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ABSTRACT

Thispaper addresses the problem of Hidden Markov Model (HMM)
topology estimation in the context of on-line handwriting recog-
nition. HMMs have been widely used in applications related to
speech and handwriting recognition with great success. One major
drawback with these approaches, however, is that the techniques
that they use for estimating the topology of the models (num-
ber of states, connectivity between the states and the number of
Gaussians), are usually heuristically-derived, without optimal cer-
tainty. This paper addresses this problem, by comparing a couple
of commonly-used heuristically-derived methods to an approach
that uses Bayesian Information Criterion (BIC) for computing the
optimal topology. Experimental results on discretely-written let-
ters show that using BIC gives comparable results to using heuris-
tic approaches with amodel that has nearly 10% fewer parameters.

1. INTRODUCTION

This paper addresses the problem of HMM topology selection in
the context of on-line handwriting recognition. With thefast growth
of PDAs (personal digital assistants) and hand-held PCs, as con-
venient alternatives to standard computers with bulky keyboards,
the problem of accurate on-line handwriting recognition is gaining
alot of interest. Hidden Markov models, which have been suc-
cessfully used in speech recognition, are currently being used to
model on-line handwriting as well with great success [1, 2]. Hid-
den Markov models are a type of Markov modeling where the se-
quencing of states modeling the formation of a letter is abstracted
from observations.

In on-line handwriting, each letter shape is typically modeled
by one or more left-to-right HMMs, as shown in Figure 2. Solid
lines indicate transitions between states when a feature vector is
observed. Typicaly, a mixture of Gaussians is used to model the
distribution of feature vectors at the state-level. Estimating the
topology of the HMM, defined by the number of states, the con-
nectivity between the states and the number of Gaussians used to
model the distribution of feature vectors in each state, will be the
focus of this paper.

There are two commonly-used heuristic approaches for select-
ing the topology of a HMM in on-line handwriting. The first as-
sumes the same topology for all the HMMs. This however cannot
be the best topology for hand-written |etters, where there is large
variation between letters. For example, aHMM fora’. will not be

appropriate for a’W’ because a’ W' will typically be longer than a
’. and hence should be modeled by alonger state sequence. Also,
the number of Gaussians used to model distribution of feature-
vectors might vary depending on the complexity of the shapes.
Hence, in common practice, HMM-based handwriting recognition
systems use non-uniform topology across letters, with each let-
ter being modeled by a HMM with varying number of states and
Gaussians. A commonly used heuristic approach for determining
the number of states for a HMM is to make it the average num-
ber of feature-vectors for the letter modeled by the HMM, or as
the mode of the feature-vector-count histogram for the letter. This
gives better performance compared to systems with the same num-
ber of states for all HMMs. Other parameters of the topology are
typicaly estimated as follows: the number of Gaussians is esti-
mated as the minimum number required to efficiently model the
training data, while also generalizing to unknown data sets, and
the connectivity between the states is picked so as to alow for all
possible variations of forming the character.

Various approaches to optimal model selection have been pro-
posed by statisticians and information theorists [3, 4]. A common
approach uses the Bayesian Information Criterion (BIC) for select-
ing the model order. This approach uses the sum of the likelihood
of the data and a penalty term on the number of parameters of
the model as the optimization criterion for computing the ” best”
model. Such acriterion isdesirable, asit obeys the Occam’s razor
principle which statesthat we should select the simplest model that
best fits the data, among competing complexities. It is the princi-
ple of parssimony: A model should be simple enough to allow for
less computation and complex enough to be able to capture data
specifics. The BIC's penalty term also depends on the number of
data points, which makes it attractive for model selection asit may
prevent model over-fitting [4].

This paper investigates the use of the Bayesian Information
Criterion for estimating the number of HMM states, the connectiv-
ity between states and the number of Gaussian mixtures per state.
Experimental results on a database of discretely-written letters by
various writers show that the BIC criterion can be used to compute
simpler models that perform as well as the ones developed using
heuristic approaches.

The rest of the paper is organized as follows. Section 2 gives
an overview of the overall HMM-based on-line handwriting recog-
nition system. Section 3 gives details of two topology estimation
schemes compared in this paper: the histogram-based method and
the BIC-based selection. Section 4 is dedicated to experimental



investigations. Finally, Section 5 provides discussion and conclu-
sions.

2. SYSTEM DESCRIPTION

2.1. Pre-processing

The recognizer uses a electronic tablet or a digitizer, which cap-
tures the pen-tip position (x:,y:) as afunction of time during writ-
ing. Thisisin contrast to off-line handwriting recognition which
treatstheinput ink asan image and appliestypical image-processing
techniques. The (x+,y:) coordinates collected by the digitizer (the
"digital ink") are passed through the preprocessor, where denois-
ing, segmentation, normalization, resampling and feature extrac-
tion are performed [5].

