A WINDOWING CONDITION FOR CHARACTERIZATION OF FINITE
SIGNALS FROM SPECTRAL PHASE OR MAGNITUDE

Sachin Shetty, John N. McDonald, and Douglas Cochran

Arizona State University; Tempe, AZ 85287, U.S.A.

ABSTRACT

Reconstruction of a signal from its spectral phase or
magnitude is in general an ill-posed problem. Various
conditions restricting the class of signals under consid-
eration have been shown to be sufficient to reqularize the
problem so that a unique (or essentially unique) signal
corresponds to any given spectral magnitude or spectral
phase function. This paper shows that a finite discrete-
time signal is characterized by its spectral magnitude
(or phase) and the spectral magnitude (or phase) of an
ancillary signal obtained by windowing the original sig-
nal.

1. INTRODUCTION

The problem of recovering or uniquely defining a sig-
nal from its Fourier (spectral) phase or magnitude has
attracted ongoing attention over several decades in con-
nection with signal processing, crystallography, optics,
and a few other application areas. These are com-
monly referred to in research literature as the phase and
magnitude retrieval problems, respectively. In both
continuous-time and discrete-time settings, neither the
magnitude nor phase of the Fourier transform is suf-
ficient, in general, to characterize a signal. Conse-
quently, both the phase and magnitude retrieval prob-
lems fall into the class of ill-posed inverse problems.
Over the years, various restrictions on the class of
signals considered have been shown to be sufficient to
regularize the phase or magnitude retrieval problem
so that a unique (or essentially unique) signal within
the restricted class corresponds to any given spectral
phase or magnitude function. In particular, for finite
discrete-time signals, minimum-phase and maximum-
phase signals are uniquely determined to within a con-
stant by their spectral phase or magnitude. Hayes [1]
extended this type of result to a class of signals whose
z-transform zeros do not occur in conjugate recipro-
cal pairs. Among numerous other results in the lit-
erature (see, for example, the papers [2, 3, 5, 6] and
the books [4, 10]), the authors have recently proven
uniquness theorems for real-valued finite discrete-time

signals using knowledge of a few strategically placed
samples [7, 8].

This paper shows that finite discrete-time signals
are uniquely determined up to constant factors by the
magnitude of their (discrete-time) Fourier transform
and the magnitude of the Fourier transform of an ancil-
lary signal obtained by windowing the original signal.
A similar result is obtained for spectral phase. The
paper closes with an open question about the general-
ization of the results presented.

2. NOTATION AND PRELIMINARIES

Denote by z[n] a one-dimensional sequence supported
on the interval 0 <n < N — 1 and define polynomials

N-1
X(z) = Z :1:[71,]2" (1)
— N1
X ="xG) = YA @

where the bar denotes complex conjugation. X (z) is
often referred to as the z-transform of z[n], though
the engineering literature normally would define the
z-transform of such a signal as a polynomial in z~!.
For the purposes of this paper, the notation (1) is con-
venient, though the results can be obtained using ei-
ther definition. The discrete-time Fourier transform
(DTFT) of z[n] is obtained by evaluating X (z) on unit
circle |z| = 1; ie., X(w) = X(e™) for all real w.
The DTFT can be represented in terms of its spectral
magnitude function |X(w)| and spectral phase function
$(w) by |

X[w] = | X (w)]e' ) (3)

To ensure that ¢(w) is well defined it will be assumed
that X (z) has no zeros on the unit circle. The fol-
lowing lemma, which is straightforward to prove, gives
conditions under which two signals of the type being
considered have identical spectral magnitude functions
or spectral phase functions. These conditions are used



in the following section to establish the main results of
this paper.

Lemma 1 Consider two discrete-time signals x[n] and

y[n], both supported on the interval 0 < n < N —

1. These signals have the same spectral magnitude

function if and only if X(2)X.(z) = Y(2)Yi(2) (or

| X (2)| =Y (2)| on |z| =1). They have the same spec-

tral phase function if and only if X (2)Y.(z) = Y(2)X.(z)
(or /X (2)=1/Y(2) on|z| =1).

3. UNIQUENESS THEOREMS

For a given signal z[n] of the type under consideration,
there is a unique “ancillary” signal obtained as the in-
verse z-transform of the derivative X'(z) of X (z). The
first key result of this section shows that z[n] is deter-
mined up to a unimodular constant factor by knowl-
edge of both | X (z)| and |X'(2)| on the unit circle (i.e.,
by the spectral magnitude functions of the original sig-
nal and the ancillary signal). The second result shows
that a singal is determined up to a positive constant
factor by its spectral phase function and the spectral
phase function the ancillary signal. The development
proceeds as a sequence of lemmas. The proofs of some
of these are omitted for brevity, but they can ve veri-
fied by direct calculation starting with the appropriate
definitions.

