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ABSTRACT

The performance breakdown of subspace-based parameter esti-
mation methods can be naturally related to a switch of vectors
between the estimated signal and noise subspaces (a “subspace
swap”). In this paper we derive a lower bound for the probabil-
ity of such an occurrence and use it to obtain a simple data-based
indicator of whether or not the probability of a performance break-
down is significant. We also present a conceptually simple tech-
nique to determine from the data whether or not a subspace swap
has actually occurred, and to extend the range of SNR values or
data samples in which a given subspace method produces accurate
estimates.

1. INTRODUCTION

All subspace-based estimation methods are known to suffer a rapid
degradation in performance as either the signal-to noise ratio (SNR)
or the number of available snapshotsN drops below a certain
value, called the (SNR orN ) threshold, [1]–[3]. Such a dramatic
drop in performance can only be explained by a discontinuity in
the parameter estimates, corresponding to the method in question,
as functions of the processed data. The sole apparent discontinu-
ity, which is typical of all subspace-based methods, is induced by
the splitting of themeasurement space into asignal subspace and
a noise subspace.

Consider a scenario in which we haveN snapshots of anm � 1

complex vector from the measurement model

y(t) = A(�)s(t) + e(t); (1.1)

wheres(t) is a signal term,e(t) is noise, and� is an unknown
parameter vector of interest. Suppose that the signal and noise
terms are uncorrelated with one another and that the latter has co-
variance matrix�2I. Let R andR̂ be the theoretical and sample
data covariance matrices, respectively. Denote the eigenelements
of R̂ by f�k;vkgmk=1, with the eigenvaluesf�̂kgmk=1 arranged in

�Supported by the Air Force Office of Scientific Research under Grants
F49620-99-1-0067 and F49620-00-1-0083, and the Office of Naval Re-
search under Grant N00014-98-1-0542.

ySupported by the Swedish Foundation for Strategic Research under a
Senior Individual Grant

non-increasing order. Letn < m be the number of signals, and
define

Ŝ = [v̂1; : : : ; v̂n]; (1.2)

Ĝ = [v̂n+1; : : : ; v̂m]: (1.3)

Similarly, letf�k;vkgmk=1, S andG be the corresponding quanti-
ties associated withR. The columns ofS andG span the so-called
signal subspace andnoise subspace, respectively, while those of
Ŝ andĜ span the correspondingestimated subspaces. Under the
above conditionsthe noise eigenvalues, �n+1; : : : ; �m are all equal
to �2.

Let the symbolM denote a generic subspace-based parameter
estimation method. Suppose the gap between the sets of signal
and noise eigenvalues, i.e. betweenf�1; : : : ; �ng and�2, is large
compared with the sampling fluctuations inf�̂kgmk=1. Then the as-
signment of the estimated eigenvectors into signal and noise sub-
spaces should, with high probability, be done correctly. In that
caseŜ will be a good approximation toS, the error merely be-
ing due to small sampling fluctuation. Similarly,f�̂kgmk=1 will be
good estimates off�kgmk=1.

As either the gap betweenf�kgnk=1 and�2 decreases (which hap-
pens when the scenario becomes more difficult, e.g. highly corre-
lated signals that are not well separated), or the values ofN and
SNR decrease (leading to greater sampling variability inf̂�kgmk=1),
the estimates of�n+1; �n+2; etc. will with increasing probabil-
ity be larger than the estimates of�n, �n�1; etc. Whenever this
happens asubspace swap has occurred. More precisely, in such
a case one or more pairs of the setf�̂k; v̂kgnk=1 actually esti-
mate noise eigenelements instead of signal eigenelements. For the
eigenvalues this is usually no big problem: in most cases of inter-
estf�̂kgnk=1 will still be in the vicinity of the signal eigenvalues
f�kgnk=1 despite the incorrect association. For the eigenvectors,
however, the wrong association leads to the use of one or more
sample noise subspace vectors as estimates ofcompletely different
signal subspace vectors. When this happens, the drop in perfor-
mance ofM is generally significant.