To increase robustness to writer style variability, each letter
is modeled using a set of lexeme models. Lexemes are letter al-
lographs which are derived manually or through data clustering
techniques. For illustration, examples of lexemes are shown in
Figure 1. Typically, each lexeme is modeled by an HMM.

a0 al to t1
z0 z1 kO k1
Fig. 1. Different writing styles modeled by different lexemes.

2.2. HMM topology
Figure 2 shows a fully connected | eft-to-right HM M.

Fig. 2. A 4-state lexeme model.

The model is a fully continuous left-to-right HMM with two
kinds of states: a set of emitting states (solid circle) and a non-
emitting state (dashed circle). The emitting states are associated
with observations and are modeled by a mixture of Gaussians,
while the non-emitting state is not associated with any observa-
tion. The transitions between emitting states are denoted by solid
lines and the transition from an emitting state to the non-emitting
state is denoted by dashed lines.

The sequence of observations must end at the non-emitting
state when the last feature-vector has been processed. This is
particularly useful to discriminate between two letters, when one
letter is a subset of the other. The non-emitting state acts like a
penalty term on the larger model, hence enhancing discrimination.

Another characteristic of this model is state skipping, where
forward jumping from one emitting stateto any other emitting state

isallowed. Thisisauseful featurein handwriting asit helpsto deal
with missing strokes.

2.3. Training

We used the standard Baum-Welch [6] algorithm to estimate the
parameters of the models. However, modifications had to be made
to alow for non-emitting states. This was done by a slight modi-
fication of the transition probability matrix and distribution proba-
bility matrix as follows.

Consider astandard transition matrix foraHMM with n states

air  aiz -+ Qin
az2 -+ QA2n

Ao = . - @
a’l’L’I’L

where a;; is the transition probability from state i to state j. By
adding a non-emitting state at the last state, the transition matrix
becomes

air a2 A1n  A1(n+1)
a22 a2n A2(n+1)
An = : : : @)
Ann  Gp(n41)
1

where a; (1) isthe transition probability from the emitting state
1 to the non-emitting state n + 1.

Similarly, the standard observation matrix is usualy of the
form

bir b2 -+ bin
b2 b2z - b2y

B, = . . s ©)
bri1 br2 -+ brp

where b; isthe probability of observing feature ¢ when in state 4.
By taking into account the non-emitting state, the new observation
matrix is

birn bz -+ bin O
ba1 b2z -+ b2y O
Bo=| ¢ - @
bri br2 -+ brn 0
0 0o - 0 1

Thisisequivalent to assigning avirtual featureto staten + 1,
at the end of the observation sequence and disallowing any other
feature at that state. Baum-Welch training is then applied as usua
using the transformed matrices.

3. TOPOLOGY OPTIMIZATION

3.1. Heuristic topology estimation

There are a number of heuristic approaches for computing the
number of states for each model :



1. Compute the number of states for a lexeme model as the
minimum number of feature-vectors observed for the lex-
eme.

2. Computethe number of statesasthe average number feature-

vectors for the lexeme.

3. Compute the number of states as the mode of the feature-
vector-count histogram. This approach is the most com-
monly used approach and isthe heuristic approach used for
comparison in this paper [2].

Other parameters of the topology are typically estimated as
follows: the number of Gaussians is estimated as the minimum
number required to model the training data well, while also gen-
eralizing to other data sets. The connectivity between the states
is picked to allow for all possible variations of forming the letter.
These heuristic approaches provide asimple method for estimating
the topology of the model, but are not optimal.

3.2. Bayesian Information Criterion

Let D denoteadataset (X1, ..., Xn) whichisspecified by avec-

tor of d unknown parameters 8 = (61, ..., 6,) . Before observing

the data, our belief in 6 is described by the prior probability p(9).
Likelihood of the data can be written as

p(D) = / (D | 6)p(8)db. (5

Assume that data D contains n independent and identically
distributed observations. Then, using a Taylor series approxima-
tion and assuming that the prior contains the same information as
an average observation, it can be shown [4, 7] that

log p(D) = log p(D | é) — g logn + O(n_%) (6)

where 4 is the maximum likelihood estimate of 6.
Hence, model parameter election from a pool of models using
the BIC criterion can be done as follows:

N
0" = mAax{Z log P(X,|0:) —

i p=1

%logN}7 i=1,...,1 (7)

——
penalty

where X, isthe n-th observation, f; the maximum likelihood es-
timate of the parameter set of the i-th model, d; is the number of
parametersin the i-th model, NV is the number of observations and
I isthetotal number of models. BIC has been proposed as amodel
selection criterion and has been widely and successfully applied to
filter order estimation or clustering [8]. It uses a combination of
two terms: a maximum likelihood term and a penalty term that
depends on the number of parameters of the model and the num-
ber of data. The penalty term acts as measure of complexity that
penalizes large-size models. The likelihood of the model tends to
increase as the model size increases, whereas the penaty termin-
creases with the size of the model. The sum of the two helps pick
the optimal model from a set of available models.

