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ABSTRACT

The Document Image Decoding (DID) framework for rec-
ognizing printed text in images has been shown in previ-
ous work to achieve extremely high recognition accuracy
when its models are well matched to the data. To date,
DID has been restricted to binary images, in part for com-
putational reasons, and in part because binary scanning is
widely available and often of sufficient spatial resolution to
make the use of grayscale information unnecessary for reli-
able recognition. Advances in computer speed and memory,
along with the emergence of low-cost digital still cameras
and similar devices as alternatives to traditional scanners,
motivates the extension of the DID formalism to the low-
spatial-resolution grayscale and color domains. To do so
requires substantially generalizing DID’s image-formation
and degradation models. This paper lays out an approach
and presents preliminary results on real data.

1. INTRODUCTION

Low-cost digital cameras are poised to offer a convenient
alternative to flatbed scanners for document image acquisi-
tion in certain settings. For example, one might use a pocket
digital camera to take snapshots of selected pages while
browsing books in a library, rather than having to carry the
books over to a scanner or copy machine. The newest dig-
ital cameras provide sufficient resolution to allow humans
to read the resulting images, but machine-recognition of
the text remains challenging because of the geometric dis-
tortions, nonuniform illumination, and the severely limited
spatial resolution when compared with traditional scanning
devices.

Document Image Decoding (DID) [1] is an approach to
text recognition based on a communications systems view
that has been found to achieve high recognition accuracy
when its models are well-matched to the data [2, 3, 4, 5].
To date, work on DID has focused on binary images. To
extend it to the low-resolution grayscale or color domains,
both its image-formation and degradation models must be

extended. This paper proposes modeling the physical pro-
cesses by simulation where possible. The general strategy is
to form hypotheses in a high-resolution domain, then evalu-
ate these hypotheses against the observed image after simu-
lating the loss of spatial resolution and the other distortions
incurred in the imaging process.

1.1. Text-Line Image Decoding

In the DID framework, document images are regarded as
having been produced by transitioning through a Markov
source. The source begins in a start state and terminates in a
stop state. Each transition within the source causes the ren-
dering of a character template (a bitmap) on the page at the
current cursor position, then advances that position by (in
general) a two-dimensional vector displacement in prepara-
tion for printing the next character. The set of character tem-
plates includes whitespace of various kinds. Formally, each
transition in the source is assigned a four-tuple consisting of
a character template, the two-dimensional displacement by
which to advance the cursor, the prior probability of follow-
ing that transition, and a string label. Every complete path
through the source defines a document image and an asso-
ciated transcription: the image is the superposition of the
bitmaps rendered on each transition, and the transcription is
the concatenation of the associated string labels.

After the document image has been formed in this way,
it is assumed to be subjected to random corruption, which
causes uncertainty in the recognition process. Recognition
involves finding a complete path through the hypothesized
Markov source that best explains the observed image. In
particular, a complete path is sought that is a posteriori most
probable considering the entire image as evidence, where
the probability is computed on the basis of source and degra-
dation models. Finding the most probable path is not the
same as finding the most probable message (at issue is the
well-known Viterbi approximation [6]), but finding the most
probable path is simpler to do and experience has shown that
it nevertheless results in accurate recognition.

When DID is applied to a single line of text instead of to



an arbitrary page, a Markov source with a minimal structure
can be used. Specifically, it can consist of a start state, a sin-
gle interior state, and a stop state. The interior state has one
self-transition for each character template in the font. Gen-
eration of a text line begins in the start state, with the cur-
sor at the leftmost horizontal position in the text-line image.
The first transition is into the interior state, and subsequent
transitions loop back into that state, each time imaging a
character and advancing the cursor horizontally. After the
text line has thus been produced, a final transition is made
into the stop state at the rightmost position in the text-line
image, whereupon the process terminates.

During the recognition process, a score is associated
with each transition along a candidate path. This score ac-
counts for both the prior probability of following the transi-
tion, and the likelihood of the transition given the segment
of the observed text line image defined by the horizontal po-
sitions before and after the transition. The likelihood term
is the one of interest here, as it is the link between the ob-
served image and the decoding operation.

2. LOW-RESOLUTION GRAYSCALE DID

In principle, extending DID to the grayscale or color do-
mains can be accomplished simply by defining an appropri-
ate likelihood function for matching hypothesized charac-
ters against the image at all feasible positions. A source of
complexity is that multiple imaged instances of a character
exhibit a systematic variation of the edge pixel values accru-
ing from spatial sampling, and this variation is not well de-
scribed by an independent additive noise degradation model
traditionally assumed in DID [1, 2]. A direct application of
the traditional apparatus would necessitate the association
of multiple templates with each character, to reflect and ac-
commodate the systematic variability due to the relatively
coarse sampling.

