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ABSTRACT

In this paperwe presentan optimizedDSP implementationof a
modifiederror-feedbacklatticeleast-square(EF-LSL)adaptivefil-
tering algorithm. Simplemeasuresthat provide numericalstabil-
ity for poorpersistentexcitationarealsoproposed.As a resultof
the optimizationand the stability measures,an efficient and sta-
ble implementationof a fastalgorithmof theRLS family wasat-
tained. We presentthe resultsof an acousticechocancellingex-
perimentperformedwith the implementedalgorithm. With a 40
MIPS SHARC DSP, up to 290 adaptive filter coefficientscanbe
used.This representsan effective alternative to algorithmsof the
LMS family, while still retainingthegoodconvergenceproperties
of theRLS family.

1. INTRODUCTION

AcousticEchoCancellation(AEC) is achallengingapplicationfor
adaptive filtering due to the requiredon-line processingthrough
high orderadaptive filters andto poorexcitationcharacteristicsof
voice signals[1]. The convergenceandconsistentparameteres-
timation propertiesof Recursive LeastSquares(RLS) algorithms
make theminterestingalternativesfor this application. It is well
known that in comparisonwith LeastMeanSquares(LMS) algo-
rithmsthetradeoff for the improvedperformanceof fastRLS al-
gorithmsis anincreasein computationalcomplexity andpossible
numericalinstability. Moreover, thehigh orderof theadaptive fil-
ter andpoorpersistentexcitationmake numericalinstability show
up moreeasily, stressingthe importanceof numericallystableal-
gorithms. However, high implementationcosthindersthe useof
numericallystablefastRLSalgorithmsasthebackwardstableQR-
LSL versions[2, 3].

In the describedscenario,LeastSquaresLattice (LSL) algo-
rithmsrepresentpossiblealternativesdueto theirknown numerical
robustness.Particularly, thea priori errorfeedbackLSL algorithm
(EF-LSL) proposedby Ling, ManolakisandProakis[7] could be
agoodchoice.It is certainlyamongthemostnumericallyaccurate
LSL algorithms,comparingfavorably with the a priori or a pos-
teriori QR-LSL algorithms[3]. Thoughnot sharingsometheoret-
ical propertieswith the QR-LSL algorithmsthat guaranteestable
error propagation[2, 3], the a priori EF-LSL algorithm is com-
putationallylesscomplex and,as it will be shown, still presents
numericallystablebehavior whenproperlyimplemented.

In SectionII webriefly presentamodifiederror-feedbackLSL
algorithm basedon the a priori error feedbackalgorithm [7, 8].

We alsoproposea simplenumericalconvention that ensuresnu-
mericalstability for poorpersistentexcitations.Divisionsmaybe
implementedusingdenominatorswith reducedwordlength.Thus,
lookup tablesmay be usedto implementinversionof denomina-
tors, removing one of the reasonswhy LSL adaptive filters are
usuallynotusedin high-orderreal-timeapplicationslikeAEC, i.e.
the high computationalload of divisions. Thesepropertiesmake
thepresentedalgorithmagoodoptionfor stringenthigh-orderreal-
time adaptive filtering applicationslike AEC.

In SectionIII we presentan efficient implementationof the
modified EF-LSL algorithm for the floating point SHARC DSP.
Theimplementationfolloweda thoroughoptimizationprocedure,
which allowed the paralellismof this processorto be fully ex-
ploited. As a result,a 290coefficient (for a 8 kHz samplingrate)
EF-LSL acousticechocancellerwasmadepossible.

2. MODIFIED ERROR-FEEDBACK LSL ALGORITHM

Theconventionala priori EF-LSL algorithmcanbefoundfor ex-
amplein [8, p.633].It dealswith thefollowing variables:( ���	�
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��� ) that arerespectively conversionfactors,a priori estima-
tion errorsandregressioncoefficientsandthe forgettingfactor � .
The subscript� indicatesthe correspondingorder. In its origi-
nal form, thecomputationalcomplexity of this algorithmis  "!�#
multiplications, $%# additionsand &�# divisions,where # is the
numberof adaptive filter coefficients.

To reducethecomputationalcomplexity of this algorithmwe
introducednormalizeda posteriori predictionerrorsthat are re-
latedto thea priori predictionerrorsasfollows [4]:

' 	(��� 

���*) ' 	���� 

���,+ � �	���� 

���) � 	���� 

�.-  � � 	���� 

���,+ � �	���� 

���0/1 	(��� 

���*) 1 	���� 

���,+ � �	����2

���) � 	���� 

��� � 	���� 

���,+ � �	����2

���03
This leadsto thealgorithmpresentedin Table1 [6], whichrequires 54%# multiplications, $%# additionsand 67# divisions. It canbe
seenthatequationsaredividedin four groups,(1, 2, 3, 4, 5), (6, 7,
8), (9, 10) and(11,12,13). Any equationin onegivengroupuses
only resultsfrom the precedinggroups,which is a desirablefea-
turewhenimplementingthealgorithmin a DSP. It is worth noting



that the error feedbackmechanismis maintainedin the modified
algorithm,andthereforenumericalaccuracy is not affected.
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Table 1. EF-LSL Algorithm variableswith correspondingidenti-
ficators.

