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ABSTRACT
We present a system for coding synthetic aperture radar (SAR)
imagery, whereby regions of interest and background information
are coded independently of each other.  A multiresolution con-
stant-false-alarm-rate (CFAR) detection scheme is utilized to
discriminate between target regions and natural clutter.  Based
upon the detected target regions, we apply less compression to
targets, and more compression to background data.  This method-
ology preserves relevant features of targets for further analysis,
and preserves the background only to the extent of providing
contextual information.  The resulting system dramatically re-
duces the bandwidth/storage requirements of the digital SAR
imagery, while preserving the target-specific utility of the im-
agery.

1. INTRODUCTION
Representation of digital synthetic aperture radar (SAR) imagery
requires a vast amount of raw data.  Increased sensor resolution
and image delivery rates only increases the burden for storage and
transmission of the image data.  For example, 2048 X 2048 32-bit
SAR imagery requires approximately 134 Mbits of digital infor-
mation.  Clearly, the data associated with modern high-resolution
SAR scanners is far beyond the capability of current and proposed
wireless data links.

To address the problem of increased data rates associated with all
forms of digital imagery, mathematical lossy compression algo-
rithms can be utilized to reduce the overall number of bits re-
quired to represent the digital imagery, while adhering to desired
subjective and/or quantitative image fidelity criteria.  In other
words, the overall number of bits is reduced at the expense of
discarded image information. Examples of lossy compression
algorithms include JPEG/JPEG-2000, MPEG variants, H.263, etc.

Lossy compression algorithms typically introduce distortion is the
coded image uniformly.  That is, as the specified bit rate is re-
duced, the quality throughout the image degrades by the same
amount.  These visual artifacts usually manifest themselves as
blurriness, fuzziness, blockiness, etc., depending upon the com-
pression algorithm that is utilized.  Lossy coders can also be de-
signed to introduce distortion in a non-uniform fashion.  For ex-
ample, regions of the image that have the greatest energy can be
coded with more bits than those regions with less energy.  Alter-
natively, regions with more edges can be assigned more bits,

while regions with few edges can be assigned fewer bits.  This
type of region classification can be based upon a variety of met-
rics such as those mentioned above, or others such as fractal di-
mension, average gray level, statistical variance, etc.

Although the afore-mentioned region-adaptive compression
methods can yield significantly improved compression perform-
ance for a wide range of imagery, they lack sufficient intelligence
to discern those regions where fidelity truly needs to be main-
tained, from regions where fidelity is less important.  In the pres-
ent work, we have developed an intelligent compression system
whereby regions of interest (ROI) and background information
are coded independently of each other.  We apply less compres-
sion (more bits) to regions of interest (targets), and more com-
pression (fewer bits) to background data.  This methodology pre-
serves relevant features of targets for further analysis, and pre-
serves the background only to the extent of providing contextual
information.  The resulting system dramatically reduces the
bandwidth/storage requirements of the digital imagery, while
preserving the target-specific utility of the imagery.

In the current study, we will investigate the use of multiscale
Markov models to distinguish between man-made objects and
natural clutter in synthetic aperture radar imagery, when used in
conjunction with a state-of-the-art image-coding scheme.  Spe-
cifically, these models are used to define a multiresolution dis-
criminant as the likelihood ratio for distinguishing between the
two pixel types.

This model-based approach can be used in two general ways to
detect targets of interest.  First, the Markov detection scheme can
be used to separate wavelet coefficients corresponding to targets,
from those corresponding to clutter.  The target coefficients can
then be quantized with high resolution, and the background coef-
ficients can be quantized with low resolution.  This approach can
greatly increase the overall SAR compression efficiency if the
aggregate target area is much smaller than the remaining clutter
area.

The second scheme involves detection following quantization.
Here, the autoregressive coefficients, and hence the likelihood
ratio will be altered, depending upon the rate and type of coding.
As we will show, multiscale discrimination still significantly im-



Figure 1:  Markov tree decomposition.

proves the detection performance as compared to single-scale
detection schemes.

This paper is organized as follows. Section 2 provides a descrip-
tion of the multiresolution detection algorithm.  Section 3 outlines
the image coding system that uses pre-detection to preserve rele-
vant target areas.  Detection results are presented in Section 4,
and a conclusion is given in Section 5.

