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ABSTRACT

In signal processing, there are problems where the pro-
cessed signal output energy is maximized while the noise
component is minimized. This gives rise to a max/min prob-
lem, which is equivalent to a generalized eigenvalue prob-
lem. Exemplary applications of the max/min formulation
have been seen in Capon’s blind beamforming method and
the blind minimum output energy (MOE) detection in CDMA
wireless communications. The solution to such a problem
involves eigen-decomposition of a transformed data covari-
ance matrix inverse, which is computationally expensive to
implement. This paper offers an adaptive RLS solution to
the optimal minimum power filtering problem without in-
volving eigen-decompositions. It is based on a new Recur-
sive Least Square updating procedure that works for multi-
ple linear constraints, and uses a one-dimensional subspace
tracking method to update the filter weights. The perfor-
mance is comparable with that of using the direct eigen-
decomposition and matrix inversion.

1. INTRODUCTION

Adaptive constrained filtering occurs in many signal pro-
cessing applications such as array processing, adaptive beam-
forming, spectral analysis, and telecommunications. A com-
mon approach to the linear filtering optimization problem
consists of searching an optimal filtering whose parame-
ters are subject to a set of linear equations. The constraints
may be selected in order to improve the signal-to-noise ra-
tio or to maintain some properties of the processed signal
or of the filtering response. When there are unknown pa-
rameters in the linear equations due to system uncertainty,
these unknown channel parameters may be optimized on top
of the filtering optimization, resulting in a max/min opti-
mization structure with data-dependent variable constraint
parameters. The blind minimum variance beamformer de-
signed by Capon [1] is a direct application of this principle.
In CMDA wireless communications, Tsatsanis and Xu [3]
proposed an optimal minimum output energy (MOE) detec-

tor [2] with variable constraints using the max/min method.
It was shown that this MOE approach compared favorably
with subspace based channel estimation methods and multi-
channel linear prediction methods.

Adaptive filters can be implemented in a sequential up-
date algorithm such as Least Mean Squares (LMS) and Re-
cursive Least Squares (RLS). LMS adaptation has a low
computational complexity but can be slow to converge. RLS
adaptation is quick to converge but is more computation-
ally complex. In the literature, most of the solutions to the
max/min method are given in the batch form [4] or the LMS
form. We study the adaptive implementation issues for the
max/min problem using RLS upating to achieve faster con-
vergence rate.

The standard direct form RLS algorithm only applies to
the single gain-only (distortionless) constrained case. Re-
sende et al. [5] extended the RLS results to the more gen-
eral multiple constrained case. On the other hand, it is
convenient to implement the multiple constrained linear fil-
ters using the partitioned linear interface canceller (PLIC),
or equivalently, the generalized sidelobe canceller (GSC)
structure [6]. We propose a new exact least squares algo-
rithm in the direct form for adaptive filtering with multiple
fixed linear constraints. Based on this direct form RLS al-
gorithm, we develop a RLS solution to the max/min opti-
mization problem via subspace tracking, where the the fil-
ter weights are updated by tracking the principle eigenvec-
tor of a transformed data covariance matrix. This adaptive
approach does not require matrix inverse or block eigen-
decomposition, therefore is computationally simple. It is
also derived for the PLIC structure.

This paper is organized as follows: The next section de-
scribes the optimal minimum power filtering problem using
a max/min formulation. Section 3 presents a new direct-
form RLS updating procedure that applies to multiple fixed
linear constraint. In section 4, the PASTd subspace-tracking
method [7] [8] is incorporated into the new RLS iterations
to track the adaptive weights of the max/min filters. A sum-
mary is presented in section 5.



2. THE MINIMUM POWER FILTERING
PROBLEMS

Let x(n) denote theN × 1 vector of signals received by
a transversal filter withN taps. In narrow-band filtering,
a complex weight is applied to the signal at each tap and
summed to form the filter output,

y(n) = wHx(n). (1)

The weights of a linearly constrained minimum power
(LCMP) filter are chosen to minimize the output power of
the filter subject to a set ofm linear constraints of the form
CHw = f , whereC is theN×m constraint matrix, andf is
them× 1 vector of constraint values. The constraint matrix
C is designed from the knowledge of the filtering environ-
ment to achieve the desired filtering response. For example,
in CDMA wireless communication systems using the min-
imum output energy detection, the matrixC contains the
shifted versions of the spreading codes of the desired user
in order to preserve its output energy.