To guaranteerobustnumericalbehavior even for poor persis-
tentexcitationit is necessaryto avoid divisionsby valuescloseto
zeroin Equations(9,10)of Table1. To this endit is sufficient to
adda positive constant>"Q to thedenominatorsof theseequations.
Alternatively, asshown in Table1, a constant> ) > Q 
  - � � can
beaddedto Equations(7,8) of Table1. Consideringthattheinput
signalsatisfies- 6%R"SUTAV G�

��� VW6%R"SUT , with X aslow aspossible
[5], extensivesimulationshaveshown that > ) 6 R � � 
  - � � is suf-
ficient (thoughnotstrictly necessary)to assurenumericalstability.
Here,

1
is themantissawordlengthto which theenergiesarequan-

tized. This simplenumericalconventionwasusedwith excellent
resultsin several simulations. It was also verified that divisions
may be implementedusing denominatorswith reducedmantissa

wordlength(for example,8 bits),without producinginstability.
Consideringthatnumericalinstabilityproblemsshow upmore

easilywhenlow forgettingfactorsareused,weperformedacoustic
echocancellationexperimentswith morethanonethousandcoef-
ficients andwith forgetting factorsas low as � )Y9M3  . In these
casesthealgorithmremainednumericallystableanddid notbreak
down, althoughit did not produceusefulresultsdueto the low �
valuesthatleadto largeestimationerrors.

3. DSP IMPLEMENTATION

TheEF-LSL algorithmwasimplementedin assemblylanguagein
a floatingpoint AnalogDevices21061DSP(SHARC).This DSP
hassixteen40-bit internalregisters,whichareusedfor paralellad-
ditionsandmultiplications.In thefollowing, theseregistersarede-
notedby F0,F1,....,F15(”F ” standingfor ”floating point ”). For
indirectmemoryadressing16pointersareused,whicharedenoted
by I0, I1,...,I15. Two simultaneoustransfersbetweenregistersand
memorycanbemade,aslong asonetransferusesa pointerin I0-
I7 andthe DataMemory (DM) bus andthe othertransferusesa
pointerin I8-I15 andthe ProgramMemory (PM) bus. A reduced
wordlengthdivision canbecarriedout in two machinecycles: an
8-bit tabulatedinversionanda multiplication.

3.1. Optimization
The particularorganizationof the stepsof the modifiedEF-LSL
algorithmpresentedin Table1 is a suitablestartingpoint for ob-
taining anefficient DSPimplementation,asthestepswithin each
groupcanbecarriedout independently. Performingthena careful
allocationof the requiredoperationsto the processingresources,
the13stepsof thealgorithmcanbefitted,initially, into 19machine
cycles. Thecontentsof theDSPregistersbeforeeachof these19
cyclesareshown in Table2. Table3 shows the variablesthat are
assignedto eachpointerandTable4 shows the transfersbetween
memoryandregisterscarriedout in eachcycle. The numberof
requiredmachinecyclescanstill bereducedto 17 by transferring
steps18and19 in Tables2 and4 to thebeginningof thefollowing
iterationandstep0 in Table4 to theendof theprevious iteration.
This involvesmakingadjustmentsin steps12 and13 in Tables2
and4. Thecoreof thefinal algorithmis shown (in assemblylan-
guage[9]) in Table5. With the 40 MIPS SHARC DSPthat was
employed,it is possibleto useup to # ) 67$ 9 coefficientsfor a 8
kHz samplingrate.

3.2. Numerical aspects
Usingthedefinitionsof SectionII, in theDSPimplementationX )4 9 (dueto a 16-bit A/D) and

1 ) ! (themantissalengthto which
the predictionenergies are quantized). This would lead to > )6 T,T 
  - � �KZ 6 � T (for � ):9L3 $7$%$ ). However, consideringthehigh
value of � that is used,a smallervalueof > ) 67[ wasadopted.
As anextra safeguardagainstinstability, theabsolutevalueof the
conversion factor � 	 was usedin the implementation. For the
SHARC DSPthis did not representany additionalcomputational
load. It wasalsonecessaryto saturatethepredictionerrorsin order
to avoid indefiniteresults(NaN), which is obtainedactivating the
saturationmodein theDSP.

3.3. An acoustic echo cancellation experiment
Using a measuredimpulseresponseof 1024samples(at a 8 kHz
samplingrate)anechosignalwasproducedfrom a recordedvoice
signal. The first 512 samplesof the measuredimpulseresponse
areshown in Figure1. Thevoicesignalandthe echo signal IJ
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Table 2: Contentsof DSPregisterspreviously to eachcycle or resultaftereachcycle
Multiplier Unit Accumulator Unit

X Y X Y
Cycle f0 f1 f2 f4 f5 f6 f8 f9 f10 f12 f13 f14 f15

1 b c
2 a d bc
3 a ad=k e a bc
4 a a-bc=j k c ae
5 f g c-ae=l ak ζ
6 fg=m i g ak+ζ
7 m g h gi
8 h-gi=n j o gm b
9 p q b jo
10 p r ak+ζ b+jo=s pq
11 ak+ζ+pq=t pr
12 inv(t) k gm pr
13 k/t=v l gm+pr=u ζ
14 u vl u+ζ e
15 m inv(u+ζ) vl e
16 n m/(u+ζ)=w e+vl=x i
17 m w nw i
18 i+nw=y f mw
19 f-mw=z

