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ABSTRACT

In situationswhere the presenceof a signalis to be de-

tectedn severalnoisychannelspftenonechannelill have

higher signal-to-noiseratio (SNR) than the others. When
the SNR on one channelis sufficiently high thatthe signal
can be extractedfrom that channel,it may be possibleto

usethe extractedsignalto aid in detectingthe presencef

thesignalonthe otherchannelsin this paperthematching
pursuittime-frequeng methodwith matchedsignaldictio-

nariesis usedto extracta chirp signalfrom anoisychannel.
The extractedsignalis usedin one channelof a general-
ized coherenc€GC) detectowith the goal of detectingthe
presencef the signalon other, evennoisier channelsThis

approachs comparedvia simulationto a GC detectorthat
doesnot pre-procesghehighestSNR channeto extractthe
signal. Detectorperformancds shown to be significantly
enhancedby matchingpursuitsignalextractionprior to co-

herenceestimation.

1. INTRODUCTION

In numerousapplications signalsreceved at multiple sen-
sorsareusedfor sourcedetectionandlocalization. In par
ticular, multiple-channebetectionof the samesignalfrom
differentnoisy channelscan provide usefulinformationin
locatingthesourceof thesignal. Thegeneralizedoherence
(GC) estimatehasbeenestablishedhs an effective statis-
tic for multiple-channeldetectionwhich naturally extends
thewidely usedmagnitude-squaretbherencepproactor
two-channeldetection[1, 2]. As additionalchannelsare
consideredn a GC-basedletectoy improved performance
depend®n the signal-to-noiseatio (SNR) of eachchannel
[3, 4]. In particular asthe SNRincrease®n onechannel,
the performanceof the GC detectorincrease®ven though
the SNR on the otherchannelgemainslow. Hence,if one
couldobtaina goodestimateof the signalfrom ahigh SNR
channeland substitutethis estimatefor the actualchannel
datain the GC-basedletectorthentheresultingdetectoris
expectedo provide improvedperformance.

In this paper we proposeto usea modified versionof

the time-frequeng basedmatchingpursuit [5, 6] in order
to extract the signal of interestfrom a known high SNR

channel. In essenceye will pre-processhe signal from

the high SNR channelin orderto obtaina noise-freeout-

put. As we will demonstratethis will provide anincreased
performancen the multiple-channetletectionproblem.

2. GC MULTIPLE CHANNEL DETECTION

The GC estimatehasbeenusedto detectthe presencef a
signalthatis commonon multiple noisy channelq1]. A
block representatiorof a detectorthat utilizes the GC is
shawvn in Figure1 with M channels. Thus, M comple
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Fig. 1. Multiple channeldetectionusingthe GC estimate.

sequencesy;(t), i = 1,..., M, eachof length N, areob-
sened. The commontransmittedsignalis assumedieter
ministic and embeddedn additive white Gaussiamoise.
TheresultingGC estimates givenby [1]

9(x1,.. ., zM)
A?\4JV'('Z.17"'7'Z.M)=1_— (1)
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whereg(z1, ..., zar) is thedeterminanbf the Grammatrix
(z1,71) (z1,zMm)
G(.’El,...,.Z‘M) =
(Tar,21) (Tar, zar)

With M = 2 channelsthe GCin (1) simplifiesto the mag-
nitudesquarectoherencestimatg MSC),
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Here,(z,y) = [=z(t)y*(t)dt and||z||?> = (z,z). Thedis-
tribution functionof the MSC, with the assumptiorthatthe
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Fig. 2. GC detectionusinga pre-processingnatchingpur-

suit algorithm with TF dictionaries. Here, z1(t) corre-
spondgo theoutputsignalof the highestSNR channel.

two independenteceved vectorsz, (t) andz2(t) areem-
beddedn complex white Gaussiamoise,is givenby [1]

PriX¥<T}=1-(1-T)¥1 o0<T<1, ()

where Pr denotesprobability Equation3 follows a beta-
distribution of thestatisticA?, andT is thedetectiorthresh-
old. Consideringequation(3) underthe only-noisehypoth-
esis theprobabilityof falsealarmPr 4 for theMSCis given
by Prg=Pr(N>T)=(1-T)N"1. (4)

Thus,for afixed Pr 4, thedetectionthresholds derivedas

T =1—(Pps)~T.

