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ABSTRACT non-increasing order. Let < m be the number of signals, and
define

The performance breakdown of subspace-based parameter esti- & e . 12
mation methods can be naturally related to a switch of vectors S=[01,...,0n], 12)
between the estimated signal and noise subspaces (a “subspace G = [Dnt1,-e s Om]- 1.3)

swap”). In this paper we derive a lower bound for the probabil-

ity of such an occurrence and use it to obtain a simple data-base®imilarly, let{\x, vi }7=,, S andG be the corresponding quanti-
indicator of whether or not the probability of a performance break- ties associated witR. The columns of5 andG span the so-called
down is significant. We also present a conceptually simple tech-signal subspace and noise subspace, respectively, while those of
nique to determine from the data whether or not a subspace swag and( span the correspondiregtimated subspaces. Under the
has actually occurred, and to extend the range of SNR values oabove conditionthe noise eigenvalues, A, +1,. .. , A, are allequal
data samples in which a given subspace method produces accurate o2,

estimates.

Let the symbolM denote a generic subspace-based parameter
estimation method. Suppose the gap between the sets of signal
and noise eigenvalues, i.e. betwegen, ... ,\,} ando?, is large
compared with the sampling quctuations{ﬁm};”zl. Then the as-
signment of the estimated eigenvectors into signal and noise sub-
All subspace-based estimation methods are known to suffer a rapigpaces should, with high probability, be done correctly. In that
degradation in performance as either the signal-to noise ratio (SNR3aseS will be a good approximation t&, the error merely be-

or the number of available snapshats drops below a certain  ing due to small sampling fluctuation. Similar&k};”zl will be
value, called the (SNR aW) threshold, [1]-[3]. Such a dramatic good estimates of\, } 7, .

drop in performance can only be explained by a discontinuity in

the parameter estimates, corresponding to the method in questior)ﬁ‘S either the gap betwed, }7_, ando? decreases (which hap-
=1

as funptio_ns of _the processed data. The sole apparent OIiSCOntinL16ens when the scenario becomes more difficult, e.g. highly corre-
ity, which is typical of all subspace-based methods, is induced bylated signals that are not well separated), or the value¥ ahd

the splitting of themeasurement space into asignal subspace and SNR decrease (leading to greater sampling variabili{)iy}?:l),

anoise subspace. the estimates ol 41, An+2, etc. will with increasing probabil-
ity be larger than the estimates &f, A,,—1, etc. Whenever this

1. INTRODUCTION

Consider a scenario in which we hade snapshots of am x 1 happens aubspace swap has occurred. More precisely, in such
complex vector from the measurement model a case one or more pairs of the 4@, &, }7_, actually esti-
mate noise eigenelements instead of signal eigenelements. For the
y(t) = A(9)s(t) + e(t), (1.1) eigenvalues this is usually no big problem: in most cases of inter-

. . . . . est{f\k}[f:l will still be in the vicinity of the signal eigenvalues
wheres(t) is a signal terme(t) is noise, and) is an unknown ¢y An " gespite the incorrect association. For the eigenvectors,

parameter vector of interest. Suppose that the signal and noisgqyever, the wrong association leads to the use of one or more
terms are uncorrelated with one another and that the latter has COsample noise subspace vectors as estimatesnggletely different
variance matrixo>I. Let R and R be the theoretical and sample

. . . . signal subspace vectors. When this happens, the drop in perfor-
data covariance matrices, respectively. Denote the eigenelemen

R . ) N ) thance ofM is generally significant.
of R by {\¢, vk }i=, with the eigenvalue§), }{-, arranged in
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alone, whether or not a subspace swap has actually occurred. NuSaussian distributed and temporally white, the asymptotié\jn

merical examples involving the standard ESPRIT [8] algorithm for
direction-of-arrival (DOA) estimation are given in Section 4.

2. LOWER BOUND ON BREAKDOWN PROBABILITY
Let {A\x}7,, S, andG denote the estimates §7.}7 ,, S, and

G derived from the eigenelemeptslfafby correct association of
the eigenpairs oR and R. So {\.};L, is equal to{\s}iL, if

distribution of then x 1 element vector

a2 VNIA = A, (Gn = M), (= 0D)] (2.9)
is Gaussian with zero mean and covariance matrix
A2 0
0 otf(m—n)|’ (2.10)
whereA = diag{A1,...,\n}.