In Section 2, we present a formula that can be used, along with
the observed data, to make inferences about the probability of a
subspace swap. We also discuss, in Section 3, how to modify
the methodM whenever the subspace swap probability is high
and derive methods for determining, based on the observed data



alone, whether or not a subspace swap has actually occurred. Nu-
merical examples involving the standard ESPRIT [8] algorithm for
direction-of-arrival (DOA) estimation are given in Section 4.

2. LOWER BOUND ON BREAKDOWN PROBABILITY

Let f~�kgmk=1, ~S, and ~G denote the estimates off�kgmk=1, S, and
G derived from the eigenelements ofR̂ by correct association of
the eigenpairs of̂R andR. Sof~�kgmk=1 is equal tof�̂kgmk=1 if
no swap has occurred otherwise it is a rearrangement of it. De-
note the smallest correctly associated signal eigenvalue by~�smin =

minf~�kgnk=1, and the largest correctly associated noise eigenvalue
by ~�nmax = maxf~�kgmk=n+1. A subspace swap occurs whenever
~�smin is less than~�nmax, so it occurs with probability

PSS = Prob f~�smin < ~�nmaxg: (2.4)

If the signal eigenvaluesf�kgnk=1 are well separated, then the
dominant event in (2.4) corresponds to the case in which~�n <
~�nmax.

To study the probability in (2.4), we need to know the distribution
of f~�1; : : : ; ~�n; ~�nmaxg. The asymptotic (with respect toN ) distri-
bution off~�kgnk=1 is easily derived. The asymptotic distribution
of ~�nmax can also be derived but it is comparatively complicated
[4]. Since we aim at providing a simple formula for predicting a
performance breakdown, we replace~�nmax in (2.4) by

~�
2 4
=

1

m� n

mX
k=n+1

~�k: (2.5)

Hence, in lieu of (2.4) we consider

PLB
4

= Prob f~�smin < ~�
2g (2.6)

= 1 � Prob f~�k � ~�
2
; for all k 2 f1; : : : ; ngg: (2.7)

As ~�2 � ~�nmax it follows that PLB is a lower bound on PSS

Our approach to studying breakdown probability differs in two
ways from that in [2]. In the latter approach PSS is lower bounded
by

PSS � Prob fvHn R̂vn <
1

m� n

mX
k=n+1

vkR̂vkg; (2.8)

which is asymptotically (inN ) equal toProb f~�n < ~�2g, which
is a lower bound for PLB and hence PSS. However, generally (2.8)
is a less tight bound than PLB. Secondly, although the random vari-
ables in (2.8) can be evaluated “exactly” (to within some inherent
numerical approximations [2]), the exact expression for (2.8) is
quite complex and unenlightening. More importantly, it depends
on the eigenvectorsfvkgmk=n and so cannot be well approximated
in the breakdown region, implying that it cannot be employed to
predict the breakdown effect from the observed data alone.

Theorem 2.1. Under the above assumptions onR and its eigen-
values, and assuming that the snapshots are circularly symmetric

Gaussian distributed and temporally white, the asymptotic (inN )
distribution of then� 1 element vector

�
4

=
p
N [(~�1 � �1); : : : ; (~�n � �n); (~�

2 � �
2
)]
T (2.9)

is Gaussian with zero mean and covariance matrix�
�2 0

0 �4=(m� n)

�
; (2.10)

where� = diagf�1; : : : ; �ng.
Proof: See [5].

The above theorem can be used to compute PLB as follows. Define

zk
4

= (�k � �n+1)=(�
2
k + �

4
=(m� n))

1=2 (2.11)

�k
4

=
p
N(�

2 � �k)=(�
2
k + �

4
=(m� n))

1=2
; (2.12)

for k = 1; : : : ; n. It follows from (2.6) that

PLB = 1� Prob fzk � �k for all k 2 f1; : : : ; ngg: (2.13)

The random variablesfzkgnk=1 are asymptotically Gaussian dis-
tributed with zero mean, unit variance, and so-called “product form”
correlationsEfzizjg = �i�j , for i 6= j, where

�i = �2=(�4 + (m� n)�2i )
1=2: (2.14)

It follows that computation of PLB can be reduced to the calcula-
tion of the probability thatn Gaussian random variables with zero
means, unit variances and the above product correlation structure
simultaneously take on values larger than the constantsf�kgnk=1
defined in (2.12). This probability can be efficiently computed us-
ing the MVTIN algorithm in [6], which is specifically designed for
Gaussian random variables with product correlation structure.

