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ABSTRACT

We present a unified approach to constructing linear space-time
(ST) block codes based on unitary constellation-rotating (ST-CR)
precoders. We show that with an arbitrary number ofM -transmit
andN -receive antennas, ST-CR precoders achieve 1 symbol/sec
rate and enjoy maximum diversity gainMN over both quasi-static
and fast fading channels. We also compare real with complex ro-
tations to delineate the tradeoff between performance and com-
plexity. Based on a simplified decoder, we study diversity and
coding gains as well as information-theoretic aspects of the pro-
posed ST-CR scheme. Compared with ST orthogonally designed
(ST-OD) codes, ST-CR precoding provides larger coding gain and
maximum mutual information. Though ST-OD codes afford sim-
pler decoding, the tradeoff between performance and rate versus
complexity favors the ST-CR codes whenM , N or the spectral
efficiency of the system increase.

1. INTRODUCTION

C
onsidered as a major effective technique in combating fading
effects, transmit diversity schemes have been widely studied

and applied in practice (see [1,12] and references therein). In par-
ticular, transmit diversity based on space-time coding acrossM
antennas leads to significant improvement in performance when
appropriate signal processing is employed at the receiver.

ST trellis codes enjoy maximum diversity and large coding
gains but decoding complexity grows exponentially inM and in
the transmission rate [13]. The latter can be prohibitive when using
large size constellations. On the other hand, ST-OD block codes
can afford a low complexity linear decoding scheme [1, 12]. But
for complex constellations andM > 2, ST-OD codes can only
achieve rate of1=2 symbol/sec except for the sporadic codes with
rate3=4 symbol/sec that are known so far only forM = 3; 4.
Moreover, the complexity of encoding and decoding grows con-
siderably forM > 8.

A new class of ST block codes based on constellation-rotating
precoders was introduced recently in [6, 14]. It turns out that
for anyM andN , there exist ST-CR precoders that can achieve
maximum diversity gainMN and transmission rate of1 sym-
bol/sec [14]. The complex rotations of [14] offer the potential to
improve coding gain relative to the real rotations considered in [6].
Unitary CR precoders are available in closed form withM = 2
transmit antennas and for BPSK constellations [6, 14]. However,
finding maximum diversity CR precoders with large coding gains
for M > 2 requires computer search which can be feasible only
for small size constellations [14]. Based on the algebraic codes
of [3], ST-CR codes were independently presented in [4] only for
real precoders and for certain specific choices ofM . Using the
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sphere decoding (SD) algorithm of [5], reduced complexity (rel-
ative to exhaustive search) and near-optimum (in the maximum
likelihood (ML) sense) performance were purported in [4] based
on simulations.

In this paper, we present a unified approach to constructing
ST-CR codes. We compare real with complex CR precoders in
terms of performance and complexity. We also apply SD to re-
duce the ML decoding complexity. In addition to diversity and
coding gains, the maximum mutual information criterion of [7]
is employed to evaluate the performance of ST-CR precoders and
compare them with the ST-OD codes of [1,12].

2. ST-CR PRECODING

We consider a wireless link withM transmit andN receive anten-
nas over Rayleigh fading channels. The data streamsi from the
constellation setC is first parsed intoT0-dimensional signal vec-
tors s, and then linearly precoded by aT0 � T0 rotation matrix
�. The precoded block�s is fed to a ST encoder. The ST en-
coder maps�s to anM � T0 signal matrix�S. The(m; i)th entry
�smi := umi�

T
i s, is transmitted through themth antenna at the

ith time interval, whereumi is a weighting coefficient,�Ti denotes
the ith row of�, andT0 is chosen to be equal toM . Defining
[U]mi := umi andDs := diagf�T1 s; : : : ; �

T
Msg, we can write

theM �M transmitted signal matrix�S as

�S = UDs: (1)

The signalxni received by antennan at theith time interval after
receive-filtering and symbol rate sampling is given by:

xni =

MX
m=1

hnmumi�
T
i s+ wni; (2)

wherehnm are fading coefficients (between themth transmit and
nth receive antenna), which are assumed to be: i.i.d. zero mean
complex Gaussian random variables with variance 0.5 per dimen-
sion; constant during theT0 symbol interval (quasi-static fading);
and available to the receiver. Moreover,wni are assumed to be
independent samples of a zero mean complex Gaussian random
variable with variance�2=2 per dimension. LetX be theN �M
received signal matrix with(n; i)th entry [X]ni = xni; Ho the
N �M channel matrix with[Ho]nm = hnm; and �W theN �M
noise matrix with[ �W]ni = wni. Applying these notational con-
ventions, under the quasi-static fading assumption, we can write
(2) in matrix form as follows:

X = Ho
�S+ �W = HoUDs + �W: (3)

MatrixUwas chosen to be identity in [6,14]. We restrictU to
be a unitary matrix in this paper. SinceHo is a complex Gaussian



matrix with i.i.d. entries having zero mean and equal variance, the
distribution ofHoU is the same as the distribution ofHo. Thus,
the average probability error rate is not affected by the choices of
U. However,U could be used to alleviate high power amplifier
non-linearity problems by selecting its rows to have constant mod-
ulus entries (note that withDs only, (3) corresponds to a TDMA-
like transmission with each antenna pausing forM � 1 out ofM
time slots).

3. DESIGN CRITERIA

Under quasi-static fading, our approach is to minimize the pair-
wise error probability (PEP) in the ML detection of the codeword
s (detected erroneously as~s) according to the following design
criteria (see also [13,14]):

� Diversity criterion: Maximize the minimum rankl of Ds �
D~s over all distinct pairs offs;~sg withD~s := diagf�T1 ~s; : : : ;
�TM~sg (l is called the diversity gain). The maximum diversity
gain in our setting will turn out to beMN .

� Coding criterion:Maximize the minimum of thel-th root of the
sum of determinants of alll � l principal cofactors of(Ds �
D~s)(Ds �D~s)

H taken over all the distinct pairsfs;~sg.

Consider� to be anM�M rotation matrix with entries from
R (real) orC (complex) satisfying�H� = IM , whereH denotes
conjugate transpose of a matrix. Given a constellationC that en-
tries ofs are drawn from, we define the setQ := f�s; s 2 CMg
to be a rotated version ofCM by �. Special rotations were de-
signed in [9] so that: given anM -dimensional constellationQ, if
a vector�s 2 Q has its components�T1 s; : : : ; �

T
Ms all different

from those of any other vector inQ, then according to the diversity
criterion, the minimum rank ofDs �D~s is equal toM . Hence,
by selecting special CR precoders�, we can achieve maximum
transmit diversityM .

It was proved in [14] that for any finite constellation there
exists at least one linear unitary precoder achieving the maxi-
mum transmit diversityM . Based on this fact, the matrix� that
achieves maximum diversity and coding gains is found by maxi-
mizing the minimum product distance defined as follows:

DM;min := min
s6=~s

MY
m=1

j�Tm(s� ~s)j: (4)

As we only consider� to be a rotation matrix, the resulting opti-
mization problem can be formulated as follows [c.f. (4)]:

�opt = argmax
��

H
=I

min
s6=~s

MY
m=1

j�Tm(s� ~s)j: (5)

The design of the rotation�was carried out in [6,14] by using
computer search on parsimonious� parameterizations for small
values ofM and small size constellations. But asM and/or the
size of constellations grows large, computer search is not feasible.
In [3,9], matrix� was constructed by applying algebraic number
theory tools for some specific values ofM . Finding the optimal
�opt in (5) for any givenM remains an interesting problem.

4. ST-CR DECODING

The received signal (3) can be written as

X = HoUDs + �W := �HDs + �W

Using the vec(�) operator to put the columns ofXT one after the
other, we can rewrite Eq. (6) as

�x := vec(XT ) =

2
64

diag(�hT1 )
...

diag(�hTm)

3
75�s+ vec( �WT )

:= H�s+ �w; (7)

where �hTj denotes thej-th row of �H corresponding to thej-th
receiver, andH is anMN �M block diagonal matrix. The re-
ceived vector in (7) is equivalent to a received block fromM un-
coded transmit-antennas toMN receive-antennas with a channel
matrixH that is almost always full rank. One can apply either
successive interference cancellation (SIC) of [8, 10], or the sphere
decoder (SD) [5] which has polynomial complexity inM regard-
less of the constellation size. Thanks to the special structure ofH
in (7), applying a maximum ratio combiner at the receiver yields:

x = HH�x

= diag(
NX
n=1

j�hn1j
2; : : : ;