Proof: See [5].

no swap has occurred otherwise it is a rearrangement of it. De-

note the smallest correctly associated signal eigenvaluedy=

The above theorem can be used to computeaB follows. Define

mln{)\k}k 1, and the largest correctly associated noise eigenvalue

by Anmax = max{/\k}k n+1- A subspace swap occurs whenever
Asmin IS less thamnmax SO it occurs with probability

PSS = Prob {S\Smin < S\Hmax}- (24)

If the signal eigenvalueg\:};—, are well separated, then the
dominant event in (2.4) corresponds to the case in whijch<

/\nmax-

To study the probability in (2.4), we need to know the distribution
of {A1, ..., An, Anmax}. The asymptotic (with respect 18) distri-
bution of{S\k}Zzl is easily derived. The asymptotic distribution
of Anmax Can also be derived but it is comparatively complicated
[4]. Since we aim at providing a simple formula for predicting a
performance breakdown, we replaGgaxin (2.4) by

é (2.5)
k‘ n+1
Hence, in lieu of (2.4) we consider
JAN N ~2
PLB = Prob {)\smin <o } (26)
=1—Prob {\; >&°, forallk € {1,...,n}}. (2.7)

As 52 < Anmaxit follows that R.s is alower bound on R

Our approach to studying breakdown probability differs in two
ways from that in [2]. In the latter approacksRs lower bounded
by

Pss > Prob {vff%vn < 'kalvk},

(2.8)
k=n+1

which is asymptotically (inV) equal toProb {\, < &2}, which

is a lower bound for B and hence £. However, generally (2.8)

is a less tight bound than,§. Secondly, although the random vari-
ables in (2.8) can be evaluated “exactly” (to within some inherent
numerical approximations [2]), the exact expression for (2.8) is
quite complex and unenlightening. More importantly, it depends
on the eigenvectorfuy } —,, and so cannot be well approximated
in the breakdown region, implying that it cannot be employed to
predict the breakdown effect from the observed data alone.

Theorem 2.1. Under the above assumptions &and its eigen-

values, and assuming that the snapshots are circularly symmetritent estimate of Bs.

2k 2 (o — ani1)/ (A + 0" /(m —n))"/? (2.12)
un EVN(O® = ) /O] + 0" (m—n)?, (2.12)

fork =1,...,n. Itfollows from (2.6) that
Pus =1 —Prob {z; > pp forallk € {1,... ,n}}. (2.13)

The random variable$§z, } ., are asymptotically Gaussian dis-
tributed with zero mean, unit variance, and so-called “product form”
correlationsE{z;z; } = 3;8;, fori # j, where

Bi = o® /(0" + (m —n)AD) .

It follows that computation of B can be reduced to the calcula-
tion of the probability thak Gaussian random variables with zero
means, unit variances and the above product correlation structure
simultaneously take on values larger than the constgat;;—,
defined in (2.12). This probability can be efficiently computed us-
ing the MVTIN algorithm in [6], which is specifically designed for
Gaussian random variables with product correlation structure.

(2.14)

To use the data to make inferences about the probability of a per-
formance breakdown we first consider replacfig}?_; ando?

in equations (2.12) and (2.14) t{ﬁk}{le and

(2.15)
k n+1
Hence, we Ps could be estimated by
Pg =1—Prob {z > jix forallk € {1,... ,n}} (2.16)
where
e = VNG = X)/(Ak + 6" /(m—n)'? (217)

and{z; } are Gaussian random variables with zero mean, unit vari-
ance, and product correlation structure given by

E{ziz} =08  fori#j, (2.18)
with

A2, (2.19)

\Q>

5°/(6" + (m

—n)

Outside the breakdown region the above formula yields a consis-
In the breakdown region, however, Monte
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Carlo simulations show th&s appears to seriously underesti-
mate Rs (see Section 4). There are two reason for this. Intu-
itively, when there is a non-negligible probability of a subspace “\ -
swap,5? tends to underestimaig®, similarly An may overesti-
mate),. This combination causgs, to significantly underesti-
mateu,, and, hence, the observed effect. The remaitingvill
similarly underestimateg, but the overestimation is most pro-
nounced for, .
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To try to correct for the overestimation of,, we will overesti-

mateo? with the intention that the resulting, will be larger and

more accurately estimaje,. Therefore, we propose usiig ;1

as the estimate aof? that we use in equations (2.17) and (2.19).

We denote the resulting estimd®gas. Well above the threshold

region we exped®.s to estimate P very accurately. Below the e e A a e

threshold region, it should certainly be a better estimate Rhan SNR (dB)

however, its performance in the transition region is not obvious.

Therefore Monte Carlo simulations are again be used to asses its

efficacy. Fig. 1. Lower bound Ps (solid) and empirical estimate ok£
(dash), mean values &fs (+) andP.s (0), and proportional of
subspace swaps indicated by DML criterion (dash-dot) over 1000
Monte Carlo trials.
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3. PREDICTING AND COUNTERACTING BREAKDOWN