2.  MULTIRESOLUTION TARGET
DETECTION

Recent studies have shown the optimality of the wavelet trans-
form domain for target detection [1].  Accordingly, we must first
represent our signal and noise processes with appropriate data
models.  This type of model is known as the wavelet Markov
random field (MRF) model.

Referring to the quad tree shown in Figure 1, we can represent a
Markov random field as follows [1, 2].  We define a given node
in the quad tree structure as s, its children nodes as sαNW, sαNW,
sαNW, and sαNW, and its parent node as sγ, where γ  shifts the

wavelet coefficients from parent, sγ, to child, s.  A Kth-order
model defined on the multiresolution structure is defined in either
one or two dimensions with t ∈  { 1, 2, …, K(T+1)} .

Now, defining a MRF on a 2N x 2N lattice, a state at the mth level
represents the values of the MRF at 16(2N-m – 1) points.  This set
of points is denoted as Γs, and is the union of four mutually exclu-
sive subsets.  In general, we can divide Γs into four sets of 4(2N-

m(s) – 1) points each, in a similar fashion.  We denote these subsets
as Γs,i, i ∈  { NW, NE, SE, and SW} .

The multiresolution detection scheme presented here is similar in
spirit to the development in [3].  The model identification consists
of three general steps.  First, our multiscale stochastic models are
restricted to be autoregressive in scale.  We then choose the ap-
propriate regression coefficients based on a simple optimization
criterion. Finally, we characterize the statistical distribution of the
model driving noise.

Once we define the Markov structure from the wavelet transform,
we take the individual coefficient elements and represent them
using an autoregressive set of equations.  A target is represented
by the polynomial coefficients, A(s), added to a Gaussian noise
component, w(s), represented by the B(s) coefficients:

Figure 2:  Intelligent compression system block diagram.
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In the image context, we can represent the elements of the image
Markov structure in terms of the recursive scale structure shown
in Figure 1.  Given a multiresolution image sequence, I0, I1, … IL,
we characterize the joint statistical distribution of pixel values in
the sequence.  The SAR pixel value residing at node s (i.e., I(s)) is
related to its ancestors by a linear autoregression in scale, which
is given by:
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where R is the order of the regression, )(,)(,2)(,1 ,,, smRsmsm aaa �

are the scalar regression coefficients, and w(s) is the residual error
in the prediction of I(s).  We can characterize a given signal or
texture in the image by first solving for the autoregressive coeffi-
cients, and then using these coefficients to predict the target sig-
nal in a given input signal, x(s).  The residual between the target
signal and the input signal is then w(s).  This model assumes that
the target signal is uncorrelated with the input signal.  If ak =
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The Markovian structure of the models leads to simple, explicit
likelihood expressions.  Let H0 and H1 denote the hypothesis that
the ROI represents natural clutter and a man-made object, respec-
tively.  Let M0 and M1 denote the coarsest and finest scales, re-
spectively, for which we have observations (i.e., M0 = M – L + 2,
and M1 = M).  We define Y to be a vector containing all the ob-
servations, y(s).  Additionally, we let ak,H0 and ak,H1 denote the kth-
scale regression coefficients for the natural-clutter model and the
man-made model, respectively.  We let wHi(s) denote the residual
in the autoregressive prediction of the pixel value, I(s), using the
model underlying Hi.  wHi(s) is given by
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  The multiresolution discriminant can be expressed as
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and i = 0, 1.  Additional details related to the detection scheme
can be found in [4].

3.  SYSTEM DESCRIPTION
The overall SAR compression system configuration is illustrated
in Figure 2.  The SAR image is first decomposed into 22 sub-
bands using a 2-D discrete wavelet transform (DWT).  That is, a
standard 4-level dyadic decomposition is performed, with one
additional level of decomposition being performed on the highest-
frequency components following the first decomposition level.
Regions of interest are determined by the multiresolution detec-
tion scheme, which classifies image pixels as target or clutter.
For each subband, the DWT coefficients corresponding to the
same class (either target or clutter) are grouped into sequences
(subband-class sequences) to be encoded using entropy-
constrained trellis-coded quantization (ECTCQ).  The wavelet
mask construction consists of mapping the ROI from the original
image to each subband.  Figure 3 shows a sample ROI wavelet
mask.  Referring to Figure 3, the white areas correspond to targets
to be coded at high resolution, while the dark portion corresponds
to clutter, which is coded at low resolution.  All obtained sub-
band-class sequences are normalized by subtracting their mean,
and dividing by their respective standard deviation.  Since the
average number of bits per pixel (bpp) for the targets and the
background is independent, and can be specified a priori, the
statistics of each subband-class sequence is used separately by a
rate allocation procedure.

