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ABSTRACT

Reconstruction of a signal from its spectral phase or

magnitude is in general an ill-posed problem. Various

conditions restricting the class of signals under consid-

eration have been shown to be su�cient to regularize the

problem so that a unique (or essentially unique) signal

corresponds to any given spectral magnitude or spectral

phase function. This paper shows that a �nite discrete-

time signal is characterized by its spectral magnitude

(or phase) and the spectral magnitude (or phase) of an

ancillary signal obtained by windowing the original sig-

nal.

1. INTRODUCTION

The problem of recovering or uniquely de�ning a sig-

nal from its Fourier (spectral) phase or magnitude has

attracted ongoing attention over several decades in con-

nection with signal processing, crystallography, optics,

and a few other application areas. These are com-

monly referred to in research literature as the phase and

magnitude retrieval problems, respectively. In both

continuous-time and discrete-time settings, neither the

magnitude nor phase of the Fourier transform is suf-

�cient, in general, to characterize a signal. Conse-

quently, both the phase and magnitude retrieval prob-

lems fall into the class of ill-posed inverse problems.

Over the years, various restrictions on the class of

signals considered have been shown to be su�cient to

regularize the phase or magnitude retrieval problem

so that a unique (or essentially unique) signal within

the restricted class corresponds to any given spectral

phase or magnitude function. In particular, for �nite

discrete-time signals, minimum-phase and maximum-

phase signals are uniquely determined to within a con-

stant by their spectral phase or magnitude. Hayes [1]

extended this type of result to a class of signals whose

z-transform zeros do not occur in conjugate recipro-

cal pairs. Among numerous other results in the lit-

erature (see, for example, the papers [2, 3, 5, 6] and

the books [4, 10]), the authors have recently proven

uniquness theorems for real-valued �nite discrete-time

signals using knowledge of a few strategically placed

samples [7, 8].

This paper shows that �nite discrete-time signals

are uniquely determined up to constant factors by the

magnitude of their (discrete-time) Fourier transform

and the magnitude of the Fourier transform of an ancil-

lary signal obtained by windowing the original signal.

A similar result is obtained for spectral phase. The

paper closes with an open question about the general-

ization of the results presented.

2. NOTATION AND PRELIMINARIES

Denote by x[n] a one-dimensional sequence supported

on the interval 0 � n � N � 1 and de�ne polynomials

X(z) =

N�1X
n=0

x[n]zn (1)

X�(z) = z
N�1

X(
1

z
) =

N�1X
n=0

x[n]zN�1�n (2)

where the bar denotes complex conjugation. X(z) is

often referred to as the z-transform of x[n], though

the engineering literature normally would de�ne the

z-transform of such a signal as a polynomial in z
�1.

For the purposes of this paper, the notation (1) is con-

venient, though the results can be obtained using ei-

ther de�nition. The discrete-time Fourier transform

(DTFT) of x[n] is obtained by evaluating X(z) on unit

circle jzj = 1; i.e., X̂(!) = X(ei!) for all real !.

The DTFT can be represented in terms of its spectral

magnitude function jX̂(!)j and spectral phase function

�(!) by

X̂[!] = jX̂(!)jei�(!) (3)

To ensure that �(!) is well de�ned it will be assumed

that X(z) has no zeros on the unit circle. The fol-

lowing lemma, which is straightforward to prove, gives

conditions under which two signals of the type being

considered have identical spectral magnitude functions

or spectral phase functions. These conditions are used



in the following section to establish the main results of

this paper.

Lemma 1 Consider two discrete-time signals x[n] and

y[n], both supported on the interval 0 � n � N �

1. These signals have the same spectral magnitude

function if and only if X(z)X�(z) = Y (z)Y�(z) (or

jX(z)j = jY (z)j on jzj = 1). They have the same spec-

tral phase function if and only if X(z)Y�(z) = Y (z)X�(z)

(or 6 X(z) = 6 Y (z) on jzj = 1).

3. UNIQUENESS THEOREMS

For a given signal x[n] of the type under consideration,

there is a unique \ancillary" signal obtained as the in-

verse z-transform of the derivative X 0(z) of X(z). The

�rst key result of this section shows that x[n] is deter-

mined up to a unimodular constant factor by knowl-

edge of both jX(z)j and jX 0(z)j on the unit circle (i.e.,

by the spectral magnitude functions of the original sig-

nal and the ancillary signal). The second result shows

that a singal is determined up to a positive constant

factor by its spectral phase function and the spectral

phase function the ancillary signal. The development

proceeds as a sequence of lemmas. The proofs of some

of these are omitted for brevity, but they can ve veri-

�ed by direct calculation starting with the appropriate

de�nitions.

3.1. Characterization from spectral magnitude

Lemma 2 Let X(z) be a polynomial of degree N � 1

representing the z-transform of a �nite signal of length

N). Then zX
0

�
(z) = (N � 1)X�(z)� (X 0)�(z).