For a givenm andn, letG denote the set of all possible partition- array (ULA) with halfwavelength spacing. The unit power sources
ings of the eigenelements & into signal and noise subspaces, &€ located at broadside and® from broadside and are highly
and letl’ be an element of that set. Denote @y, the esti- correlated,

mate ofé)_gi_ven by method\ using the p_arti_tioning‘. Now the Esi(t)s¥(t) = V0.9¢i™/% (4.21)
deterministic (concentrated) maximum likelihood (DML) method

estimate® as the argument that minimizes the criterion function wheres; (¢) ands(¢) are the source signals. The noise is assumed
- tr[A(AHA)—lAHR] e.g. [7]. This minimization requires an to be spatially white andv = 150 snapshots are used.
n-dimensional search. The DML criterion suggests the followed

modified estimator, which we shall term the DMt estimator Figure 1 shows the value of.P, as given by (2.13), versus SNR.
. _ . I Also shown is a Monte Carlo determination qf Rlefined as the
Opae = argmin— tr[A(0)(A7 (0)A(6)) A" (6)R], (3.20) number of runs in which an estimated noise eigenvector was closer

to the true signal subspace (as measured by the magnitude of its

In other words we just test the DML criterion at a finite number Projection ontaSs™) than one of the estimated signal eigenvec-
of points determined by the methdel under the various possible ~ tors. That Ps is a lower bound for the subspace swap probability
partitionings. Since the DML estimator contains no discontinuous IS clear.

assignment of eigenvectors in signal and noise subspaces, we ex-

pect that, generally, the partitioning that leads to the valutbat The estimate® g (Which uses, = A,41) andPLg (usings, =
minimizes (3. 20)T say, is in fact equal to the correctly assigned 7" Ax/(m — n)) also appear in Figure 1 (see Figure 2 as

partitioningT". If no subspace swap is detected= I' and the well). Clearly,PLs grossly underestimates.£in and below the
DML- M estimator is the same as that obtained by regular appli- threshold region (note the scale on the upper part of Fig. 2). Fur-
cation of M. thermore, the standard deviationfog is larger than its mean un-

til 1-2dB above breakdown, at which point it becomes negligible.
Note thaig containg"") elements, however, unless the probability Therefore, itis possible to set a threshold such that when operating
of a subspace swap is very high we may reduce the computationa@bove breakdown the probability thak exceed the threshold (i.e.
burden somewhat by safely assuming thatithe m — n, say, a false alarm) is small. However, when the system is operating be-
smallest eigenelemen{ék, Dk} 141 are indeed estimates of low breakdown, there will always be a significant probability that
noise Subspace e|gene|ements We can then removegrath P.g will fall below this threshold (a missed event) for any sensi-
partitions in which one or more of these elgenelements lies in theble choice of false alarm probability. Note tikgg tends to a finite

signal subspace, so reducing its cardinalitfto"). vz::uiwnhlmcfreasn;g ?NR in fact it tends tpsHequation (2.6))
which is also finite for finiteV.

On the other hanBl s overestimatesR above breakdown, and it
tends to underestimate£below breakdown, though is does seem
to be reasonably similar to;Pthrough the transition region. Sev-
For the examples in the Section we consider 2 narrowband eral dB above breakdowR g and its standard deviation become
Gaussian signals impinging onma = 10 element uniform linear ~ negligible. Below breakdown, although the standard deviation of

4. NUMERICAL EXAMPLESAND DISCUSSION
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3. Performance of standard ESPRIT (solid) and DML-

ESPRIT (dash-dot). Also shown is the CRB (0) and the perfor-
mance of standard ESPRIT averaged over those runs in which the

and DML criterion indicated no subspace swap (

P is significant, unlike the case Bfg it is smaller than its mean.
Therefore, if we again set a threshold to achieve a given level of
false alarms when operating at a certain SNR above breakdown, a
detector based oA g should have fewer missed events when the
scenario is really below breakdown that should a detector based onj1]
Pis designed with the same false alarm rate, i.e. the detector based
onP.g is more powerful.

Figure 3 shows the performance of the standard ESPRIT, and DML-
ESPRIT estimators determined from 1000 Monte Carlo trials. The 2]
measure of performance is the square root of the mean-squared
error (MSE) averaged over both sources. It is clear that DML-
ESPRIT outperforms standard ESPRIT. Furthermore, the DML-
ESPRIT criterion can be used to determine whether or not a sub- [3]
space swap has occurred. To illustrate this, the same figure shows
the performance of standard ESPRIT averaged over those runs
in which the DML criterion indicated no subspace swap had oc- [4]
curred. It is seen that removing the detected subspace swap cases
improves the performance quite significantly. However, note that [5]
none of the estimators are close to the CRB in the breakdown re-
gion. This is partly because the ESPRIT algorithm is not statisti-
cally efficient, and partly because the CRB is only a tight bound
in small error situations. Tighter lower bounds, such as the large- [6]
error Barankin bound [9] and its variants, may be considerably
larger than the CRB in the breakdown region. Finally, we notice
that the proportion of trials in which DML-ESPRIT indicated a
subspace swap (see Fig. 1) is remarkably close to the empirical [7]
Pss.

(8]
5. CONCLUSION

This paper has presented a simple theoretical lower bound on the
probability of a subspace swap. Using this bound we found a data- 9]
based statistic that can be used to determine whether the probabil-
ity of breakdown is low or high. A method for deciding whether a
subspace breakdown has actually occurred and a means to correct
for it were also presented.
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