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ABSTRACT

In situationswhere the presenceof a signal is to be de-
tectedin severalnoisychannels,oftenonechannelwill have
highersignal-to-noiseratio (SNR) than the others. When
theSNR on onechannelis sufficiently high that thesignal
can be extractedfrom that channel,it may be possibleto
usethe extractedsignalto aid in detectingthe presenceof
thesignalon theotherchannels.In thispaper, thematching
pursuittime-frequency methodwith matchedsignaldictio-
nariesis usedto extractachirpsignalfrom anoisychannel.
The extractedsignal is usedin one channelof a general-
izedcoherence(GC) detectorwith thegoalof detectingthe
presenceof thesignalonother, evennoisier, channels.This
approachis comparedvia simulationto a GC detectorthat
doesnotpre-processthehighestSNRchannelto extractthe
signal. Detectorperformanceis shown to be significantly
enhancedby matchingpursuitsignalextractionprior to co-
herenceestimation.

1. INTRODUCTION

In numerousapplications,signalsreceivedat multiple sen-
sorsareusedfor sourcedetectionandlocalization. In par-
ticular, multiple-channeldetectionof thesamesignalfrom
differentnoisy channelscanprovide useful informationin
locatingthesourceof thesignal.Thegeneralizedcoherence
(GC) estimatehasbeenestablishedas an effective statis-
tic for multiple-channeldetectionwhich naturallyextends
thewidely usedmagnitude-squaredcoherenceapproachfor
two-channeldetection[1, 2]. As additionalchannelsare
consideredin a GC-baseddetector, improvedperformance
dependson thesignal-to-noiseratio (SNR)of eachchannel
[3, 4]. In particular, asthe SNR increaseson onechannel,
the performanceof the GC detectorincreaseseven though
theSNRon theotherchannelsremainslow. Hence,if one
couldobtainagoodestimateof thesignalfrom ahighSNR
channelandsubstitutethis estimatefor the actualchannel
datain theGC-baseddetector, thentheresultingdetectoris
expectedto provide improvedperformance.

In this paper, we proposeto usea modifiedversionof

the time-frequency basedmatchingpursuit [5, 6] in order
to extract the signal of interestfrom a known high SNR
channel. In essence,we will pre-processthe signal from
the high SNR channelin order to obtaina noise-freeout-
put. As we will demonstrate,this will provide anincreased
performancein themultiple-channeldetectionproblem.

2. GC MULTIPLE CHANNEL DETECTION

TheGC estimatehasbeenusedto detectthepresenceof a
signal that is commonon multiple noisy channels[1]. A
block representationof a detectorthat utilizes the GC is
shown in Figure 1 with
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channels. Thus,
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Fig. 1. Multiple channeldetectionusingtheGCestimate.

sequences,�������	� , 
���
���������� � , eachof length ��� areob-
served. The commontransmittedsignal is assumeddeter-
ministic and embeddedin additive white Gaussiannoise.
TheresultingGCestimateis givenby [1]������ � ���������������	� � ��� 
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With
� �87 channels,theGC in (1) simplifiesto themag-

nitudesquaredcoherenceestimate(MSC),� �� � � �%�����	� � ��� / �����	� � 1( � � ( � ( � � ( � � � � � (2)

Here,
/ �9�':;1<�>=?�@���	�A:CB��%�	�ADE� and

( � ( � � / �9�'�F1 . Thedis-
tribution functionof theMSC,with theassumptionthatthe
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Fig. 2. GC detectionusinga pre-processingmatchingpur-
suit algorithm with TF dictionaries. Here, � � �%�	� corre-
spondsto theoutputsignalof thehighestSNRchannel.

two independentreceived vectors �������	� and � � ���	� areem-
beddedin complex white Gaussiannoise,is givenby [1]GIHKJ � �MLONMP �Q
"!R�A
"! N � ��S � �UT LONVL 
�� (3)

where
GIH

denotesprobability. Equation3 follows a beta-
distributionof thestatistic

� �
, and
N

is thedetectionthresh-
old. ConsideringEquation(3) undertheonly-noisehypoth-
esis,theprobabilityof falsealarm

G@WYX
for theMSCisgiven

by G WYX � GIH � � �[Z N �\�]�A
"! N � �<S � � (4)

Thus,for a fixed
G WYX

, thedetectionthresholdis derivedasN � 
"!O� G@W9X �Q^_@` ^ �
As the numberof channelsincreases,new expressionsfor
the
G WYX

andthecorrespondingthresholdscanbeobtained
asshown in [1]. For example,for threechannels(
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3. TF BASED MULTIPLE-CHANNEL DETECTOR

In highnoiseenvironments,poorsignalqualityonall chan-
nelsdramaticallyreducestheperformanceof theGCdetec-
tor. We proposea methodthatwill providea goodestimate
of the signal from a high SNR channel. We make the as-
sumptionthateffortsweremadeapriori to reducethenoise
level of onechannel.For a fair detectionperformancecom-
parison,thesameassumptionis maintainedfor theGC es-
timate. The proposedtechniqueusesthe matchingpursuit
algorithm[5] with TF dictionariesto obtainanoise-freees-
timate of the highestSNR channeloutput. The extracted
signalcanthenbe usedto obtainbetterestimatesfrom the
low SNRchannelsusingtheGC.

