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ABSTRACT 

 
In this paper we present a new method for estimating the 
frequency, amplitude and phase of sinusoidal components in 
audio signals. An analysis-by-synthesis system of neural 
networks is used to extract the sinusoidal parameters from the 
signal spectrum at each window position of the Short-Term 
Fourier Transform. The system attempts to find the set of 
sinusoids that best fits the spectral representation in a least-
squares sense. Overcoming a significant limitation of the 
traditional approach in the art, preliminary detection and 
interpolation of spectral peaks is not necessary and the method 
works even when spectral peaks are not well resolved in 
frequency. This allows for shorter analysis windows and 
therefore better time resolution of the estimated sinusoidal 
parameters. Results have also shown robust performance in 
presence of high levels of additive noise, with signal-to-noise 
ratios as low as 0 dB.  
 

1. INTRODUCTION 
 
The representation of audio signals in terms of time-varying 
sinusoidal components is well known in the fields of computer 
music ([2][6][7]), speech ([1]), and more recently audio coding 
([3][4]). The sinusoidal model represents a signal x(n) with 
sampling period T as a finite sum of sinusoids with time-varying 
frequencies fp and amplitudes ap: 
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Typically, the model parameters are estimated from the Short-
Time Fourier Transform (STFT) representation of the signal 
being modeled, by means of automatic analysis techniques. The 
traditional method in the art ([1]) starts by performing an 
exhaustive search for “spectral peaks” , i.e. main lobes of the 
analysis window, in the Discrete Fourier Transform (DFT) 
magnitude spectrum. The short-term frequency and amplitude of 
the sinusoids are then estimated by polynomial interpolation 
between the DFT points of each spectral peak. A second step 
consists of matching the peaks between successive STFT frames 
to determine the time-varying frequency and amplitude 
trajectories. Several tracking algorithms have been developed 
for this purpose ([1][2][5][6]).  
The traditional method works well for low bandwidth speech 
and relatively stationary audio signals. However, the assumption 
that real audio signals can be decomposed in terms of sinusoids 
which are stationary enough, and suff iciently resolved in 
frequency, to be seen as discrete peaks in the spectrum is not 
valid for many types of audio signals. Polyphonic music or 
monophonic sounds with fast pitch variations are often poorly  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Analysis-by-Synthesis Neural Network System.  
 
modeled since the peak detection algorithm fails to find 
unresolved peaks. Furthermore, the interpolation on 
detected peaks yields inaccurate results due to the temporal 
smoothing introduced by the analysis window, the 
influence of neighbor peaks, and the peak shape distortion 
introduced by additive noise. 
In this paper we propose a method for estimating the 
sinusoidal parameters from the DFT spectrum without any 
peak detection/interpolation, based on an analysis-by-
synthesis system of neural networks. The method allows 
for shorter analysis windows and thus less parameter 
smoothing, takes into account the effect of overlapping 
peaks, and is robust in presence of additive noise. 
 

2. METHOD DESCRIPTION 
 
Our method is based on the neural network analysis-by-
synthesis system depicted in Figure 1. For a given input 
DFT X(k), the system attempts to find an output DFT Y(k) 
that best fits X(k) in a least-squares sense, i.e. that 
minimizes the energy of the DFT estimation error E(k). 
The synthesis stage comprises a neural network (NNs) that 
maps a set of P sinusoids onto the DFT of their sum Y(k). 
The sinusoidal parameters are coded using three vectors: 
frequencies F(p), real amplitudes Ar(p) and imaginary 
amplitudes Ai(p) (i.e. amplitude and phase are coded in 
cartesian coordinates). The synthesis neural network NNs is 
not adaptive but is designed by hand to perform the 
synthesis mapping. 
The analysis stage comprises a typical adaptive, single-
layer or two-layer neural network (NNa) with sigmoid 
nonlinearities, fully or partially connected ([8][9]). It maps 
an input DFT X(k) onto the sinusoidal parameters F(p), 
Ar(p) and Ai(p). 
For each STFT spectrum X(k), the neural network system 
is trained with the back-propagation algorithm ([8]) so as to 
perform an identity map between input and output. 

 

NNs 
 

NNa 
+ 

- 
X(k) 

Analysis 
Neural 

Network 

Synthesis 
Neural 

Network 

Y(k) E(k) 

Vectors of 
Sinusoidal 
Parameters 

F(p) 

Ar(p) 

Ai(p) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Neural network designed by hand to synthesize the central five points of the analysis window DFT (time origin of the DFT is at 
the center of the analysis window). 
 
Several adaptation iterations are performed while holding the 
input spectrum X(k) until the energy of the estimation error 
E(k) is below a specified threshold, or for a specified 
maximum number of iterations. Since the synthesis network 
NNs is designed by hand to perform the synthesis mapping, 
only the weights of the analysis network NNa are adapted 
during training. The synthesis stage does need to be 
implemented in the form of a neural network in order for the 
output error E(k) to be back-propagated through it during 
training of NNa. 
After convergence, the output of the analysis network NNa 
corresponds to a set of sinusoidal parameters F(p), Ar(p) and 
Ai(p) that best model the input spectrum X(k) in a least-
squares sense.  
 
2.1 Design of the Synthesis Neural Network 
 
The building block of the synthesis network NNs is a “lobe 
synthesizer” , a sub-network that maps a real-valued amplitude 
Ar(p) or Ai(p) and frequency F(p) of a single sinusoid onto a 
specified number of main-lobe points of the analysis window 
DFT. Amplitude is expressed in linear scale and frequency is 
expressed as an offset with respect to a reference DFT point 
associated with sinusoid p. Thus, F(p) = 0 means that the 
sinusoid frequency falls exactly on the reference DFT point. 
DFTs with time-origin at the center of the analysis window 
are used so that lobe phase is constant, thus allowing for real 
and imaginary parts of the lobes to be synthesized separately. 
The lobe synthesizer is depicted in figure 2. 