NX
n=1

j�hnM j2)�s+ �

:= D(�h)�s+ �;

where� := HH �w is anM � 1 Gaussian noise of uncorrelated
entries of possiblly different variances. The latter can be pre-
whitened to obtain

y = D�
1

2 (�h)x = D
1

2 (�h)�s+w; (8)

with w being anM � 1 AWGN vector. When� is real ands is
complex, we use the SD to decode separately real and imaginary
parts ofy [5]. When both� ands is complex, one should write
anM -dimensional complex vectory as a2M -dimensional real
vector. The decoding complexity will increase because we need to
apply the SD for a2M -dimensional vector.

5. ST-CR PRECODER PROPERTIES

In this section, we assess the performance of ST-CR precoding and
compare it with competing alternatives.

5.1. Performance Evaluation

We first state the optimality features of our ST-CR precoders:

Proposition 1 Given a CR precoder� with DM;min > 0, the
ST-CR code given by (1) achieves full transmit diversity gain; its
coding gain is given by

CGM := (DM;min)
2=M : (9)

The proof is straightforward sinceDM;min > 0 implies that the
minimum rank ofDs �D~s isM over all distinct pairsfs;~sg.

In addition to Proposition 1, ST-CR has the following attrac-
tive properties:

1. ST-CR precoders are delay-optimal; i.e., the sizeT0 of
the ST encoded blocks is equal toM , and transmission
achieves a rate of 1 symbol/sec. For example, whenM = 5
and complex constellations are used, ST-OD codes require
T0 � 16, while for ST-CR codes,T0 = 5. In general,
ST-CR has smaller encoding delays than ST-OD.



2. Since by construction, overT0 = M periods, theM trans-
mitted symbols are all different, the ST-CR code (1) is also
suitable for fast fading (i.e., it is “smart and greedy” as
codes suitable for fast fading were termed in [13]).

Remark:When� is complex,DM;min is given by (4) and hence
the coding gain (9) increases because we have more dimensions
to optimize over the rotation parameters. Another parameter that
should be taken into account is theproduct kissing number�M
which is the number of pairsfs;~sg in the constellation with dis-
tance equal toDM;min. Our experience is that one should use
complex rotations whenM increases, so that the increase in com-
plexity (fromM to 2M dimensions) is worth the performance en-
hancement. This point will be validated by Example 2 in Section
6.

5.2. Mutual Information Comparisons

In this subsection, we will prove that ST-CR precoders can achieve
higher mutual information than ST-OD. First, we state without
proof the following lemma.
Lemma 1. Consider two random variablesX;Y > 0 (a.s.) with
X = U�
m + f(�
) and Y = V �
n + g(�
), wheref(�
); g(�
)
are two polynomials degree< m and< n respectively and both
have with nonnegative random coefficients. Moreover,U; V;W
are random variables> 0 (a.s.), �
 > 0, m � n > 0, and
E(V +

Pn�1
i=0 gi), and jE(logU)j are bounded, wheregi(i =

0; : : : ; n� 1) denotes theith coefficient ofg(�
). It then holds that
E(logX) > E(log Y ) for sufficiently large values of�
.

From (7), the channel capacity is given by [7,11],

C = max
trRs=M

E[log det(IN +
�


M
HRsH

H)]; (10)

where�
 is the average SNR per receive antenna andRs is the
covariance matrix ofs.

By using the approach of [11], we obtain from (10) the maxi-
mum mutual informationCCR of our ST-CR precoders:

CCR = E[log(
QM

m=1
(1 + �


PN
n=1 jhnmj

2))]:

For ST-OD codes withM 2 [5; 8] and complex constellations,
only rate1=2 symbol/sec ST block codes are known so far [12].
The maximum mutual information achieved with ST-OD codes is
given for these cases as:

COD=
1

2
E[log(1 + �


M

PM
m=1

PN
n=1 jhnmj

2)]:

According to Lemma 1, it can be seen thatCCR> CODfor all these
rate1=2 symbol/sec codes.