3.1. Modified Matching Pursuit Algorithm
The original matchingpursuitalgorithm[5] decomposesa
signaliteratively usingelementsfrom amatcheddictionary.
The elementsconsistof time-frequency shiftedandscaled
versionsof onebasicatom. This atom is in generalcho-
sento be a Gaussiansignalas it is highly localizedin the
TF plane. Our modified matchingpursuit, following [6],
forms its dictionaryusingwaveformsthat arematched,in

TF structure,to the signal of interest. For example, in a
sonarmulti-channeldetectionapplication,linear frequency
modulated(FM) chirpswould bechosento form thedictio-
nary. In orderfor the dictionaryto be complete,we trans-
form thesignalvia TF shiftsaswell asatransformationthat
causesaconstantshift to theinstantaneousfrequency of the
receivedwaveform.In thecaseof linearFM chirps,thiscor-
respondsto a constantshift in theFM chirp rate.Following
[5], weexpandasignal �@���	� as

�@�%�	�r� stu�v S s
w uyx{z �|!~} u;�Y��� �����	��� �g� ���0� �� � � �

where x �%�	��� � S � �'��� � is a linearFM chirp, ��} u ��� u � is the
TF shift at the � th iteration, � u is the changein FM rate,
andw u isaweightingcoefficientfactor[5]. Forany received
signal�����	� of appreciableSNR,signalcomponentsaremore
localizedthannoisecomponents,andwill have thehighest
correlationwith matcheddictionaryatoms. The matching
pursuitusesthispropertyto extractsignalatomsuntil some
iterationwhennearlyall signalatomshave beenextracted
or whentheresidualsignalenergyapproximatelyequalsthe
energy of thenoise.

3.2. DetectionusingMatching Pursuit
Our multiple-channeldetectionmethodproposesto extract
the desiredtransmittedsignalfrom the highestSNR chan-
nelusingthemodifiedmatchingpursuitalgorithm.TheGC
methodcanthenbeusedasdepictedin Figure2 to detectthe
presenceof thesignalusingtheextractedsignalandsignals
from theremaininglow SNRchannels.

The matchingpursuit canbe usedto filter noise,even
at low SNRs,provideda smallnumberof iterationsis used.
Thus,thematchingpursuitcanbeusedto pre-processmore
thanonechannel.However, thecorrespondinggain in per-
formancewill comeat the expenseof computationaltime.
Weseekto minimizecomputationaltimewhile maximizing
detectorperformanceby pre-processingonly the channel
with the highestSNR, which is assumedherefor simplic-
ity to bethechannelwith output �0���%�	� (seeFigure2). Note
that the matchingpursuit is not suitablefor pre-processing
very low SNRchannelsasnoisewill beincludedin theex-
pansion,andtheprobabilityof detectionmaysubstantially
decreaseif thechanneloutputis decomposedincorrectly.

In order to demonstratethe successfulperformanceof
thematchingpursuitmethodin extractinga noise-freesig-
nal from ahighSNRsignal,weconsidera linearFM signal
in noisewith SNR = 0 dB. The highly localizedWigner
distribution (WD) [7] of the high SNR signal is plottedin
Figure3(a),andtheWD of thecorrespondingdecomposed
signalusingthe matchingpursuit is shown in Figure3(b).
Figure3(c) shows the WD of the outputof a channelwith
SNR = -19 dB to be detectedusingthe proposedmethod.
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Fig. 3. Wignerdistributionof the(a)channel1 outputwith SNR= 0 dB, (b) matchingpursuitdecomposedoutputof channel
1, and(c) channel2 outputwith SNR= -19dB.
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Fig. 4. MSCD (solid line) and MSCMPD performances
with 10dB SNRin channel1 and-19dB SNRin channel2.

Thus, the GC performanceis expectedto be higherwhen
thenoise-freeextractedsignalin Figure3(b) is usedinstead
of thehighSNRsignalin Figure3(a).

