SIMULATED PERFORMANCE

From (7), the channel capacity is given by [7, 11],

_ When simulating ST-CR codes, we normalized the average energy

C' = max Ellogdet(Iy + lHRSHH)], (10) per symbol so thaf;, = 1. The channel matriH, is modeled

trR.=M M as in (3) and remains unchanged over the ST code length, before
changing randomly; the AWGN has variane® = 1/(2SNR)
per real dimension. Comparisons of ST-CR with the ST-OD block
codes of [12] (denoted b§D,,) are carried out folM/ = 3,4,
at the same spectral efficiency. We used only real rotations with
the best values of the minimum product distance found in [3] for
M N 9 M = 2,3,4. For complex rotations we used the ones in [9, 14],
Cer= Ellog([ L= (1 +5 2521 [ham[7))]- except forM = 3, where we used the one obtained by computer
search since it has a better minimum product distance than that
found in [14] (see Table 1).
Example 1: Table 1 lists the coding gains of ST-CR codes (1)
over normalized constellations faf = 2, 3, 4, with real rotations
taken from [3], and complex rotations taken from [9, 14]. It also
gives the product kissing number,; computed ove(4-QAM)™M

where# is the average SNR per receive antenna Badis the
covariance matrix of.

By using the approach of [11], we obtain from (10) the maxi-
mum mutual informatiorcr of our ST-CR precoders:

For ST-OD codes withi/ € [5, 8] and complex constellations,
only ratel/2 symbol/sec ST block codes are known so far [12].
The maximum mutual information achieved with ST-OD codes is
given for these cases as:

1 2
Coo= 3 Ellog(1 + Em 1 Zn 1 [ )] Example 2: Figure 1 shows the performance of the ST-CR codes
According to Lemma 1, it can be seen thiar > Copfor allthese Wit complex® for M = 3, 4 with 4-QAM modulation, andV =
rate1/2 symbol/sec codes. 1 receive gntenna. It also shoyvs the performance of the dmies
In particular, forM = 3 and rate3/4 symbolisec ST-OD andop, with 16-QAM modulation. At2 bits/sec, and at the same
codes, the maxi;num mutual information is given by: diversity gain (W = 3) ST-CR precoders exhibit a coding gain of

more tharg dB overQDs; for M = 4, the ST-CR precoders show
3 N a gain of more tha dB over0Dy.

Z Z Bvn|?) (11) Example 3: Figure 2 shows the performance of ST-CR @bd,

— codes forM = 3, 4 at spectral efficiency of bits/sec withV = 2.
We notice that the improvement over the ST-OD codes is enhanced
We can draw the same conclusion thak > Copfor large enough when the spectral efficiency increases, or, when the number of re-
5 by applying Lemma 1. The upper bound of the average PEP is ceivers increases, which confirms our analytical results obtained
closely related to the channel capacity when the channel input ison the maximum mutual information computed for both codes.
Gaussian [7]. Since := @s is more Gaussian thanin our case, For example, at spectral efficiency ¢fbits/sec andV = 2 re-
symbol error rate (SER) performance of Figure 2 and the max- ceive antennas, ST-CR real codes gain more thdB over0D,,
imum mutual information curves of Figure 3 validate this upper for M = 3,4. We notice also that the ST-CR complex codes have
bound approximation which becomes more accurate as the size of slight performance gain over real ones, that is also confirmed by
© increases. Table 1. Also, it can be seen that the performance gain over real

Cop= § Ellog(1 +

w|Q|

m=1n
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Figure 2: Two receive antennad’ (= 2)
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Figure 3: Max. mutual information of ST-CR and ST-OD

rotations increases dd increases.

Example 4: Figure 3 depicts the maximum mutual information

for both ST-CR and ST-OD whef/ =3 andN =1,2,4,6. The

capacity loss of ST-OD is significant at high SNR compared with
ST-CR. WhenN increases, the capacity loss becomes larger at
high SNR. Also, whenV = 2, at spectral efficiency of 4 bits/sec,

ST-CR has aboud dB gain over ST-OD at SNR 20 dB. This
gain matches quite well with the performance gaim dB in SER

performance in Figure 2. Also we notice that the maximum mutua

tigating low-complexity decoders including the SIC-ILS algorithm
of [10] that offers an attractive alternative particularly when the
channel matrix is unknown.
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information achieved by ST-CR codes is still far from the channel

capacity especially whelY is large at high SNR.

7. CONCLUSIONS

We presented in this paper a unified approach for exploiting the
transmit diversity in a multi-antenna environment using real and

(12]

(13]

complex rotating precoders. We have shown that one can transmit

at 1 symbol/sec with maximum transmit diversity and large cod-

ing gain by applying unitary constellation-rotating precoders that
can be decoded with moderate complexity at the receiver. We havel14]
verified that complex rotations increase coding gain and complex-

ity when SD is applied. It is worth using complex rotations when

M and/or N are large. Finally, we have established that ST-CR
codes can achieve better performance and larger maximum mutual
information compared with ST-OD codes. We are currently inves-
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