Table 3: Assignmentof pointersto variables.
Pointer Vectorsize Identifiers

I0 2(M+1) c,l,g
I1 M+1 a,j
I2 1 h,n
I3 M o,w
I4 1 p
I8 M b,s
I9 2(M+1) d,f,z

I10 M e,x
I11 M i,y
I14 M q,t
I15 M r,u

Table 5: Coreof theassemblyprogram.Thevaluesof themodifiersare:� 9\) �8! ) # N  , �] ) �^$ ) # N 6 , �8_ ) �] 54 ):9 , �8` ) �a "& )  and �a 2_ )b-  
1) flt: f12 = f0*f4, f10 = f10-f12, f0 = dm(i1,m5), f4 = pm(i9,m8);
2) f4 = f0*f4, f10 = absf10, f8 = dm(i1,m6), f5 = pm(i10,m13);
3) f13 = f0*f5, f2 = f8-f12, f9 = dm(i0,m0), pm(i9,m13)= f10;
4) f8 = f0*f4, f6 = f9-f13, f5 = dm(i0,m6), f0 = pm(i9,m13);
5) f0 = f0*f5, f8 = f8+f15, dm(i1,m5)= f2, f1 = pm(i11,m15);
6) f14 = f1*f5, f9 = dm(i2,m5), pm(i11,m14)= f3;
7) f9 = f0*f5, f1 = f9-f14, f5 = dm(i3,m5), f10 = pm(i8,m13);
8) f12 = f2*f5, f2 = dm(i4,m5), f5 = pm(i14,m13);
9) f13 = f2*f5, f10 = f10+f12, dm(i0,m0)= f6, f5 = pm(i15,m13);
10) f14 = f2*f5, f8 = f8+f13, dm(i2,m5)= f1, pm(i8,m14)= f10;
11) f2 = recipsf8, pm(i14,m14)= f8;
12) f2 = f2*f4, f9 = f9+f14, f10 = pm(i9,m9);
13) f8 = f2*f6, f9 = f9+f15, f12 = pm(i10,m13);
14) f4 = recipsf9, pm(i15,m14)= f9;
15) f4 = f0*f4, f8 = f8+f12, f12 = pm(i11,m14);
16) f9 = f1*f4, dm(i3,m6)= f4, pm(i10,m14)= f8;
17) flt0: f12 = f0*f4, f3 = f9+f12, f4 = dm(i0,m5), f0 = pm(i8,m13);

Table 4: Transfersbetweenregistersandmemory
Cycle DM bus PM bus

0 (I0) → f4 (I8) → f0
1 (I1) → f0 (I9) → f4
2 (I1) → f8 (I10) → f5
3 (I0) → f9
4 (I0) → f5 (I9) → f0
5 f2 → (I1) (I11) → f1
6 (I2) → f9
7 (I3) → f5 (I8) → f10
8 (I4) → f2 (I14) → f5
9 f6 → (I0) (I15) → f5
10 f1 → (I2) f10 → (I8)
11 f8 → (I14)
12
13 (I10) → f12
14 f9 → (I15)
15 (I11) → f12
16 f4 → (I3) f8 → (I10)
17 (I9) → f10
18 f9 → (I11)
19 f10 → (I9)



werethenfed to theDSPsystemanderror �Bc 

��� wasrecorded.
A forgettingfactor � )d9L3 $%$%$ wasused.The instantaneousecho
returnlossenhancement(ERLE) givenby

ERLE )  9=eFf7gJh I T 

���,+ � Tc 

���ji
wascalculated.Figure2 shows 2sof theechosignalprior to can-
cellationandtheobtainedERLE. EachERLE valueshown is the
meanof 64consecutive measurements.Weobserve thattheERLE
rangeis approximately30-40 dB, a good result consideringthe
order of the echocanceller, the quantizationof denominatorsof
Equations(9,10) of Table1 and the usualnoiselevels in hands-
freemobiletelephony environments.No noisewassuperposedto
the echosignalin orderto show the stablebehaviour of the echo
canceller. It canbe seenthat the algorithmremainsstable,with-
out theneedfor additionalcontrolmeasures,evenwhenthevoice
signaldecaysto almostzero.

Figure3 is similar to Figure2 but consideringan echocan-
cellerwith 1024coefficients. In this casethedescribedalgorithm
wasimplementedby a C routineembeddedin MatLab andusing
thesamenumericalconventionsastheDSP. It canbeseenthatthe
obtainedERLErangeis improveddueto thehighernumberof co-
efficientsandthatalgorithmstill workswell. It shouldbeobserved
that in this casethe maximumattainableERLE is limited dueto
mantissa’s quantizationbeforedivision. Similar resultshave been
obtainedfor higherordersandlongerechoimpulseresponses.
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Fig. 1. Measuredimpulseresponse(512samples).
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