ESTIMATION OF SINUSOIDSIN AUDIO SIGNALSUSING AN
ANALYSIS-BY-SYNTHESISNEURAL NETWORK

Guill ermo Garcia

Credive Advanced Techndogy Center, 1500Green Hill s Rd., Scotts Valley, CA 95067/ guill e@atc.credive.com
CCRMA, 626 LomitaDr., Stanford University, CA 943058180/ guill e@ccrma.stanford.edu

ABSTRACT

In this paper we present a new method for estimating the
frequency, amplitude and phese of sinusoidal comporents in
audio signals. An analysis-by-synthesis gstem of neural
networks is used to extract the sinusoidal parameters from the
signal spedrum a ead window position d the Short-Term
Fourier Transform. The system attempts to find the set of
sinusoids that best fits the spedral representation in a least-
squares ense. Overcoming a significant limitation o the
traditional approach in the at, preliminary detedion and
interpolation o spedral pe&s is not necessary and the method
works even when spedra peds are not well resolved in
frequency. This alows for shorter analysis windows and
therefore better time resolution d the estimated sinusoida
parameters. Results have dso shown robust performance in
presence of high levels of additive noise, with signa-to-noise
ratiosaslow as0 dB.

1. INTRODUCTION

The representation o audio signals in terms of time-varying
sinusoidal comporents is well known in the fields of computer
music ([2][6][7]), speed ([1]), and more recently audio coding
([3][4]). The sinusoidal model represents a signa x(n) with
sampling period T as a finite sum of sinusoids with time-varying
frequencies f, and amplitudes a,:

P
x(n) = 3 ap(n)cos@ (n)) @
p=1 p

where the phase ¢, is upcdated as
¢ (n+)=¢ (n)+2rf (MT and ¢ (0)=¢ @)
p p p p p

Typicdly, the model parameters are estimated from the Short-
Time Fourier Transform (STFT) representation d the signa
being modeled, by means of automatic analysis techniques. The
traditional method in the at ([1]) starts by performing an
exhaustive search for “spedra pe&s’, i.e. main lobes of the
analysis window, in the Discrete Fourier Transform (DFT)
magnitude spedrum. The short-term frequency and amplitude of
the sinusoids are then estimated by polynomia interpolation
between the DFT points of ead spedra pe&k. A second step
consists of matching the peaks between successve STFT frames
to determine the time-varying frequency and amplitude
trajecories. Several tradking algorithms have been developed
for this purpose ([1][ 2][ 5][ 6])-

The traditional method works well for low bandwidth speet
and relatively stationary audio signals. However, the ssaumption
that red audio signals can be decomposed in terms of sinusoids
which are stationary enough, and sufficiently resolved in
frequency, to be seen as discrete peas in the spedrum is not
valid for many types of audio signals. Polyphoric music or
monophoiic sounds with fast pitch variations are often poaly
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Fig. 1: Analysis-by-Synthesis Neural Network System.

modeled since the pe& detedion agorithm fails to find
unresolved peeks. Furthermore, the interpolation on
deteded pedks yields inacairate results due to the temporal
smocthing introduced by the aaysis window, the
influence of neighba peéks, and the pe&k shape distortion
introduced by additive noise.

In this paper we propose a method for estimating the
sinusoidal parameters from the DFT spedrum withou any
pe&k detedion/interpdation, based on an analysis-by-
synthesis system of neural networks. The method alows
for shorter analysis windows and thus less parameter
smoathing, takes into acourt the dfed of overlapping
peds, andisrobust in presence of additive noise.

2. METHOD DESCRIPTION

Our method is based on the neural network analysis-by-
synthesis g/stem depicted in Figure 1. For a given input
DFT X(k), the system attempts to find an ouput DFT Y (k)
that best fits X(k) in a leat-squares ®nse, i.e. that
minimizes the energy of the DFT estimation error E(k).

The synthesis dage amprises a neural network (NNg) that
maps a set of P sinusoids onto the DFT of their sum Y (k).
The sinusoidal parameters are mded wsing three vedors:
frequencies F(p), red amplitudes A.(p) and imaginary
amplitudes Ai(p) (i.e. amplitude axd phese ae wded in
catesian coordinates). The synthesis neural network NNgis
not adaptive but is designed by hand to perform the
synthesis mapping.