As the numberof channelsncreasesnewn expressiongor
the Pr4 andthe correspondinghresholdscanbe obtained
asshavnin [1]. For example for threechannel{M = 3),

Pea = -V '+ (N-1HWV-2)1 -T)"!
dog(1=T)+ (N -1)?[(1-T)N2 -1 -T)N-1].

3. TF BASED MULTIPLE-CHANNEL DETECTOR

In high noiseervironmentspoorsignalquality on all chan-
nelsdramaticallyreduceghe performancef the GC detec-
tor. We proposea methodthatwill provide agoodestimate
of the signalfrom a high SNR channel. We malke the as-

sumptionthatefforts weremadea priori to reducethenoise
level of onechannel For afair detectionperformanceom-

parison,the sameassumptionis maintainedfor the GC es-

timate. The proposedechniqueusesthe matchingpursuit
algorithm[5] with TF dictionarieso obtaina noise-freees-

timate of the highestSNR channeloutput. The extracted
signalcanthenbe usedto obtainbetterestimatefrom the

low SNR channelasingthe GC.

3.1. Modified Matching Pursuit Algorithm

The original matchingpursuitalgorithm[5] decomposesa
signaliteratively usingelementdrom amatchedlictionary
The elementsconsistof time-frequenyg shiftedand scaled
versionsof one basicatom. This atomis in generalcho-
sento be a Gaussiarsignalasit is highly localizedin the
TF plane. Our modified matchingpursuit, following [6],

forms its dictionary usingwaveformsthat are matched,in

TF structure,to the signal of interest. For example,in a
sonarmulti-channeldetectionapplication linearfrequeny
modulated FM) chirpswould be choserto form thedictio-
nary In orderfor the dictionaryto be complete we trans-
form thesignalvia TF shiftsaswell asatransformatiorthat
causes constanshift to theinstantaneougequeng of the
recevedwaveform. In thecaseof linearFM chirps,thiscor
respondgo a constanshift in the FM chirp rate. Following
[5], we expandasignalz(t) as

oo
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whereh(t) = e 927 is alinear FM chirp, (7,,, v) is the
TF shift at the nth iteration, §,, is the changein FM rate,
anda,, is aweightingcoeficientfactor[5]. Forarny receved
signalz(t) of appreciablSNR,signalcomponentsremore
localizedthannoisecomponentsandwill have the highest
correlationwith matcheddictionary atoms. The matching
pursuitusesthis propertyto extractsignalatomsuntil some
iterationwhennearlyall signalatomshave beenextracted
orwhentheresiduakignalenegy approximatelyequalghe
enegy of the noise.

3.2. Detectionusing Matching Pursuit

Our multiple-channetetectionmethodproposego extract
the desiredtransmittedsignalfrom the highestSNR chan-
nel usingthe modifiedmatchingpursuitalgorithm.The GC
methodcanthenbeusedasdepictedn Figure2 to detecthe
presencef the signalusingthe extractedsignalandsignals
from theremaininglow SNR channels.