Proof: Recall that

X�(z) = z
N�1

X(
1

z
) =

N�1X
j=0

x[j]zN�1�j

Thus

X
0

�
(z) =

N�1X
j=0

(N � 1� j)x[j]zN�j�2 (4)

and hence, denoting M = N � 1,

zX
0

�
(z) = M

MX
j=0

x[j]zM�j �

MX
j=0

jx[j]z(M�1)�(j�1)

= MX�(z)� z
k�1

MX
j=0

jx[j](
1

z
)j�1

= (N � 1)X�(z)� (X 0)�(z)

Lemma 3 (Logarithmic Derivative) If X(z) and Y (z)

are the z-transforms of two �nite length non-zero sig-

nals then

(X(z)Y (z))
0

X(z)Y (z)
=

X
0(z)

X(z)
+
Y
0(z)

Y (z)

Proof: Direct calculation.

Lemma 4 If jX(z)j = jY (z)j on jzj = 1, then there

exist polynomials U(z) and V (z) such that X(z) =

U(z)V (z) and Y (z) = cU(z)V�(z) for some constant

c.

Lemma 5 For polynomials U(z) and V (z), (UV )�(z) =

U�(z)V�(z).

Theorem 6 If jX(z)j = jY (z)j and jX 0(z) = jY 0(z)j

on jzj = 1, then X(z) = cY (z) for some complex con-

stant c of unit modulus.

Proof: Since jX(z)j = jY (z)j on jzj = 1, lemma 4 gives

X(z) = U(z)V (z)

Y (z) = U(z)V�(z) (5)

From lemma 3,

X
0(z)

X(z)
=

U
0(z)

U(z)
+
V
0(z)

V (z)

Y
0(z)

Y (z)
=

U
0(z)

U(z)
+
V
0

�
(z)

V�(z)
(6)

From lemma 5,

X
0(z)(X 0)�(z) = Y

0(z)(Y 0)�(z)

Denoting M = N � 1 and using lemma 2 this becomes

X
0(z)(MX�(z)� zX

0

�
(z)) = Y

0(z)(MY�(z)� zY
0

�
(z))

Dividing both sides by X(z)X�(z) = Y (z)Y�(z) gives

X
0(z)

X(z)
((N � 1)� z

X
0

�
(z)

X�(z)
) =

Y
0(z)

Y (z)
((N � 1)� z

Y
0

�
(z)

Y�(z)
)

(7)

By lemma 5 and equation (5), X�(z) = U�(z)V�(z) and

Y�(z) = U�(z)V (z). Thus, by lemma 3,

X
0

�
(z)

X�(z)
=

U
0

�
(z)

U�(z)
+
V
0

�
(z)

V�(z)

Y
0

�
(z)

Y�(z)
=

U
0

�
(z)

U�(z)
+
V
0(z)

V (z)
(8)

Substituting equations (6) and (8) into (7) and simpli-

fying yields

�
V

0

(z)

V (z)
�
V

0

�
(z)

V�(z)

��
M � z

�
�
U

0

(z)

U(z)
+
U

0

�
(z)

U�(z)

��
= 0



It follows that either

�
V

0

(z)

V (z)
�
V

0

�
(z)

V�(z)

�
= 0 (9)

or

(N � 1) = z

�
�
U

0

(z)

U(z)
+
U

0

�
(z)

U�(z)

�
(10)

If (9) holds, then V�(z)V
0(z) � V

0

�
(z)V (z) = 0, which

implies �
V (z)

V�

�0

= 0

and thus V (z) = cV�(z) for some constant c. Hence,

in this case, X(z) = cY (z) where the modulus of c is

clearly one. Alternatively, suppose equation (10) holds.

Then U(z) = 0 follows from expansion of
�
z
(N�1) U(z)

U�(z)

�0

.

Hence z(N�1)
U(z) = cU�(z). Suppose U(z) has degree

k � 0. Since N � 1 � k,

z
(N�1)

U(z) = cz
k
U(

1

z
)

which implies

z
N�1�k

U(z) = cU(
1

z
)

But since the RHS is a polynomial in 1
z
, the LHS is a

polynomial in z. It follows that N � 1 = k and hence

X(z) = cY (z).

3.2. Characterization from spectral phase

An equivalent version of theorem 6 is developed in the

context of phase information which shows that a signal

x[n] can be uniquely de�ned by its spectral phase and

the spectral phase of the signal y[n] where y[n] is as

de�ned in equation 17.

Lemma 7 If X(z) and Y (z) are polynomials of degree

N � 1 having no zeros on the unit circle and 6 X(z) =
6 Y (z) on jzj = 1, then there exist polynomials U(z),

V1(z), and V2(z) such that

X(z) = U(z)V1(z); Y (z) = U(z)V2(z)

and

V1(z) = (V1)�(z); V2(z) = (V2)�(z)

Theorem 8 If X(z) and Y (z) are as in the preceding

lemma,

V
0

1(z)

V1(z)
�
V
0

2(z)

V2(z)
=

(V1�)
0

(z)

V1�(z)
�

(V2�)
0

(z)

V2�(z)

where V1(z) and V2(z) are as described in lemma 7.