To use the data to make inferences about the probability of a per-
formance breakdown we first consider replacingf�kgnk=1 and�2

in equations (2.12) and (2.14) byf�̂kgnk=1 and

�̂
2
=

1

m� n

mX
k=n+1

�̂k: (2.15)

Hence, we PLB could be estimated by

P̂LB = 1� Prob fzk � �̂k for all k 2 f1; : : : ; ngg (2.16)

where

�̂k =
p
N(�̂

2 � �̂k)=(�̂
2
k + �̂

4
=(m� n))

1=2 (2.17)

andfzkg are Gaussian random variables with zero mean, unit vari-
ance, and product correlation structure given by

Efzizjg = �̂i�̂j for i 6= j; (2.18)

with

�̂i = �̂2=(�̂4 + (m� n)�̂2i )
1=2: (2.19)

Outside the breakdown region the above formula yields a consis-
tent estimate of PLB. In the breakdown region, however, Monte



Carlo simulations show that̂PLB appears to seriously underesti-
mate PLB (see Section 4). There are two reason for this. Intu-
itively, when there is a non-negligible probability of a subspace
swap,�̂2 tends to underestimate�2, similarly �̂n may overesti-
mate�n. This combination causeŝ�n to significantly underesti-
mate�n and, hence, the observed effect. The remaining�̂k will
similarly underestimate�k, but the overestimation is most pro-
nounced for̂�n.

To try to correct for the overestimation of�n, we will overesti-
mate�2 with the intention that the resultinĝ�n will be larger and
more accurately estimate�n. Therefore, we propose usinĝ�n+1
as the estimate of�2 that we use in equations (2.17) and (2.19).
We denote the resulting estimate~PLB. Well above the threshold
region we expect~PLB to estimate PLB very accurately. Below the
threshold region, it should certainly be a better estimate thanP̂LB,
however, its performance in the transition region is not obvious.
Therefore Monte Carlo simulations are again be used to asses its
efficacy.

3. PREDICTING AND COUNTERACTING BREAKDOWN

For a givenm andn, letG denote the set of all possible partition-
ings of the eigenelements of̂R into signal and noise subspaces,
and let� be an element of that set. Denote by�̂�M, the esti-
mate of� given by methodM using the partitioning�. Now the
deterministic (concentrated) maximum likelihood (DML) method
estimates� as the argument that minimizes the criterion function
� tr[A(AHA)�1AHR̂] e.g. [7]. This minimization requires an
n-dimensional search. The DML criterion suggests the followed
modified estimator, which we shall term the DML-M estimator

�̂DML = argmin
�2G

� tr[A(�)(A
H

(�)A(�))
�1
A
H

(�)R̂]; (3.20)

In other words we just test the DML criterion at a finite number
of points determined by the methodM under the various possible
partitionings. Since the DML estimator contains no discontinuous
assignment of eigenvectors in signal and noise subspaces, we ex-
pect that, generally, the partitioning that leads to the value of� that
minimizes (3.20),�� say, is in fact equal to the correctly assigned
partitioning ~�. If no subspace swap is detected�� = �̂ and the
DML-M estimator is the same as that obtained by regular appli-
cation ofM.

Note thatG contains
�
m

n

�
elements, however, unless the probability

of a subspace swap is very high we may reduce the computational
burden somewhat by safely assuming that thel < m � n, say,
smallest eigenelementsf�̂k; v̂kgmk=m�l+1 are indeed estimates of
noise subspace eigenelements. We can then remove fromG all
partitions in which one or more of these eigenelements lies in the
signal subspace, so reducing its cardinality to

�
m�l
n

�
.