3.1. Characterization from spectral magnitude

Lemma 2 Let X(z) be a polynomial of degree N — 1
representing the z-transform of a finite signal of length

N). Then zX_(z) = (N — 1)X.(z) — (X').(2)

Proof: Recall that

Sy d = =
X.(2)=2N (=) :c
z
7=0
Thus
N-1 L '
Xi(z2) =Y (N —1—juafj]" 772 (4)
7=0

and hence, denoting M = N — 1,

M _— .
MZ w[f]eM 7 — Zyw

2X'(z) = LHAM—=1)=(~1)

MX.(z) =2 )-7‘—1
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= (N-1)X.(2) - ( )(

Lemma 3 (Logarithmic Derivative) If X (z) and Y (z)
are the z-transforms of two finite length non-zero sig-
nals then

(XY () _
X(Y(:) X)) Y()

Proof: Direct calculation.

Lemma 4 If | X(2)| = |Y(2)] on |z| = 1, then there
exist polynomials U(z) and V(z) such that X(z) =
U(z)V(z) and Y(z) = cU(2)V.(z) for some constant

C.

Lemma 5 For polynomials U(z) and V(z), (U
U.(2)V.(2).

V)a(z) =

Theorem 6 If |X(2)| = |Y(2)]| and |X'(z) = |Y'(2)]
on |z| =1, then X(z) = ¢Y(2) for some complex con-
stant ¢ of unit modulus.

Proof: Since | X (z)| = |Y(2)| on |z| = 1, lemma 4 gives

X(z) = U»)V(2)
Y(z) U(2)V.(z) (5)
From lemma 3
X'(2) _ U'(z) L V'(z)
X(2) U(z) V(2)
Y'(2) _ U'(z) , Vi(»)
Y(z)  U(z) + Vi(2) (©6)
From lemma 5,
X'(2)(X)u(2) =Y (2)(Y')(2)

Denoting M = N — 1 and using lemma 2 this becomes

X'(2)(MX.(2) = X (2) = Y'(2)(MY.(2) — 2Y(2))

Dividing both sides by X (2)X.(2) = Y (2)Y.(z) gives

X'(2)
X(z)

Xz, _ Y'(z)

Y
X)) =¥ WY

)
z

(N—-1)—

By lemma 5 and equation (5), X.(z) = U.(z)V.(z) and

Y.(z) =U.(2)V(2). Thus, by lemma 3,
Xz _ Ulln) | Vi)
XG T O VG
Yiz) _ Ullz)  V'(2)
Ve T Tt Vo .

Substituting equations (6) and (8) into (7) and simpli-
fying yields

(Gl K)o (- L), )



It follows that either

(v - v) = )
(N—l):z( U'(2) Ui(z)) 10)

_l’_
Ulz) ~ U.(2)
If (9) holds, then V.(2)V'(z) — V/(2)V(z) = 0, which

implies
() =

and thus V(z) = ¢V.(z) for some constant ¢. Hence,
in this case, X(z) = ¢Y(2) where the modulus of ¢ is
clearly one. Alternatively, suppose equation (10) holds.

Then U(z) = 0 follows from expansion of (Z(N D U*((i)))

Hence 2N "VU(z) = ¢U.(z). Suppose U(z) has degree
k>0. Since N —1 >k,

, 1
ANVU(2) = U ()
Z
which implies

AN (2) = (:U(é)

But since the RHS is a polynomial in %, the LHS is a
polynomial in z. Tt follows that N — 1 = £ and hence

X(z) =cY (2).

3.2. Characterization from spectral phase

An equivalent version of theorem 6 is developed in the
context of phase information which shows that a signal
z[n] can be uniquely defined by its spectral phase and
the spectral phase of the signal y[n] where y[n] is as
defined in equation 17.

Lemma 7 If X(z) and Y (2) are polynomials of degree
N — 1 having no zeros on the unit circle and /X (z) =
LY (z) on |z| = 1, then there ewist polynomials U(z),
Vi(2), and Va(z) such that

X(2) =U(x1(2), Y(2) =U(2)Va(2)

and

Vl(Z) = (Vl)*(z), VZ(Z) = (Vz)*(Z)

Theorem 8 If X(z) and Y(z) are as in the preceding
lemma,

(V2.) (2)
sz(z)

Vi) W) _ (M) (2)
Vi) Va(z2) V()

where V1(z) and Vo(2) are as described in lemma 7.