Theorem 9 If X(z) and Y (z) are as in lemma 7, and
6 X

0

(z) = 6 Y
0

(z) on jzj = 1 then X(z) = cY (z) for

some constant c.

Proof: CASE A: No common zeros. If X(z) and Y (z)

have no common zeros, then from lemma 7 X(z) =

X�(z) and Y (z) = Y�(z). From lemmas 1 and 2 (and

denoting M = N � 1)

X
0

(z)
�
MY�(z)�zY

0

�
(z)
�
= Y

0

(z)
�
MX�(z)�zX

0

�
(z)
�

(11)

Dividing both sides of the equation by X�(z)Y (z) =

Y�(z)X(z) gives

X
0

(z)

X(z)

�
M � z

Y
0

�
(z)

Y�(z)
=

Y
0

(z)

Y (z)

�
M � z

X
0

�
(z)

X�(z)

�

so that

M

�
X

0

(z)

X(z)
�
Y

0

(z)

Y (z)

�
= z

�
X

0

(z)Y
0

�
(z)

X(z)Y�(z)
�
Y

0

(z)X
0

�
(z)

Y (z)X�(z)

�

and

M

�
X

0

(z)

X(z)
�
Y

0

(z)

Y (z)

�
= 0

The LHS reduces to zero since X(z) = X�(z) and

Y (z) = Y�(z). Hence X
0

(z)Y (z) �X(z)Y
0

(z) = 0 so

that (X(z)=Y (z))0 = 0 and thus X(z) = cY (z).

CASE B: Common zeros present. From lemma 7,

X(z) and Y (z) may be written X(z) = U(z)V1(z) and

Y (z) = U(z)V2(z) where V1(z) = (V1)�(z) and V2(z) =

(V2)�(z). Lemma 3 implies

X
0

(z)

X(z)
=

U
0

(z)

U(z)
+
V

0

1 (z)

V1(z)

Y
0

(z)

Y (z)
=

U
0

(z)

U(z)
+
V

0

2 (z)

V2(z)
(12)

From lemmas 1 and 2,

X
0

(z)
�
MY�(z)�zY

0

�
(z)
�
= Y

0

(z)
�
MX�(z)�zX

0

�
(z)
�

Dividing by X�(z)Y (z) = Y�(z)X(z) gives

X
0

(z)

X(z)

�
M � z

Y
0

�
(z)

Y�(z)

�
=

Y
0

(z)

Y (z)

�
M � z

X
0

�
(z)

X�(z)

�
(13)

Substituting equation (12) into equation (13) and sim-

plifying yields

M

�
V

0

1 (z)

V1(z)
�
V

0

2 (z)

V2(z)

�
�z
�
V

0

1 (z)

V1(z)
�
V

0

2 (z)

V2(z)

��
U

0

�
(z)

U�(z)
�
U

0

(z)

U(z)

�

= z

�
V

0

2 (z)V
0

1�(z)

V2(z)V1�(z)
�
V

0

1 (z)V
0

2�(z)

V1(z)V2�(z)

�



Since V1(z) = V1�(z) and V2(z) = V2�(z) the LHS re-

duces to zero and

�
V

0

1 (z)

V1(z)
�
V

0

2 (z)

V2(z)

��
M � z

�
U

0

�
(z)

U�(z)
�
U

0

(z)

U(z)

��
= 0 (14)

This implies that either

V
0

1 (z)

V1(z)
�
V

0

2 (z)

V2(z)
= 0 (15)

or

M = z

�
U

0

�
(z)

U�(z)
�
U

0

(z)

U(z)

�
(16)

From equation (15),

�
V1(z)

V2(z)

�0
= 0

which implies V1(z) = cV2(z) for some constant c. The

condition arising from equation (16) is similar to the

condition from equation (10) and hence leads to the

conclusion that U(z) is constant. Hence there are in

fact no non-common zeros and this reduces to CASE

A.

3.3. A windowing perspective

Given a signal x[n] of the type under discussion, con-

sider the signal y[n] de�ned as y[n] = w[n]x[n] where

w[n] is some windowing signal. One might ask whether,

for suitable w[n], knowledge of the spectral magnitude

of both the original signal x[n] and the windowed signal

y[n] is su�cient to determing x[n]. Similary, is knowl-

edge of the spectral phase of both x[n] and y[n] ever

su�cient to determine x[n]?

The above results show that, for the particular win-

dow de�ned by w[n] = n for 0 � n � N � 1 and

w[n] = 0 otherwise, the answer to both questions is

\yes" up to a multiplicative constant. On the other

hand, if w[n] is a constant window (i.e., w[n] = 1 for

all n), the the answer is clearly \no." This perspec-

tive raises the question of what windows are suitable

for extraction of spectral phase or spectral magnitude

information from a signal in this fashion.

4. CONCLUDING REMARKS

It has been shown in this paper that a �nite discrete-

time signal is essentially uniquely determined by either

its spectral phase and the spectral phase of an ancil-

lary signal de�ned through di�erentiation of the orig-

inal signal's z-transform. A similar result was shown

for spectral magnitude. Future research will examine

the open question regarding windowing raised above.
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