4. NUMERICAL EXAMPLES AND DISCUSSION

For the examples in the Section we considern = 2 narrowband
Gaussian signals impinging on am = 10 element uniform linear
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Fig. 1. Lower bound PLB (solid) and empirical estimate of PSS
(dash), mean values of̂PLB (+) and~PLB (o), and proportional of
subspace swaps indicated by DML criterion (dash-dot) over 1000
Monte Carlo trials.

array (ULA) with halfwavelength spacing. The unit power sources
are located at broadside and10� from broadside and are highly
correlated,

E s1(t)s
H

2 (t) =
p
0:9e

i�=4 (4.21)

wheres1(t) ands2(t) are the source signals. The noise is assumed
to be spatially white andN = 150 snapshots are used.

Figure 1 shows the value of PLB, as given by (2.13), versus SNR.
Also shown is a Monte Carlo determination of PSS defined as the
number of runs in which an estimated noise eigenvector was closer
to the true signal subspace (as measured by the magnitude of its
projection ontoSSH ) than one of the estimated signal eigenvec-
tors. That PLB is a lower bound for the subspace swap probability
is clear.

The estimates~PLB (which useŝ�2 = �̂n+1) andP̂LB (using�̂2 =Pm
k=n+1 �̂k=(m � n)) also appear in Figure 1 (see Figure 2 as

well). Clearly, P̂LB grossly underestimates PLB in and below the
threshold region (note the scale on the upper part of Fig. 2). Fur-
thermore, the standard deviation ofP̂LB is larger than its mean un-
til 1-2dB above breakdown, at which point it becomes negligible.
Therefore, it is possible to set a threshold such that when operating
above breakdown the probability thatP̂LB exceed the threshold (i.e.
a false alarm) is small. However, when the system is operating be-
low breakdown, there will always be a significant probability that
P̂LB will fall below this threshold (a missed event), for any sensi-
ble choice of false alarm probability. Note thatP̂LB tends to a finite
value with increasing SNR, in fact it tends to PLB (equation (2.6))
which is also finite for finiteN .

On the other hand~PLB overestimates PLB above breakdown, and it
tends to underestimate PLB below breakdown, though is does seem
to be reasonably similar to PSS through the transition region. Sev-
eral dB above breakdown~PLB and its standard deviation become
negligible. Below breakdown, although the standard deviation of
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Fig. 2. Mean (solid) and standard deviation (dash) ofP̂LB (top) and
~PLB (bottom) from Monte Carlo trials.

~PLB is significant, unlike the case ofP̂LB it is smaller than its mean.
Therefore, if we again set a threshold to achieve a given level of
false alarms when operating at a certain SNR above breakdown, a
detector based on~PLB should have fewer missed events when the
scenario is really below breakdown that should a detector based on
P̂LB designed with the same false alarm rate, i.e. the detector based
on ~PLB is more powerful.

Figure 3 shows the performance of the standard ESPRIT, and DML-
ESPRIT estimators determined from 1000 Monte Carlo trials. The
measure of performance is the square root of the mean-squared
error (MSE) averaged over both sources. It is clear that DML-
ESPRIT outperforms standard ESPRIT. Furthermore, the DML-
ESPRIT criterion can be used to determine whether or not a sub-
space swap has occurred. To illustrate this, the same figure shows
the performance of standard ESPRIT averaged over those runs
in which the DML criterion indicated no subspace swap had oc-
curred. It is seen that removing the detected subspace swap cases
improves the performance quite significantly. However, note that
none of the estimators are close to the CRB in the breakdown re-
gion. This is partly because the ESPRIT algorithm is not statisti-
cally efficient, and partly because the CRB is only a tight bound
in small error situations. Tighter lower bounds, such as the large-
error Barankin bound [9] and its variants, may be considerably
larger than the CRB in the breakdown region. Finally, we notice
that the proportion of trials in which DML-ESPRIT indicated a
subspace swap (see Fig. 1) is remarkably close to the empirical
PSS.

5. CONCLUSION

This paper has presented a simple theoretical lower bound on the
probability of a subspace swap. Using this bound we found a data-
based statistic that can be used to determine whether the probabil-
ity of breakdown is low or high. A method for deciding whether a
subspace breakdown has actually occurred and a means to correct
for it were also presented.
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Fig. 3. Performance of standard ESPRIT (solid) and DML-
ESPRIT (dash-dot). Also shown is the CRB (o) and the perfor-
mance of standard ESPRIT averaged over those runs in which the
and DML criterion indicated no subspace swap (�).
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