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ABSTRACT tor [2] with variable constraints using the max/min method.

It was shown that this MOE approach compared favorably
with subspace based channel estimation methods and multi-
channel linear prediction methods.

In signal processing, there are problems where the pro-
cessed signal output energy is maximized while the noise
component is minimized. This gives rise to a max/min prob-
lem, which is equivalent to a generalized eigenvalue prob-  Adaptive filters can be implemented in a sequential up-
lem. Exemplary applications of the max/min formulation date algorithm such as Least Mean Squares (LMS) and Re-
have been seen in Capon’s blind beamforming method andcursive Least Squares (RLS). LMS adaptation has a low
the blind minimum output energy (MOE) detection in CDMA computational complexity but can be slow to converge. RLS
wireless communications. The solution to such a problem @daptation is quick to converge but is more computation-
involves eigen-decomposition of a transformed data covari- &lly complex. In the literature, most of the solutions to the
ance matrix inverse, which is computationally expensive to Max/min method are given in the batch form [4] or the LMS
implement. This paper offers an adaptive RLS solution to form. We study the adaptive implementation issues for the
the optimal minimum power filtering problem without in- Max/min problem using RLS upating to achieve faster con-
volving eigen-decompositions. It is based on a new Recur-Vergence rate.

sive Least Square updating procedure that works for multi-  The standard direct form RLS algorithm only applies to

ple linear constraints, and uses a one-dimensional subspacge single gain-only (distortionless) constrained case. Re-
tracking method to update the filter weights. The perfor- sende et al. [5] extended the RLS results to the more gen-
mance is comparable with that of using the direct eigen- eral multiple constrained case. On the other hand, it is

decomposition and matrix inversion. convenient to implement the multiple constrained linear fil-
ters using the partitioned linear interface canceller (PLIC),
1. INTRODUCTION or equivalently, the generalized sidelobe canceller (GSC)

structure [6]. We propose a new exact least squares algo-
rithm in the direct form for adaptive filtering with multiple
fixed linear constraints. Based on this direct form RLS al-
gorithm, we develop a RLS solution to the max/min opti-

Adaptive constrained filtering occurs in many signal pro-
cessing applications such as array processing, adaptive beal
forming, spectral analysis, and telecommunications. Acom-2-""" _ _ .
mon approach to the linear filtering optimization problem Mization problem via subspace tracking, where the the fil-
consists of searching an optimal filtering whose parame- [ Weights are updated by tracking the principle eigenvec-
ters are subject to a set of linear equations. The constraintd©F ©f @ transformed data covariance matrix. This adaptive
may be selected in order to improve the signal-to-noise ra-approach qus not require matrix inverse or plock eigen-
tio or to maintain some properties of the processed Signmdecomp'osmon, therefore is computationally simple. It is
or of the filtering response. When there are unknown pa- &/S0 derived for the PLIC structure.

rameters in the linear equations due to system uncertainty, This paper is organized as follows: The next section de-
these unknown channel parameters may be optimized on togscribes the optimal minimum power filtering problem using
of the filtering optimization, resulting in a max/min opti- a max/min formulation. Section 3 presents a new direct-
mization structure with data-dependent variable constraintform RLS updating procedure that applies to multiple fixed
parameters. The blind minimum variance beamformer de-linear constraint. In section 4, the PASTd subspace-tracking
signed by Capon [1] is a direct application of this principle. method [7] [8] is incorporated into the new RLS iterations
In CMDA wireless communications, Tsatsanis and Xu [3] to track the adaptive weights of the max/min filters. A sum-
proposed an optimal minimum output energy (MOE) detec- mary is presented in section 5.



2. THE MINIMUM POWER FILTERING Due to system uncertainties, the knowledge of the con-
PROBLEMS straint parametemay not be available to the filter. In this
case, the unknown parameténmmay be optimized using the
Let x(n) denote thelV x 1 vector of signals received by  max/min approach, resulting in optimization problem with
a transversal filter withV taps. In narrow-band filtering,  data-dependent variable constraints. A general formulation

a complex weight is applied to the signal at each tap andof the the max/min approach can be expressed as
summed to form the filter output,

y(n) = wix(n). 1) H;ﬁaj 1 m“lln E{lwx(n)]’} = w'Rxw  (8)

The weights of a linearly constrained minimum power st. Clw=f. 9)
(LCMP) filter are chosen to minimize the output power of
the filter subject to a set of linear constraints of the form  The optimal solution td is e;, the principle eigenvector of
CHw = f, whereC is the N x m constraint matrix, anflis S = (CHR;'C)~!, and the optimal weight vector has the
them x 1 vector of constraint values. The constraint matrix form
C is designed from the knowledge of the filtering environ- w=R_!C (CHR)Zl(J)_1 e, (10)
ment to achieve the desired filtering response. For example
in CDMA wireless communication systems using the min-
imum output energy detection, the matiix contains the
shifted versions of the spreading codes of the desired user