In particular, forM = 3 and rate3=4 symbol/sec ST-OD
codes, the maximum mutual information is given by:

COD=
3

4
E[log(1 +

�


3

3X
m=1

NX
n=1

jhnmj
2)]: (11)

We can draw the same conclusion thatCCR> CODfor large enough
�
 by applying Lemma 1. The upper bound of the average PEP is
closely related to the channel capacity when the channel input is
Gaussian [7]. Sinceu := �s is more Gaussian thans in our case,
symbol error rate (SER) performance of Figure 2 and the max-
imum mutual information curves of Figure 3 validate this upper
bound approximation which becomes more accurate as the size of
� increases.

M 2 3 4
CGM ; �M (real) 0:895; 48 0:547; 432 0:316; 2560

CGM ; �M (complex) 1; 48 0:620; 280 0:5; 3136
Gain [dB] 0:484 0:544 1:99

Table 1: Coding gains of ST-CR codes forM = 2; 3; 4.
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Figure 1: One receive antenna (N = 1)

6. SIMULATED PERFORMANCE

When simulating ST-CR codes, we normalized the average energy
per symbol so that�Es = 1. The channel matrixHo is modeled
as in (3) and remains unchanged over the ST code length, before
changing randomly; the AWGN has variance�2 = 1=(2SNR)
per real dimension. Comparisons of ST-CR with the ST-OD block
codes of [12] (denoted byODM ) are carried out forM = 3; 4,
at the same spectral efficiency. We used only real rotations with
the best values of the minimum product distance found in [3] for
M = 2; 3; 4. For complex rotations we used the ones in [9, 14],
except forM = 3, where we used the one obtained by computer
search since it has a better minimum product distance than that
found in [14] (see Table 1).
Example 1: Table 1 lists the coding gains of ST-CR codes (1)
over normalized constellations forM = 2; 3; 4, with real rotations
taken from [3], and complex rotations taken from [9, 14]. It also
gives the product kissing number�M computed over(4-QAM)M .
Example 2: Figure 1 shows the performance of the ST-CR codes
with complex� forM = 3; 4 with 4-QAM modulation, andN =
1 receive antenna. It also shows the performance of the codesOD3

andOD4 with 16-QAM modulation. At2 bits/sec, and at the same
diversity gain (M = 3) ST-CR precoders exhibit a coding gain of
more than2 dB overOD3; for M = 4, the ST-CR precoders show
a gain of more than2 dB overOD4.
Example 3: Figure 2 shows the performance of ST-CR andODM

codes forM = 3; 4 at spectral efficiency of4 bits/sec withN = 2.
We notice that the improvement over the ST-OD codes is enhanced
when the spectral efficiency increases, or, when the number of re-
ceivers increases, which confirms our analytical results obtained
on the maximum mutual information computed for both codes.
For example, at spectral efficiency of4 bits/sec andN = 2 re-
ceive antennas, ST-CR real codes gain more than7 dB overODM
for M = 3; 4. We notice also that the ST-CR complex codes have
a slight performance gain over real ones, that is also confirmed by
Table 1. Also, it can be seen that the performance gain over real
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rotations increases asM increases.
Example 4: Figure 3 depicts the maximum mutual information
for both ST-CR and ST-OD whenM = 3 andN = 1; 2; 4; 6. The
capacity loss of ST-OD is significant at high SNR compared with
ST-CR. WhenN increases, the capacity loss becomes larger at
high SNR. Also, whenN = 2, at spectral efficiency of 4 bits/sec,
ST-CR has about9 dB gain over ST-OD at SNR= 20 dB. This
gain matches quite well with the performance gain of7 dB in SER
performance in Figure 2. Also we notice that the maximum mutual
information achieved by ST-CR codes is still far from the channel
capacity especially whenN is large at high SNR.

7. CONCLUSIONS

We presented in this paper a unified approach for exploiting the
transmit diversity in a multi-antenna environment using real and
complex rotating precoders. We have shown that one can transmit
at 1 symbol/sec with maximum transmit diversity and large cod-
ing gain by applying unitary constellation-rotating precoders that
can be decoded with moderate complexity at the receiver. We have
verified that complex rotations increase coding gain and complex-
ity when SD is applied. It is worth using complex rotations when
M and/orN are large. Finally, we have established that ST-CR
codes can achieve better performance and larger maximum mutual
information compared with ST-OD codes. We are currently inves-

tigating low-complexity decoders including the SIC-ILS algorithm
of [10] that offers an attractive alternative particularly when the
channel matrix is unknown.
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