Instead we describe an alternative approach in which
the hypothesis search is carried out using single templates
for each character but in a high-spatial-resolution domain.
The blur, sampling, and degradation processes are numer-
ically simulated to provide a likelihood function for each
template at a lower-resolution, which can then be evaluated
against the observed grayscale image after appropriate dis-
placement. There are restrictions on the types of degrada-
tion that can be modeled by this approach, but these are
considerably weaker than in previous DID formulations.

2.1. Image Formation Model

We observe an n1 � n2 grayscale image z, which we re-
gard as a degraded, low-resolution version of a hypothetical
N1 � N2 image Z. These two images are related by the
composition of transformations shown in Figure 1. Pixel

Z z
H

Spatial

Subsampling

V v
P

Fig. 1. A model of grayscale document image formation.

values in both Z and z are assumed to take on scalar val-
ues in a finite range. For concreteness we will assume that
this range is [0; : : : ; 255] for both images. We assume that
the spatial subsampling process consists of retaining only
those pixels whose first coordinate is a multiple of an in-
teger M1 and whose second coordinate is a multiple of an
integer M2. Accordingly, the dimensions of Z and z are re-
lated by n1 = bN1=M1c and n2 = bN2=M2c, where bxc
denotes the greatest integer not greater than x. It is assumed
that H is a spatially local, possibly nonlinear transforma-
tion, and that it preserves any image consisting entirely of
zero-valued pixels. The transformationP is assumed to cor-
rupt each pixel in its input according to a probability law
that is independent of both the corruption made to input
pixels in other positions and of their uncorrupted values,
but which may depend on spatial position and on the uncor-
rupted pixel value in the same position. In the simplest case
H is a linear blur operator, and P consists of adding inde-
pendent, identically-distributed noise followed by quantiz-
ing back into the range [0; : : : ; 255].

We view the uncorrupted imageZ as having been formed
in the usual DID way. Specifically, a path through a Markov
source defines a sequence of templates, each positioned at
a point in Z subject to the requirement that no two tem-
plates overlap in their non-zero-valued pixels. Note that
these high-resolution templates in Z may be either binary
or gray-valued; our analysis will hold in either case. How-
ever, in view of the subsequent application of the transfor-
mation H in the model and the smoothing effect this can
have on edge pixels, is should be noted that realism is not
substantially sacrificed by assuming the hypothetical high-
resolution templates to be binary.

2.2. Match-Score Computation

To apply the DID recognition framework we must have a
way of computing the individual contribution made by each
imaged template to the overall likelihood, without knowl-
edge of what other templates might have been imaged else-
where along the same path (this condition is to make the
search tractable by known algorithms [7]). Established DID
methodology tell us how to accomplish this when a partially
bit-flip-corrupted version ofZ is taken as the input. We seek
here instead to allow z to be the input, taking into account
in the computation the more complicated distortions accru-
ing from the composition of the blur H , subsampling, and



signal-dependent spatially varying point-transformation P .
Note that the composition ofH and subsampling is a pe-

riodically spatially varying, possibly nonlinear, but purely
deterministic process which when applied to Z results in a
deterministic image v(Z). We can therefore identify the
overall likelihood with that of transforming v(Z) into z.
Moreover, P is a purely random transformation in which,
for any given input, the output pixels are conditionally in-
dependent of one another. We can characterize P by a col-
lection of input-output distributions p i;j( � jvi;j(Z)), one for
each pixel position (i; j) in z. The log likelihood is then

l(zjZ) =
X

i;j

log pi;j(zi;j jvi;j(Z)) (1)

where the summation is taken over all pixel positions in z,
and where zi;j is the value of z at (i; j).

The next task is to break (1) apart in terms of the tem-
plates imaged in Z. Let Cx;y denote the event “template
C has been placed at position (x; y) in Z.” Let SZ(Cx;y)
denote the support of Cx;y in Z; that is, the set of coor-
dinates of those pixels in Z that are nonzero as a result
of the event Cx;y. Let SV (Cx;y) and Sv(Cx;y) denote the
corresponding support in V and v, respectively. We can
now be precise about the locality requirement on the blur
process: H must be such that SV (Cx;y) and SV (Cx0y0)
are disjoint whenever SZ(Cx;y) and SZ(Cx0y0) are. (Re-
call that a separate assumption requires the latter condi-
tion to hold whenever Cx;y and Cx0y0 occur on the same
path.) Since subsampling results in at most a subset of pix-
els being retained, SV (Cx;y) \ SV (Cx0y0) = ; implies that
Sv(Cx;y) \ Sv(Cx0y0) = ;. This allows us to conclude that
those nonzero pixels in v caused by Cx;y would have been
zero had Cx;y not occurred on the path, all else being the
same. We can therefore rewrite (1) as

l(zjZ) =
X

i;j

log pi;j(zi;j jvi;j(Z0))

+
X

Cx;y

X

(i;j)2Sv(Cx;y)

log
pi;j(zi;j jvi;j(ZjCx;y))

pi;j(zi;j jvi;j(Z0))