The probability distribution of each sequence to be encoded is
modeled by the so-called Generalized Gaussian Distribution
(GGD), whose probability density function is given by
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The shape parameter, α, describes the exponential rate of decay,
σ is the standard deviation of the associated random variable, and
Γ(⋅) is the gamma function.  Distributions corresponding to α =
1.0 and α = 2.0 are Laplacian and Gaussian, respectively.  It can
be shown that there is one-to-one mapping between α and the

 Kurtosis of a given sequence.  Thus, the Kurtosis can be used to
determine the appropriate α of a particular sequence [5].

ECTCQ codebooks were designed for generalized Gaussian dis-
tributions with α values of 0.5, 0.75, 1.0, 1.5, and 2.0 [5].
Training sequences consisted of 100,000 samples derived from

Figure 3:  Example ROI wavelet mask.

generalized Gaussian pseudo-random number generators, each
tuned to the appropriate α value.

The obtained wavelet mask is used to classify the wavelet coeffi-
cients in each subband into either a target class or a background
class.  Within each subband, coefficients corresponding to the
same class are grouped into a single one-dimensional sequence.
Since we assume a 22-subband decomposition, we would then
obtain 44 different sequences (two per subband).  The overall bit
rates in bits per pixel for the targets and for the background are
either provided by the user, or are determined by some automated
means.  Any rate allocation procedure can be used to allocate rate
among the wavelet coefficients for both targets and background.
In the present work, the following rate allocation algorithm is
used [6], where the coefficient sequences are coded at an average
rate of 1R  bpp for the background, and 2R  bpp for the targets.

The overall MSE is represented by:
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where 2
iσ  is the variance of sequence i , )( ii rE  denotes the rate-

distortion performance of the quantizer at ir  bits/sample, K   is

the number of data sequences, and iα  is a weighting coefficient

to account for the variability in sequence length.  For a 22-band
decomposition, 22=K .
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solution to the constrained problem of equations (9) and (10), it
suffices to find λ such that the solution to equation (11) yields
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4.  RESULTS
The detection performance of the proposed system was evaluated
by processing the synthesized 256 X 256 8-bit SAR image shown
in Figure 4.  Figure 5 shows the constructed target mask by using
the multiresolution detection scheme.  As indicated previously,
light areas corresponding to target regions are coded at high
resolution, and dark areas corresponding to natural clutter are
coded at low resolution.

The detection results of the proposed system are shown in Figure
6.  From the figure, we see that when the proposed multiresolu-
tion detection scheme is applied following decompression, the
detection performance begins to decline at approximately 0.25
bits/pixel, and falls to zero at approximately 0.03 bits/pixel.  In
sharp contrast, the detection performance remains at 100% at the
illustrated  compression rates when the multiresolution scheme is
applied prior to compression.  In the latter case, since all detected
targets are well preserved due to the high-resolution coding, ad-
ditional automatic or human analysis is facilitated, following de-
coding of the compressed bit stream.

5.  CONCLUSIONS

We have presented an intelligent system for compression of SAR
imagery.  The proposed system uses a multiresolution detection
scheme to identify target regions within the image.  The deter-
mined target regions are then coded at high resolution, while the
remaining background region is coded at low resolution.  Since
the target regions are well preserved, further target analysis is
facilitated following image decompression.  As our detection
performance results illustrate, extreme compression can be real-
ized, while preserving the target-specific utility of the SAR im-
agery.
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Figure 4:  8-bit synthesized SAR image.
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Figure 5:  Target mask.
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Figure 6:  Detection performance of proposed intelligent com-
pression system.