Figure 3 showsthe log likelihood of the data, the penalty term
and the sum of the two as a function of the number of states for
models corresponding to theletters'E’,'F',’G’, "H’. All the mod-
elsweretrained using 5 Gaussian mixtures per state. As seen from
the plots, the maxima of the curves can easily be identified.
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Fig. 3. Log likelihood, penalty and BIC vs. number of states (fixed
5 Gaussian mixtures per state).

4. EXPERIMENT RESULTSAND DISCUSSION

The database used in this paper, collected by the IBM Pen Tech-
nologies Group, consists of isolated |etters, written by 174 writers.
The data set contains 106,395 tokens. We used 96,563 tokens for
training (corresponding to 157 writers) and 9,832 tokens for test-
ing, (corresponding to 17 writers). The set of 92 characters were
manually pre-clustered into 366 lexemes according to similarity
between writing styles. The set of characters includes English let-
ters, digits, and keyboard symbols. The HMM structure proposed
in Section 2 was used to build the lexeme models. Model training
was done at the lexeme level and the recognition rates were com-
puted at the character level; arecognition result was considered to
be in error only if it recognized a lexeme as being a lexeme of a
different character.

Two sets of experiments were performed. Inthefirst, the num-
ber of states was varied while the number of Gaussians was fixed
at 5. Table 1 shows a summary of the comparative results of the
histogram-based heuristic approach for computing the number of
states with the approach using BIC.

Table 1. Comparison between histogram-based and BIC methods

l Method || Histogran | BIC ||
Number of test tokens 9832
Number of lexemes 366
Number of Gaussians 5
Accuracy 89.6% 90.0%
Total number of states 2304 2111

The results indicate that the histogram-based heuristic method
and the BIC method give similar recognition accuracy. However,
using BIC picks simpler models that give comparable accuracies
to the histogram-based approach. The models have 10% fewer
parameters.

Table 2 shows some examples where using the BIC approach
gives significant improvement over the histogram-based approach.
Lezx denotes the lexeme index, T'oken denotes the total number
of testing tokens, H ¢ denotes the number of correctly recognized



tokens using the histogram-based method, Hn denotes the num-
ber of states selected by histogram-based method. Similarly, Be
and Bn denote the number of correctly recognized tokens and the
selected number of states, using BIC. In all the cases, using BIC
gives comparable accuracy with amuch simpler model (as shown
for the lexeme'F6' in the table) or improved accuracy with avery
small increase in model complexity.

In the above experiment, the number of Gaussian mixtures
was fixed while the number of states was varied and the optimal
number of states computed. The next experiment is an attempt to
understand whether it is more efficient to increase the number of
states or the number of Gaussians when looking for more complex
models. In order to understand this, the following experiment was
performed. The sum of the data likelihood and the penalty term
using BIC for a single lexeme model was plotted as a function of
the number of states of the HMM and the number of gaussians per
state as shown in Figure 4.

500

12 10 8 6
mixture

Fig. 4. sum of the data likelihood and the penalty .vs. number of
states and mixtures

The plots as seen above are relatively flat on the top. There
is no single maximum value that can be chosen through tuning
of the number of states and the number of Gaussians. One can
interpret this result to mean that increasing the number of statesis
equivalent to increasing the number of Gaussians when using BIC.
This isintuitive because the penalty term of BIC only depends on
the number of parameters of the model and does not distinguish
between the types of parameters. Hence, it may be desirable to
have a penalty term that evaluates the contributions of parameters
more specifically to be able to better analyze the cost of increasing
the number of parameters.

5. CONCLUSION

In this paper, we have investigated the use of the Bayesian Infor-
mation Criterion (BIC) for estimating the topology of a HMM.
Results using the BIC were compared to the histogram-based ap-
proach. Results show that using BIC selects models that give sim-
ilar performance as those selected using heuristically-derived ap-
proaches, but having 10% fewer parameters. Although we have
studied this technique in the context of handwriting recognition,
the approach is general and can be applied to other HMM-based
tasks.

Table 2. Examples of the improvement from histogram to BIC.
Lexeme are labeled as a character followed by an index (see text
for legend).

[ Lex ]| Token [ Hc [ Hn | Bc | Bn ||

#1 6 6 8 6 6
H4 21 21| 13| 21| 9
F6 12 12 | 13 | 12| 8
+0 62 30| 4 | 40| 5
.0 60 24| 1 | 32| 3
00 41 18| 5 | 25| 6
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