(2)

where Z0 is an all-zero image of the same dimensions as
Z, where the summation over Cx;y is understood to be over
those templates imaged by the Markov source when Z was
generated, and where vi;j(ZjCx;y)) denotes the pixel in po-
sition (i; j) of v given that Cx;y occurred in generating Z.
Since the first term in (2) is independent of the hypothesis
image Z, it can be omitted when using the expression to
judge the degree of match between Z and z. We therefore
define an overall match score as

match(zjZ) =
X

Cx;y

match(zjCx;y) (3)

where the individual contribution of each template is de-
fined as

match(zjCx;y) =
X

(i;j)2Sv(Cx;y)

log
pi;j(zi;j jvi;j(ZjCx;y))

pi;j(zi;j jvi;j(Z0))

(4)
Expression (4) provides a match score that can be used to
label edges in a DID trellis. To compute it, we note that
vi;j(ZjCx;y) is periodic in the sense that

vi;j(ZjCx;y) = vi�bx=M1c;j�by=M2c(ZjCxmodM1;ymodM2
)

(5)
and its support is likewise periodic. Thus, every low reso-
lution imaged template in v can be represented as a trans-
lation of one of at most M1 � M2 distinct patterns, each
corresponding to a distinct subsampling phase. These pat-
terns and their corresponding supports can be pre-computed
and stored in a table, then recalled for use in (4) when it is
required to score the match of a hypothesized character at a
particular position (x; y) in Z. Recent advances in the use
of heuristic match scores in DID [8] reduce the importance
of (4) being very fast to compute, provided that a suitable,
computationally inexpensive heuristic upper bound on (4)
can be found.

The remaining issue in applying (4) is the estimation
and evaluation of p. The dependence of p on (i; j) in (4)
provides a means of incorporating into the model nonsta-
tionary phenomena such as spatially varying illumination.
Once the structure for p has been specified, its remaining
parameters can be learned from example data.

3. EXPERIMENTAL RESULTS

A 1024 � 768, eight-bit-per-pixel test image was obtained
using a handheld Sony DSC-F505 digital camera about 60
cm above a deliberately wrinkled, 15-line test document set
in a known font. The picture was taken under low inten-
sity oblique lighting. Although the lighting conditions and
resolution were chosen to be challenging, care was taken to
avoid any significant geometric distortions. After scanning,
the image was cropped, and a global rotation correction was
applied via bilinear interpolation. A fragment is shown in
Figure 2; two complete lines in Figure 3. The model trans-
formation H was manually chosen to consist of a morpho-
logical erosion using a 3�3 square structuring element, fol-
lowed by a separable lowpass filter. A suitable subsampling
factor was empirically determined to be 2 in both dimen-
sions. The random corruption was modeled as a spatially
varying gain operator (accounting for the nonuniform illu-
mination) followed by additive zero-mean Gaussian noise,
and finally re-quantization into the range [0; : : : ; 255]. For
simplicity, the variance of each added noise value was as-
sumed to depend only on the gain-normalized uncorrupted



pixel value in the same location; the relationship was esti-
mated using local averages to approximate the uncorrupted
pixels. The local illumination estimate for the determinis-
tic, spatially varying part of P was obtained at each pixel
location by computing the top quartile value along a 60-
pixel-long line segment centered on the current pixel and
oriented to yield minimum intensity variance along the seg-
ment. Text baselines were identified in the image by detect-
ing peaks among pairwise differences of pixel sums taken
along adjacent rows. A single-space null-string transition
was included among the candidate transitions to allow fine-
spacing alignment. Each candidate match was repeated at
vertical positions one-pixel above and one-pixel below the
assigned baseline, to accommodate slight deviations from
baseline linearity. A unigram language model was used to
provide prior weights for the trellis edges. The observed
number of recognition errors for the 963-character test doc-
ument were: 55 substitutions, 15 deletions (mostly spaces
and punctuation), and 0 insertions, as determined by a dy-
namic programming text alignment procedure. Considering
the high noise levels in the image and the severely nonuni-
form lighting conditions, these results are felt to be encour-
aging. Additional details about the experiment are available
at http://www.parc.xerox.com/popat/graydidicassp.html.

Fig. 2. A fragment of the test image. Note limited spatial
resolution and high sensor noise due to low-light conditions.

Fig. 3. Two text lines from the 15-line test image.

4. CONCLUSION

We have extended the Document Image Decoding frame-
work to function in the low-resolution grayscale domain.
The work is important because of the emergence of low-cost
digital cameras as alternative and attractive input devices for
document-image capture. The extension relies in large part
on numerical simulation of the imaging process; it is based
on performing the search in an idealized hypothesis image
space, while evaluating the hypotheses (i.e., computing the

likelihood) in the low-resolution, degraded, observation im-
age space. The expanded framework accommodates real-
istic types of distortion. Preliminary results have been en-
couraging and serve as a proof-of-principle. More work is
required to automate the inference of the blur, subsampling,
and font parameters; to accommodate and correct for pro-
jective and other geometric distortions; to apply more so-
phisticated language models [7]; and to assess performance
by conducting larger scale experiments.
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