Wwhere )\, is the largest eigenvalue ¢CH*R1C)~!, and
e; is the corresponding eigenvector.

in order to preserve its output energy. 3. ANEW DIRECT-FORM RLS SOLUTION WITH
The LCMP optimization problem can be formulated as MULTIPLE LINEAR CONSTRAINTS
w =argmin E{[y(n)|*} = w'Rxw  st. C'w =1 The LCMP problem in (2) can be implemented adaptively

. - (@ using RLS updating. However, the standard direct-form
whereR, = E {X(n)3_<(”)_ } is the data covariance ma- R[S method applies when there is only one linear constraint
trix. The optimal solution is in (2). To extend the RLS updating method to multiple lin-

1 Hop 1]~ 1 ear constraints, we first defifle = R;1C (CHR;1C) .
w=R,C [C Ry C} f. 3) Note that for a generic constraifit ( )
In the partitioned linear interface canceller, or the gen-
eralized sidelobe canceler structure [6} ,is decomposed W = Tf (11)
into two components, one in the constraint subspace and - [C (CHC)‘l CH 4 BBH] Tf (12)

one orthogonal to it. The weights are given by . .
= C(c”c) f+BBYR;'C(C"R;'C) f

w =w, — Bw,, (4) ~ w, - Bw, (13)
where the vectow, is the fixed/V x 1 quiescent weight
vector Using Eq. (6), we have the identity
w, = C(CHC)'f. (5) e I
The vectorw, is the(N — m) x 1 adaptive weight vector wo = -BIR,C(CTR,C) f (14)
which can adapt freely to improve interference suppression = (BAR,B)"'B”R,C (CHC)71 f (15)

in the N — m dimensional orthogonal subspace. The nor-

malized matrixB is theN x (N —m) blocking matrix which  which yields the identity

is orthogonal toC, i.e. BYC = 0 andB”B = I. Using . .
this decomposition, the optimal solution to the LCMP opti- T = C (C”C) " —B(B”"R4B) 'B”R,C (C"”C) .

mization problem is (16)
Defining
W, = (BHRXB)leHRqu. (6) Z(n) _ (CHC>71 CHX(TL), (17)
Let z(n) = Bfx(n). The adaptive weights can also be we can write
expressed as
—1 _
wa =R, P, ) T = C(C”C)”" - B(B"R.B) ‘B R,;x(18)
whereR, = BYR,B is the(N —m) x (N —m) covariance _ C (CHC)A CBR-'Ro.n (19)

matrix of z(n) andp, = B#Rxw, is the (N —m) x 1 »
cross-correlation vector af(n) andwix(n). = Cc(cc)  -BT,. (20)



We then have a straightforward procedure for updaliig
the direct form

Z(n) = T(n—1)"x(n) (21)
T(n) = T(n-1)+gpn)zn)?  (22)
and PLIC
Zy(n) = #(n)—Ta(n—1)"z(n) (23)
To(n) = Taln—1)+g.(n)7z,(n)",  (24)

wheregp (n) andg,(n) are gain vectors that are updated by

the standard RLS (Table 1). If the constraint is fixed, we get

the standard updates(n) = T'(n)f andw,(n) = T,(n)f.
For optimized constraints$, can be adapted by tracking the
principle eigenvector o(n).

4. SUBSPACE TRACKING FOR LCMP FILTERING
WITH VARIABLE CONSTRAINTS

A number of subspace tracking techniques have been de-
veloped in the literature, such as the rank-one signal eigen~|-he PASTd

structure updating (ROSE) algorithm [9], the projection ap-
proximation subspace tracking (PAST) approach [7] [8], and
the low rank adaptive filtering (LORAF) method [10], etc.