The matchingpursuitcan be usedto filter noise,even
atlow SNRs,provideda smallnumberof iterationsis used.
Thus,the matchingpursuitcanbe usedto pre-processnore
thanonechannel.However, the correspondingyainin per
formancewill comeat the expenseof computationatime.
We seekto minimize computationatime while maximizing
detectorperformanceby pre-processingnly the channel
with the highestSNR, which is assumederefor simplic-
ity to bethechannelwith outputz, (¢) (seeFigure2). Note
thatthe matchingpursuitis not suitablefor pre-processing
very low SNR channelsasnoisewill beincludedin the ex-
pansionandthe probability of detectionmay substantially
decreasé thechannebutputis decomposethcorrectly

In orderto demonstratehe successfuperformanceof
the matchingpursuitmethodin extractinga noise-freesig-
nal from ahigh SNRsignal,we consideralinearFM signal
in noisewith SNR = 0 dB. The highly localized Wigner
distribution (WD) [7] of the high SNR signalis plottedin
Figure 3(a),andthe WD of the correspondinglecomposed
signalusingthe matchingpursuitis shavn in Figure 3(b).
Figure 3(c) shavs the WD of the outputof a channelwith
SNR = -19 dB to be detectedusingthe proposedmethod.
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Fig. 3. Wignerdistribution of the (a) channell outputwith SNR= 0 dB, (b) matchingpursuitdecomposedutputof channel

1, and(c) channeR outputwith SNR=-19dB.
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Fig. 4. MSCD (solid line) and MSCMPD performances
with 10dB SNRin channell and-19dB SNRin channel.

Thus, the GC performances expectedto be higherwhen
thenoise-freeextractedsignalin Figure3(b)is usedinstead
of thehigh SNRsignalin Figure3(a).

4. SIMULATIONS AND PERFORMANCE

In orderto demonstrateurimprovedperformancewe sim-
ulateanMSC estimateadetectiorproblemwith complex data
sequencesflengthN = 300 andfor varyingSNRsonboth
channels.The MSC estimateis calculatedusing Equation
(2), andthe probability of falsealarm Pg 4 usingEquation
(4). We alsosimulatean MSC detectorusing the channel
1 decomposedignalandthe channel? outputsignal. The
resultsof both methodsusingMonte Carlo simulationsare
comparedn Figures4 through8. Thesefigurescorrespond
to receving operatorcharacteristi¢ROC) curvesof proba-
bility of detectionPp versusPr 4. Notethatwe obtainthe
Pp from the Monte Carlo simulations. The matchingpur-
suit algorithmprovidesa goodapproximationof the signal
from the high SNR channelo improve detectionon there-
mainingchannelsThefollowing canbe obsenedfrom the
resultsof our simulations:

e The MSC that usesthe matchingpursuit decompo-
sition (MSCMPD) performsbetterthanthe MSC that
directlyuseshechannell output(MSCD).However,
bothmethodgproducecomparablygoodperformance
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Fig. 5. MSCD (solid line) and MSCMPD performances
with 0 dB SNRin channell and-19dB in channel.
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Fig. 6. MSCD (solid line) and MSCMPD performances
with -10dB SNRin channell and-19dB in channel.

whenchannell hasa very high SNR (seeFigure4),
and comparablypoor performancewhen channel2
hasverylow SNR (seeFigure7).

e With a fixed SNR on channel2, the MSCD detec-
tor performancedeteriorategor decreasingSNR on
channell whereasthe MSCMPD detectorremains
approximatelyunchangedror afixedchanneP, Fig-
ures5 and 6 illustrate the resulting changein per
formanceof the MSCD when the SNR on channel
1 decreasedrom 0 dB to -10 dB. As the signalon
channell is always extractedvia the matchingpur-
suit,theMSCMPDdetectomperformancevill remain
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Fig. 7. MSCD (solid line) and MSCMPD performances
with 0 dB SNRin channell and-25dB in channel.

unchangedintil the SNRis solow thatthesignalwill
nolongerbeextractedor noisewill beincludedin the
extractedsignal.