The LCMP optimization problem can be formulated as

w = arg min E{|y(n)|2} = wHRxw st. CHw = f
(2)

whereRx = E
{
x(n)x(n)H

}
is the data covariance ma-

trix. The optimal solution is

w = R−1
x C

[
CHR−1

x C
]−1

f . (3)

In the partitioned linear interface canceller, or the gen-
eralized sidelobe canceler structure [6] ,w is decomposed
into two components, one in the constraint subspace and
one orthogonal to it. The weights are given by

w = wq −Bwa, (4)

where the vectorwq is the fixedN × 1 quiescent weight
vector

wq = C(CHC)−1f . (5)

The vectorwa is the(N − m) × 1 adaptive weight vector
which can adapt freely to improve interference suppression
in theN − m dimensional orthogonal subspace. The nor-
malized matrixB is theN×(N−m) blocking matrix which
is orthogonal toC, i.e. BHC = 0 andBHB = I. Using
this decomposition, the optimal solution to the LCMP opti-
mization problem is

wa = (BHRxB)−1BHRxwq. (6)

Let z(n) = BHx(n). The adaptive weights can also be
expressed as

wa = R−1
z pz, (7)

whereRz = BHRxB is the(N−m)×(N−m) covariance
matrix of z(n) andpz = BHRxwq is the(N − m) × 1
cross-correlation vector ofz(n) andwH

q x(n).

Due to system uncertainties, the knowledge of the con-
straint parametersf may not be available to the filter. In this
case, the unknown parametersf may be optimized using the
max/min approach, resulting in optimization problem with
data-dependent variable constraints. A general formulation
of the the max/min approach can be expressed as

max
||f || = 1

min
w E{|wHx(n)|2} = wHRxw (8)

st. CHw = f . (9)

The optimal solution tof is e1, the principle eigenvector of
S = (CHR−1

x C)−1, and the optimal weight vector has the
form

w = R−1
x C

(
CHR−1

x C
)−1

e1, (10)

whereλ1 is the largest eigenvalue of(CHR−1
x C)−1, and

e1 is the corresponding eigenvector.

3. A NEW DIRECT-FORM RLS SOLUTION WITH
MULTIPLE LINEAR CONSTRAINTS

The LCMP problem in (2) can be implemented adaptively
using RLS updating. However, the standard direct-form
RLS method applies when there is only one linear constraint
in (2). To extend the RLS updating method to multiple lin-
ear constraints, we first defineT = R−1

x C
(
CHR−1

x C
)−1

.
Note that for a generic constraintf

w = Tf (11)

=
[
C

(
CHC

)−1
CH + BBH

]
Tf (12)

= C
(
CHC

)−1
f + BBHR−1

x C
(
CHR−1

x C
)−1

f

= wq −Bwa (13)

Using Eq. (6), we have the identity

wa = −BHR−1
x C

(
CHR−1

x C
)−1

f (14)

= (BHRxB)−1BHRxC
(
CHC

)−1
f (15)

which yields the identity

T = C
(
CHC

)−1−B(BHRxB)−1BHRxC
(
CHC

)−1
.

(16)
Defining

z̃(n) =
(
CHC

)−1
CHx(n), (17)

we can write

T = C
(
CHC

)−1 −B(BHRxB)−1BHRxz̃H(18)

= C
(
CHC

)−1 −BR−1
z Rzz̃H (19)

= C
(
CHC

)−1 −BTa. (20)



We then have a straightforward procedure for updatingT in
the direct form

z̄p(n) = T(n − 1)Hx(n) (21)

T(n) = T(n − 1) + gB(n)z̄p(n)H (22)

and PLIC

z̄p(n) = z̃(n) −Ta(n − 1)Hz(n) (23)

Ta(n) = Ta(n − 1) + gz(n)z̄p(n)H , (24)

wheregB(n) andgz(n) are gain vectors that are updated by
the standard RLS (Table 1). If the constraint is fixed, we get
the standard updatesw(n) = T(n)f andwa(n) = Ta(n)f .
For optimized constraints,f can be adapted by tracking the
principle eigenvector ofS(n).

4. SUBSPACE TRACKING FOR LCMP FILTERING
WITH VARIABLE CONSTRAINTS

A number of subspace tracking techniques have been de-
veloped in the literature, such as the rank-one signal eigen-
structure updating (ROSE) algorithm [9], the projection ap-
proximation subspace tracking (PAST) approach [7] [8], and
the low rank adaptive filtering (LORAF) method [10], etc.
A good survey is available in [11]. Among these technique,
the deflated PAST (PASTd) algorithm [8] is very effective
and has low computational complexity. Moreover, it tracks
the principle components sequentially, therefore is ideally
suited when only the largest eigenvalue and correspond-
ing eigenvector are desired. Its performance is insensitive
to knowledge of the subspace dimension, and its compu-
tational complexity is linear in the length of the data vec-
tor. It tracks the principle componente1(n) of a matrix
S(n) =

∑n
i=1 µn−iy(n)y(n)H as follows

ρ1(n) = e1(n − 1)Hy(n) (25)

η1(n) = µη1(n − 1) + |ρ1(n)|2 (26)

e1(n) = e1(n − 1) +

[y(n) − e1(n − 1)ρ1(n)]
ρ∗1(n)
η1(n)

. (27)

We now have to putS(n) =
(
CHRx(n)−1C

)−1
into

the proper form. In a standard RLS update, we have

Px(n) = µ−1Px(n − 1) −
Px(n − 1))x(n)xH(n)Px(n − 1)

µ + x(n)HPx(n − 1))x(n)
(28)

Then

S(n)−1 = CHPx(n)C (29)