4. SIMULA TIONS AND PERFORMANCE

In orderto demonstrateour improvedperformance,wesim-
ulateanMSCestimatedetectionproblemwith complex data
sequencesof length ����aET�T andfor varyingSNRsonboth
channels.The MSC estimateis calculatedusingEquation
(2), andtheprobabilityof falsealarm

G WYX
usingEquation

(4). We alsosimulatean MSC detectorusingthe channel
1 decomposedsignalandthechannel2 outputsignal. The
resultsof bothmethodsusingMonteCarlosimulationsare
comparedin Figures4 through8. Thesefigurescorrespond
to receiving operatorcharacteristic(ROC) curvesof proba-
bility of detection

G��
versus

G@W9X
. Notethatwe obtaintheG��

from theMonteCarlosimulations. Thematchingpur-
suit algorithmprovidesa goodapproximationof thesignal
from thehigh SNRchannelto improvedetectionon there-
mainingchannels.Thefollowing canbeobservedfrom the
resultsof our simulations:� The MSC that usesthe matchingpursuit decompo-

sition (MSCMPD)performsbetterthantheMSCthat
directlyusesthechannel1 output(MSCD).However,
bothmethodsproducecomparablygoodperformance
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Fig. 5. MSCD (solid line) and MSCMPD performances
with 0 dB SNRin channel1 and-19 dB in channel2.
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Fig. 6. MSCD (solid line) and MSCMPD performances
with -10dB SNRin channel1 and-19 dB in channel2.

whenchannel1 hasa very high SNR(seeFigure4),
and comparablypoor performancewhen channel2
hasvery low SNR(seeFigure7).� With a fixed SNR on channel2, the MSCD detec-
tor performancedeterioratesfor decreasingSNR on
channel1 whereasthe MSCMPD detectorremains
approximatelyunchanged.For afixedchannel2,Fig-
ures5 and 6 illustrate the resultingchangein per-
formanceof the MSCD when the SNR on channel
1 decreasedfrom 0 dB to -10 dB. As the signalon
channel1 is alwaysextractedvia the matchingpur-
suit, theMSCMPDdetectorperformancewill remain
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Fig. 7. MSCD (solid line) and MSCMPD performances
with 0 dB SNRin channel1 and-25dB in channel2.

unchangeduntil theSNRis solow thatthesignalwill
nolongerbeextractedor noisewill beincludedin the
extractedsignal.� After all localizedsignalcomponentshave beenex-
tractedusingthematchingpursuit,thecorrelationbe-
tweennoiseand dictionary atomsbecomessignifi-
cant.Furthermatchingpursuititerationswill now in-
troducenoisetermsbackinto thedecomposedsignal,
andtheperformanceof thecorrespondingMSCMPD
will degradeaccordingly. An exampleis shown in
Figure8whereanMSCMPDwith oneiteration(dash-
dotted line) is comparedto an MSCMPD with six
iterations(thick solid line). It can be seenthat the
MSCMPDperformancedecreaseswith increasingit-
erationnumbers.Prior knowledgeof thesignalSNR
or numberof signalcomponentscanbeusedhereto
controlthenumberof iterationsfor thematchingpur-
suit algorithmasdescribedin Section3.1. Thespec-
trogram[7] canbe used,for instance,to pre-process
the high SNR data to obtain the numberof signal
components.It canalsobeusedto identify a signal’s
bandof interest.Bandpassfiltering thesignalwould
thenreducethecomputationfor thematchingpursuit
and also provide a fair advantageto the MSCD as
noiseoutsidethebandof interestis not considered.

5. CONCLUSION

In multiple-channeldetectionproblems,it is advantageous
to obtainashigh a performanceaspossiblein orderto de-
rive useful signal information. In this paper, we demon-
stratedthatour proposedmethodoutperformstheclassical
magnitudesquaredcoherenceestimatedetector. The new
methodusesmatchingpursuitdecompositionwith similar,
in TF structure,dictionarieselementsin order to obtain a
noise-freesignalestimateof theoutputof ahighSNRchan-
nelbeforeusingit in aGCdetector. An importantissuethat
needsto befurtheraddressedis thetrade-off betweencom-
putationalcomplexity andperformanceof thetwo methods.
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Fig. 8. Performanceof the MSCD (thin solid line),
MSCMPD with one iteration (dash-dotted line) and
MSCMPDwith six iterations(thick solid line) with -10 dB
SNRin channel1 and-19dB SNRin channel2.

Thematchingpursuitapproachis computationallyintensive
dependingon thesizeof thedictionary. Thus,its usemight
not be preferableif a channelexists with eithervery high
or very low SNR.However, the gain in performancein all
othercasesmakesit worthwhile,especiallywhensomepre-
processingreducesthe amountof computation.Theappli-
cationof anoptimalmatchedfilter to thelow SNRchannels
usingthedecomposednoise-freedeterministicsignalis cur-
rently underinvestigation.
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