Theorem 9 If X(z) and Y (2) are as in lemma 7, and
X (2) = LY (2) on |z| = 1 then X(2) = ¢Y(2) for

some constant c.

Proof: CASE A: No common zeros. If X(z) and Y (2)
have no common zeros, then from lemma 7 X(z) =
X.(z) and Y(z) = Y.(2). From lemmas 1 and 2 (and
denoting M = N — 1)

X/(z) (MY*(Z) —zY*I(z)) = Y/(z) (MX*(Z) — X, (z))

*

Dividing both sides of the equation by X.(2)Y(z) =
Y.(2)X(z) gives

X'(2) (31 - Yix) _Y'(2) (o1 - ZX;(Z))

X(2) Yi(z) Y(2) X.(2)
so that

X'(z) Y(2)y _ ; X'(2)Y, () Y (2)X.(2)
M (X(z) Y(z)) = (X(z)Y*(z) Y(2)X (z))
and

X(2) V()
The LHS reduces to zero since X(z) = X.(z) and
Y(z) = Y.(2). Hence X (2)Y(2) — X(2)Y (2) = 0 so
that (X(2)/Y (z)) = 0 and thus X (z) = cY (2).

CASE B: Common zeros present. From lemma 7,
X(z) and Y (2) may be written X (2) = U(2)V1(z) and
Y (z) =U(2)Va(z) where Vi(z) = (V1).(2) and Va(z) =
(V2)«(2). Lemma 3 implies

X'(2) _

X(z) 7)
) _
)

Y'(z
Y(z

(12)
From lemmas 1 and 2,

X'(2) (MY*(Z) - zyj(z)) —Y'(2) (MX*(Z) - zX;(z))

Dividing by X.(2)Y (2) = Y.(2)X (z) gives
X'(2) Y.(2)\ _Y'(2) X.(2)\
X(2) (M_Zy*(z)> Y (2) (M ZX*(z)) (13)

Substituting equation (12) into equation (13) and sim-
plifying yields

M(V{(Z)_VQ(Z))_7( ((7 Vz(z))(U*(z)_U'(z))
)
)

Vi(z) Va(z) z) Va(2)

_ Z(V2 (2)Vy, (2
Va(2)Viu(z



Since Vi(z) = Vi.(z) and Va(z) = Vs.(2) the LHS re-
duces to zero and

Vi(z) Va(2) U.(2) U2
(vll(z) - Vz(z))(M_Z(U*(z) e ))=0ay

This implies that either

Vi(z) V3(2)

ACERACI (15)
. _ Ui(z) Ul(z)
V=70 v o

From equation (15),
(%) =
Va(z)
which implies Vi (z) = ¢V5(z) for some constant ¢. The
condition arising from equation (16) is similar to the

condition from equation (10) and hence leads to the
conclusion that U(z) is constant. Hence there are in

fact no non-common zeros and this reduces to CASE

A.

3.3. A windowing perspective

Given a signal z[n] of the type under discussion, con-
sider the signal y[n] defined as y[n] = w[n]z[n] where
w[n] is some windowing signal. One might ask whether,
for suitable w[n], knowledge of the spectral magnitude
of both the original signal z[n] and the windowed signal
y[n] is sufficient to determing z[n]. Similary, is knowl-
edge of the spectral phase of both z[n] and y[n] ever
sufficient to determine z[n]?

The above results show that, for the particular win-
dow defined by w[n] = n for 0 < n < N —1 and
wln] = 0 otherwise, the answer to both questions is
“yes” up to a multiplicative constant. On the other
hand, if w[n] is a constant window (i.e., w[n] = 1 for
all n), the the answer is clearly “no.” This perspec-
tive raises the question of what windows are suitable
for extraction of spectral phase or spectral magnitude
information from a signal in this fashion.

4. CONCLUDING REMARKS

It has been shown in this paper that a finite discrete-
time signal is essentially uniquely determined by either
its spectral phase and the spectral phase of an ancil-
lary signal defined through differentiation of the orig-
inal signal’s z-transform. A similar result was shown
for spectral magnitude. Future research will examine
the open question regarding windowing raised above.
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