= µ−1CHPx(n − 1)C−

µ−1 CHPx(n − 1)x(n)xH(n)Px(n − 1)C
µ + x(n)HPx(n − 1)x(n)

= µ−1S(n − 1)−1 − α−1q(n)q(n)H (30)

whereq(n) = CHPx(n − 1)x(n) and
α = µ

(
µ + x(n)HPx(n − 1)x(n)

)
. Using the matrix in-

version lemma, we have

S(n) = µS(n − 1) +
µ2S(n − 1)q(n)q(n)HS(n − 1)

α − µq(n)HS(n − 1)q(n)

= µS(n − 1) + y(n)y(n)H (31)

with

y(n) =
S(n − 1)q(n)√

µ−2 (α − µq(n)HS(n − 1)q(n))
(32)

Now note thatT(n) = Px(n)CS(n) andPB(n) = Px(n)−
Px(n)CS(n)CHPx(n), therefore

y(n) =
T(n − 1)Hx(n)√

1 + µ−1x(n)HPB(n − 1)x(n)
(33)

=
z̄p(n)√

1 + µ−1x(n)HPB(n − 1)x(n)
(34)

The PASTd update can be accomplished with

ρ1(n) =
e1(n − 1)H z̄p(n)√

(1 + µ−1x(n)HPB(n − 1)x(n))
(35)

η1(n) = µη1(n − 1) + |ρ1(n)|2 (36)

e1(n) = e1(n − 1) +

[y(n) − e1(n − 1)ρ1(n)]
ρ∗1(n)
η1(n)

(37)

and the weight vector isw(n) = T(n)e1(n). Note that
the denominator in (35) is not needed in (37) to update
e1(n). Therefore the procedure can be simplified by re-
placingρ1(n) andη1(n) by their numerator parts,ρ(n) and
η(n), respectively,

ρ(n) = e1(n − 1)H z̄p(n), (38)

η(n) = µη(n − 1) + |ρ(n)|2. (39)

Equation (37) should be adjusted accordingly to

e1(n) = [z̄p(n) − e1(n − 1)ρ(n)]
ρ∗(n)
η(n)

. (40)

In the PLIC, the subspace tracking is accomplished in the
same manner, with the termx(n)HPB(n−1)x(n) replaced
with z(n)HPz(n − 1)z(n).

To initialize, e1(0) andη(0) may be chosen to be the
principle eigenvector and eigenvalue ofS(0) = (CHPxC)−1 =
σ2

o(CHC)−1. In CDMA applications,CHC is assumed to
be very close toLI whereL is the length of the spreading
code. Therefore,η(0) will be close to 1

Lσ2
o ande1(0) will

be close to1 = [1 0 · · · 0]T .
The above implementations for the optimized minimum

power filtering with variable constraints are summarized in
Table 1.



Table 1. RLS Implementations of Optimized Linearly Constrained MOE Detectors

Direct-form PLIC
Init. T(0) = C(CHC)−1, e1(0) = 1, Ta(0) = 0, e1(0) = 1,

w(0) = wq, PB(0) = 1
σ2

o
P⊥c w(0) = wq, Pz(0) = 1

σ2
o
I

Input z̄(n) = (CHC)−1CHx(n)
Data z(n) = BHx(n)

RLS gB(n) =
P⊥c PB(n − 1)x(n)

µ + xH(n)PB(n − 1)x(n)
gz(n) =

Pz(n − 1)z(n)
µ + zH(n)Pz(n − 1)z(n)

Update PB(n) = µ−1 [PB(n − 1) Pz(n) = µ−1 [Pz(n − 1)
−gB(n)xH(n)PB(n − 1)

]
−gz(n)zH(n)Pz(n − 1)

]
z̄p(n) = T(n − 1)Hx(n) z̄p(n) = z̄(n) −TH

a (n − 1)z(n)
Subspace ρ(n) = e1(n − 1)H z̄p(n) ρ(n) = e1(n − 1)H z̄p(n)
Tracking η(n) = µη(n − 1) + |ρ(n)|2

e1(n) = e1(n − 1) + [z̄p(n) − e1(n − 1)ρ(n)] ρ∗(n)/η(n)
Weight T(n) = T(n − 1) + gB(n)z̄H

p (n) Ta(n) = Ta(n − 1) + gz(n)z̄H
p (n)

Update w(n) = T(n)e1(n) wa(n) = Ta(n)e1(n)
w(n) = C(CHC)−1e1(n) −Bwa(n)

5. SUMMARY

In the paper, we develop a recursive least square updating
method for the minimum power filtering problem with a
max/min formulation. A new direct-form RLS solution is
derived. It not only applies to the general case of multi-
ple linear constraints, but also inherently updates a transm-
formed data covariance matrix inverse that has been explic-
itly used in the max/min approach. A subspace-tracking
method is then incorporated into this RLS recursion to up-
date the optimized filter weights. This approach avoids di-
rect eigen-decomposition and matrix inversion, therefore is
computationally attractive. It is presented in both the direct
form and the PLIC/GSC structure. Its effectiveness has been
proved in solving the blind minimum output energy detec-
tion problem in CDMA wireless communications [13].
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