o After all localizedsignalcomponenthave beenex-
tractedusingthe matchingpursuit,thecorrelationbe-
tween noise and dictionary atoms becomessignifi-
cant.Furthermatchingpursuititerationswill now in-
troducenoisetermsbackinto thedecomposedignal,
andthe performancef the correspondindSCMPD
will degradeaccordingly An exampleis shavn in
Figure8 whereanMSCMPDwith oneiteration(dash-
dottedline) is comparedto an MSCMPD with six
iterations(thick solid line). It canbe seenthat the
MSCMPD performancealecreasewith increasingt-
erationnumbers.Prior knowledgeof the signalSNR
or numberof signalcomponentganbe usedhereto
controlthenumberof iterationsfor thematchingpur-
suitalgorithmasdescribedn Section3.1. Thespec-
trogram[7] canbe used,for instanceto pre-process
the high SNR datato obtain the numberof signal
componentslt canalsobe usedto identify a signal’s
bandof interest.Bandpasdiltering the signalwould
thenreducethe computatiorfor the matchingpursuit
and also provide a fair advantageto the MSCD as
noiseoutsidethe bandof interestis not considered.

5. CONCLUSION

In multiple-channebetectionproblems,it is advantageous
to obtainashigh a performanceaspossiblein orderto de-
rive useful signalinformation. In this paper we demon-
stratedthat our proposedmethodoutperformsthe classical
magnitudesquaredcoherenceestimatedetector The new
methodusesmatchingpursuitdecompositiorwith similar,
in TF structure,dictionarieselementsn orderto obtaina
noise-freesignalestimateof the outputof ahigh SNRchan-
nelbeforeusingit in a GC detector An importantissuethat
needgo befurtheraddresseds thetrade-of betweercom-
putationalcomplexity andperformancef thetwo methods.
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Fig. 8. Performanceof the MSCD (thin solid line),
MSCMPD with one iteration (dash-dottedline) and
MSCMPD with six iterations(thick solid line) with -10 dB
SNRin channell and-19dB SNRin channel.

Thematchingpursuitapproachs computationallyintensve
dependingonthesizeof thedictionary Thus,its usemight
not be preferableif a channelexists with eithervery high
or very low SNR. However, the gainin performancen all
othercasesnakesit worthwhile,especiallywhensomepre-
processingeducesghe amountof computation.The appli-
cationof anoptimalmatchedilter to thelow SNRchannels
usingthedecomposedoise-freedeterministicsignalis cur-
rently underinvestigation.

6. REFERENCES

[1] D. CochranandH. Gish, “Multiple-channeldetectionus-
ing generalcoherencé, Proceedingf the IEEE Interna-
tional Confeenceon Acoustics Speeh and SignalProcess-
ing, vol. 5, pp.2883—-2886,June1990.

[2] D. CochranH. Gish,andD. Sinno,“A geometricapproach
to multiple-channetignaldetectiori, IEEE Transaction®n
SignalProcessingvol. 43, pp.2049-2057Septembel 995.

[3] A.ClauserandD. Cochran;Non-parametrianultiple chan-
nel detectionin deepoceannoise; ConfeenceRecod of
theThirty-Fir stAsilomarConfeenceon Signal,Systemand
Computes, vol. 1, pp.850-8540ctoberl997.

[4] R.TruebloodandD. L. Alspach,“Multiple coherencé&,11th
Asilomar Confeenceon Circuits, Systemsand Computes,
pp.327-3321977.

[5] S. Mallat and Z. Zhang, “Matching pursuit with time-
frequeng dictionaries, IEEE Transactionson Signal Pro-
cessingvol. 41, pp.3397-3415Pec.1993.

[6] A. Papandreou-SuppappotandS. B. Suppappola;Adap-
tive time-frequeng representationfor multiple structures,
10th IEEE Workshopon Statistical Signaland Array Pro-
cessing (PoconoManor, Pennsylania), pp. 579-583,Au-
gust2000.

[7] F. Hlawatschand G. F. Boudreaux-Bartels,'Linear and
quadraticime-frequeng signalrepresentations|EEE Sig-
nal ProcessingMlagazine vol. 9, pp.21-67,April 1992.