The aalysis dage mmprises a typicd adaptive, single-
layer or two-layer neural network (NN, with sigmoid
norlineaities, fully or partially conrneaed ([8][9]). It maps
an inpu DFT X(k) onto the sinusoidal parameters F(p),
A(p) and Ai(p).

For eath STFT spedrum X(K), the neural network system
is trained with the badk-propagation algorithm ([8]) so asto
perform an identity map between inpu and ouptt.
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Fig. 2: Neural network designed by handto synthesize the cantral five paints of the andysiswindow DFT (time origin of the DFT isat

the center of the andysiswindow).

Severa adaptation iterations are performed while holding the
inpu spedarum X(k) until the energy of the estimation error
E(k) is below a spedfied threshold, or for a spedfied
maximum number of iterations. Since the synthesis network
NN;s is designed by hand to perform the synthesis mapping,
only the weights of the anaysis network NN, are aapted
during training. The synthesis stage does neel to be
implemented in the form of a neural network in order for the
output error E(K) to be badk-propagated through it during
training of NN,

After convergence the output of the analysis network NN,
corresponds to a set of sinusoidal parameters F(p), A(p) and
Ai(p) that best model the inpu spedrum X(K) in a least-
squares nse.

2.1 Design of the Synthesis Neural Network

The building block of the synthesis network NNs is a “lobe
synthesizer”, a sub-network that maps a red-valued amplitude
A:(p) or Ai(p) and frequency F(p) of asingle sinusoid orto a
spedfied number of main-lobe points of the analysis window
DFT. Amplitude is expressd in linea scde and frequency is
expresed as an dffset with resped to a reference DFT point
asciated with sinusoid p. Thus, F(p) = 0 means that the
sinusoid frequency falls exadly on the reference DFT point.
DFTs with time-origin at the center of the analysis windowv
are used so that lobe phase is constant, thus alowing for red
and imaginary parts of the lobes to be synthesized separately.
The lobe synthesizer is depicted in figure 2.

The nonlineaities of the first layer correspondto the shape of
the window main lobe in dB. The first layer produces a
normalized lobe in dB scde cetered on F(p). The second
layer de-normali zes the lobe by adding the input amplitude in
dB, and transforms the lobe to linea scde. The rest of the
graph takes care of applying the wrred sign (+ or -) to the
lobe: it generates both pasitive and regative lobe versions and
then uses a large offset, which is function d the amplitude
sign, to gate the incorred signed version and let pass the
corred one.

The synthesis neural network NN; uses an array of such lobe
synthesizer units to generate one lobe for ead sinusoid at its
input. The lobe-synthesizer outputs are overlap-added orto
the red and imaginary DFT buffers Y.(k) and Y;Kk)
respedively, as shown in figure 3 (for Y (k) only).

Eadh of the P sinusoids at the input of the synthesis network
is asociated with a reference DFT point. The designer
choases the number of sinusoids P, the asciation between
inpu sinusoids and reference DFT points, and the maximum
excursion d the frequency off set.

The complete synthesis network NNg uses the previously
described unt to synthesize the red and imaginary parts of
the estimated DFT Y (k), as sxown in Figure 4.

2.2 Estimation Error Weighting

The estimation error E(k) must be expressed in signed linea
scde in order for phase information to be tradked. However,
we wish the aror on the spedra magnitude, expressd in
Dedbels, to be uniform over the frequency axis.



NNreaI-spectrum
— A
F(1) 4
A(D) NNre-obe —i
i(j;) NNre-obe i
F3) NNred-iobe | >
AB3) > V(K
I
@—>
—>
Z(:;) -2 NNrea-iobe —j
D> v

Fig. 3: Synthesis of the real spedrum Y,(k) by overlap-add d
lobe-synthesizer outputs.

i NNs I
v A
Ai(p) —:% NN c.pedrum :%
Fp) < v YW
AQ) ] NNewgeam —>
! ; v

Fig. 4: Synthesis of the estimated complexspedrum Y(k).