The nonlinearities of the first layer correspond to the shape of 
the window main lobe in dB. The first layer produces a 
normalized lobe in dB scale centered on F(p). The second 
layer de-normalizes the lobe by adding the input amplitude in 
dB, and transforms the lobe to linear scale. The rest of the 
graph takes care of applying the correct sign (+ or -) to the 
lobe: it generates both positive and negative lobe versions and 
then uses a large offset, which is function of the amplitude 
sign, to gate the incorrect signed version and let pass the 
correct one. 
The synthesis neural network NNs uses an array of such lobe 
synthesizer units to generate one lobe for each sinusoid at its 
input. The lobe-synthesizer outputs are overlap-added onto 
the real and imaginary DFT buffers Yr(k) and Y i(k) 
respectively, as shown in figure 3 (for Yr(k) only). 
Each of the P sinusoids at the input of the synthesis network 
is associated with a reference DFT point. The designer 
chooses the number of sinusoids P, the association between 
input sinusoids and reference DFT points, and the maximum 
excursion of the frequency offset.  
The complete synthesis network NNs uses the previously 
described unit to synthesize the real and imaginary parts of 
the estimated DFT Y(k), as shown in Figure 4. 
 
2.2 Estimation Error Weighting 
 
The estimation error E(k) must be expressed in signed linear 
scale in order for phase information to be tracked. However, 
we wish the error on the spectral magnitude, expressed in 
Decibels, to be uniform over the frequency axis. 
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Fig. 3: Synthesis of the real spectrum Yr(k) by overlap-add of 
lobe-synthesizer outputs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Synthesis of the estimated complex spectrum Y(k). 
 
To achieve this, we use an error weighting function W(k) 
defined as: 
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with α=4 typically. The error used to train the network is then 

modified as [ ])().(.)(' kEkWCkE = , where C is a rescaling 

factor such that the error energy remains unchanged, i.e.: 
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This rescaling is necessary to avoid divergence. Perceptual 
error weighting could also be performed by using 
psychoacoustics criteria, in order to obtain better estimation at 
perceptually relevant regions of the spectrum. 
 

3. EXPERIMENTS AND RESULTS 
 
In the figures below, the input spectrum X(k) is represented in 
solid line, and the dotted line corresponds to the estimated 
spectrum Y(k) at the output of the synthesis network. The ‘x’ 
marks correspond to the frequency and magnitude (phase is 
not shown) of simulated sinusoids, and the ‘o’ marks indicate 
the frequencies and amplitudes estimated by the analysis 
network after convergence. The horizontal axis represents the 
normalized frequency (f.T.N) where T is the sampling period 
and N is the DFT length. Amplitude in dB is represented on 
the vertical axis. We used T=1/16000 sec and N=64. A two-
layer analysis network was initialized with random small 
weights in the range [–0.1; 0.1] and trained using back-
propagation during 300 iterations with an adaptation constant 
µ=0.01. 
Figure 5 shows the results on a signal with five sinusoids; 
with three peaks poorly resolved in frequency (less than 3 
DFT bins apart). The mean absolute estimation error on the 
normalized frequency was 0.06, i.e. 6% of the DFT frequency 
resolution. The mean amplitude estimation error was 0.2dB, 
and mean phase error was 0.008 radians. The estimation 
errors on the unresolved peaks were of the same order of 
magnitude as on the resolved peaks. Figure 6 shows the 
results on a sum of eight sinusoids extremely close in 
frequency (about 2 DFT bins, equivalent to an analysis 
window size of two periods for a harmonic signal, whereas 
the minimum required by the peak detection approach is 4 
periods). The traditional peak detection approach would have 
clearly failed in this case. Six of the sinusoids were estimated 
as single sinusoids, whereas the other two were modeled as 
sinusoid pairs. Over the six correctly estimated sinusoids, the 
mean normalized-frequency error was 0.08 DFT bins, mean 
amplitude error was 0.6dB and mean phase error was 0.01 
radians. 
Figures 7 and 8 show the results on a signal consisting of five 
sinusoids plus additive white Gaussian noise, with signal-to-
noise ratios (SNR) of 3dB and 0dB respectively. Mean 
normalized frequency, amplitude and phase estimation errors 
were of 0.15 and 0.28 DFT bins, 1.05 and 1.19 dB and 0.06 
and 0.09 respectively. 
Finally, figure 9 shows a test on a real speech signal with an 
analysis window of two and a half periods and N = 128.  
 

4. CONCLUSIONS 
 
We have presented a new spectral analysis-by-synthesis 
method based on a neural network system, which improves 
the extraction of sinusoidal parameters from an audio signal. 
The method eliminates the need for spectral peak detection 
and interpolation, a main weak point of the traditional 
approach in the art. Instead, the sinusoidal parameters are 
found by global optimization according to a least-squares 
criterion, thus taking into account the effects of overlapping 
spectral peaks. Results have shown that our method performs 
well even when peaks are not resolved, allowing for shorter 
analysis windows (2 instead of 4 periods for harmonic 
signals) and thus improving the time resolution of the 
sinusoidal parameters. Additionally, performance in presence 
of high levels of additive white noise was robust. 
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Fig. 5: Five-sinusoid signal with three unresolved peaks. 

 
Fig. 6: Eight-sinusoid signal with poor frequency resolution. 

 
Fig. 7: Five sinusoids embedded in white Gaussian noise with 
SNR =3 dB. 

 
Fig. 8: Five sinusoids embedded in white Gaussian noise with 
SNR = 0 dB. 

 
Fig. 9: Real speech signal, with an analysis window 2.5 
fundamental periods long. 
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