A good survey is available in [11]. Among these technique,
the deflated PAST (PASTd) algorithm [8] is very effective

and has low computational complexity. Moreover, it tracks
the principle components sequentially, therefore is ideally

suited when only the largest eigenvalue and correspond-
Its performance is insensitive
to knowledge of the subspace dimension, and its compu-

ing eigenvector are desired.

tational complexity is linear in the length of the data vec-

tor. It tracks the principle componest (n) of a matrix
S(n) =31, u"'y(n)y(n)" as follows
p1(n) ei(n—1)"y(n) (25)
m(n) = pm(n—1)+|pi(n)[? (26)
ei(n) = e(n—1)+
[y(n) —ex(n — Vpu(n)] Eg @)
We now have to puS(n) = (C*Rx(n ) into

the proper form. In a standard RLS update we have

P,(n) = p'Py(n—1)—
Py(n — 1)x(n)x" (n)Px(n — 1)
p+x(n)HPy(n —1))x(n (28)
Then
S(n)~! = CHP,(n)C (29)

p 1CHPL(n —1)C —

whereq(n) = CHP,(n — 1)x(n) and
o = p(p+x(n)?Px(n—1)x(n)). Using the matrix in-
version lemma, we have

12S(n = a(n)q(n)"S(n — 1)

St} = S T ) S (n — Da(n)
= uS(n—1) +y(n)yn)" (31)
with
L S(n — Da(n) -
YO s S Dt O
Now note that[‘( ) =Px(n)CS(n)andPp(n) = Px(n)—
P, (n)CS(n)CHP(n), therefore
o = T(n — 1)x(n) 33
y(n) V1+p~x(n)HPg(n — 1)x(n) (33)
_ zy(n) 34
V1+p1x(n)HPg(n — 1)x(n) (34)
update can be accomplished with
- ei(n—1)"z,(n) -
" V(I + p~x(n) TP p(n — 1)x(n)) (39
m(n) i (n = 1) + [p1(n)[? (36)
el(n) = el(n — 1) +
el — Ly L)
y(n) — el —Dpi ()] P (@7)
and the weight vector isv(n) = T(n)ei(n). Note that

the denominator in (35) is not needed in (37) to update
e1(n). Therefore the procedure can be simplified by re-
placingp; (n) andn; (n) by their numerator partg(n) and
n(n), respectively,

p(n) = ei(n—1)"z,(n), (38)
nn) = pn(n—1)+ |p(n)|*. (39)

Equation (37) should be adjusted accordingly to
ex(n) = [ay(m) — ex(n — V()] 2. (40)

In the PLIC, the subspace tracking is accomplished in the
same manner, with the terg{n)? P 5 (n—1)x(n) replaced
with z(n) P, (n — 1)z(n).

To initialize, e;(0) andn(0) may be chosen to be the
principle eigenvector and eigenvaluesth) = (CHP,C)~! =
a2(CHC)~1. In CDMA applicationsC C is assumed to
be very close td.I whereL is the length of the spreading
code. Thereforey(0) will be close to+o? ande; (0) will
be close tal = [10---0]7.

The above implementations for the optimized minimum
power filtering with variable constraints are summarized in
Table 1.



Table 1. RLS Implementations of Optimized Linearly Constrained MOE Detectors

Direct-form PLIC
Init. T(0) = C(CHC)™ L, e,(0) =1, T,(0) =0, e;(0) =1,

w(0) = wg, Pp(0) = HP; w(0) =wg, P,(0) =51
Input ) z(n) = (C7C)'CPx(n)
Data z(n) = Bfx(n)

PIPg(n— 1)x(n) P,(n—1)z(n)
RLS &2(n) = P a(n — Dx(n) &2(0) = i ()P (0 — Dya(n)
Update | Pg(n)=pu '[Pp(n—1) P,(n) = p t[Py(n—1)
g (n)x" ()P (n — 1)] —g,(n)2" ()P, (n — 1]

7 (1) = T(n — 1) x(n) 2 (1) = a(n) = T (n — Da(n)
Subspace p(n) = ei(n — 1)7z,(n) p(n) = ey (n—1)"7,(n)
Tracking n(n) = pn(n —1) + [p(n)[?

e1(n) = e1(n — 1) + [z,(n) — e1(n — 1)p(n)] p*(n)/n(n)
Weight | T(n) = T(n — 1) + gp(n)z! (n) Tu(n) = Ta(n — 1) + g2(n)z/ (n)
Update | w(n) = T(n)ei(n) wo(n) = Te(n)er(n)
w(n) = C(CHC) le;(n) — Bw,(n)

[4]
5. SUMMARY

In the paper, we develop a recursive least square updating
method for the minimum power filtering problem with a  [5]
max/min formulation. A new direct-form RLS solution is
derived. It not only applies to the general case of multi-

ple linear constraints, but also inherently updates a transm-
formed data covariance matrix inverse that has been explic- 6]
itly used in the max/min approach. A subspace-tracking
method is then incorporated into this RLS recursion to up-
date the optimized filter weights. This approach avoids di-
rect eigen-decomposition and matrix inversion, therefore is [7]
computationally attractive. It is presented in both the direct
form and the PLIC/GSC structure. Its effectiveness has been 8]
proved in solving the blind minimum output energy detec-

tion problem in CDMA wireless communications [13].
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