To adieve this, we use an error weighting function W(k)
defined as:

a
W(K) = (20|oglo\ X (k)| - 20|oglo\v(k)\) ©)
with a=4 typicdly. The aror used to train the network is then

modified as E'(k) = [CW(K).E(k)] , where C is a rescaling
fador such that the aror energy remains unchanged, i.e.:

N/2 2 /N/2 2
c=] 3 [E®/ 3 WKEK) @
k=0 k=0

This rescding is necessary to avoid divergence Perceptual
error weighting could aso be perfformed by using
psychoawustics criteria, in order to oltain better estimation at
perceptually relevant regions of the specrum.

3. EXPERIMENTSAND RESULTS

In the figures below, the input spedrum X (K) is represented in
solid line, and the dotted line @rresponds to the estimated
spedrum Y (K) at the output of the synthesis network. The ‘X’
marks correspond to the frequency and magnitude (phase is
not shown) of simulated sinusoids, and the ‘0’ marks indicae
the frequencies and amplitudes estimated by the aalysis
network after convergence The horizontal axis represents the
normalized frequency (f.T.N) where T is the sampling period
and N is the DFT length. Amplitude in dB is represented on
the verticd axis. We used T=1/16000sec and N=64. A two-
layer analysis network was initiaized with random small
weights in the range [-0.1; 0.1] and trained using back-
propagation during 300 iterations with an adaptation constant
pu=0.01.

Figure 5 shows the results on a signal with five sinusoids;
with three pe&s poaly resolved in frequency (lessthan 3
DFT bins apart). The mean absolute estimation error on the
normali zed frequency was 0.06, i.e. 6% of the DFT frequency
resolution. The mean amplitude estimation error was 0.2dB,
and mean phese aror was 0.008 radians. The etimation
errors on the unresolved pesks were of the same order of
magnitude & on the resolved pess. Figure 6 shows the
results on a sum of eight sinusoids extremely close in
frequency (abou 2 DFT bins, equivaent to an anaysis
window size of two periods for a harmonic signal, whereas
the minimum required by the pe& detedion approadc is 4
periods). The traditional pe&k detedion approach would have
clealy failed in this case. Six of the sinusoids were estimated
as sngle sinusoids, whereas the other two were modeled as
sinusoid pairs. Over the six corredly estimated sinusoids, the
mean namalized-frequency error was 0.08 DFT bhins, mean
amplitude eror was 0.6dB and mean phese eror was 0.01
radians.

Figures 7 and 8show the results onasigna consisting of five
sinusoids plus additive white Gausdan ndse, with signal-to-
noise ratios (SNR) of 3dB and OB respedively. Mean
normali zed frequency, amplitude and phase etimation errors
were of 0.15 and 028 DFT bins, 1.05and 119 dB and 006
and 009 respedively.

Finaly, figure 9 shows a test on a red speed signa with an
analysiswindow of two and a half periodsand N = 128

4. CONCLUSIONS

We have presented a new spedral anaysis-by-synthesis
method kased on a neura network system, which improves
the extradion o sinusoidal parameters from an audio signal.
The method eliminates the neal for spedral pesk detedion
and interpdation, a main weg& point of the traditional
approach in the at. Instea, the sinusoidal parameters are
found lty global optimization acording to a least-squares
criterion, thus taking into acourt the dfeds of overlapping
spedral peks. Results have shown that our method performs
well even when pe&s are not resolved, allowing for shorter
analysis windows (2 instead of 4 periods for harmonic
signas) and thus improving the time resolution d the
sinusoidal parameters. Additionally, performancein presence
of high levels of additive white noise was robust.
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Fig. 5: Fivesinusoid signd with threeunresolved peaks.
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Fig. 6: Eight-sinusoid signd with poa frequency resolution.
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Fig. 7: Fivesinusoids embedded in white Gaussan nase with
SNR=3 dB.
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Fig. 8: Fivesinusoids embedded in white Gaussan nase with
SNR=0 dB.
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