
A PARTIAL-RESULT-REUSE ARCHITECTURE AND ITS DESIGN TECHNIQUE FOR
MORPHOLOGICAL OPERATIONS

Shao-Yi Chien∗, Shyh-Yih Ma, and Liang-Gee Chen

DSP/IC Design Lab
Department of Electrical Engineering, National Taiwan University

1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
lgchen@video.ee.ntu.edu.tw

ABSTRACT

This paper proposes a new cost-effective architecture for mathe-
matical morphology named Partial-Result-Reuse (PRR) architec-
ture. For a lot of real-time applications of mathematical morphol-
ogy, the hardware implementation is necessary; however, the hard-
ware cost of almost existing morphology architectures is too high
when dealing with large structuring elements. With partial-result-
reuse concept and self-affinity property of general structuring ele-
ments, the proposed architecture is more cost-effective and more
general than existing morphology architectures. It can deal with
morphological operations with arbitrary structuring elements and
can be used for other semi-group operations, and only 2�log2 n�
comparators are needed for nxn structuring elements. Simulation
shows this architecture can dramatically reduce hardware cost of
morphological operations with all kinds of structuring elements.

1. INTRODUCTION

Mathematical morphology[1], which is based on set theory,
is very important in the field of digital image processing and com-
puter vision. It contains a lot of useful tools for shape-based image
processing and can be used for image analysis, image compres-
sion, error correction, and video segmentation[2], which is a key
pre-processing of MPEG-4 coding systems. For real-time applica-
tions, high-speed morphological operations are urgently required
and hardware implementation is necessary.

Many architectures for morphological operations have been
proposed [3][4][5][6]. In these architectures, however, the hard-
ware cost becomes enormous when encountering large structuring
elements. Consequently, a more cost-effective architecture should
be developed.

To avoid redundant computation, the partial results generated
during the calculation process should be kept and reused. The Gil-
Werman algorithm [7] and its improved version[8] can reduce the
complexity to nearly constant; however, applying these algorithms
will lose the regularity of morphological operations so they are
not suitable for hardware implementation. Some hardware archi-
tectures derived with the partial-result-reuse concept are also pro-
posed. Pitas’s architecture [9] and Ong’s[10] are two of them, but
their architectures are not optimized, and the hardware can be fur-
ther reduced. Coltuc and Pitas [11] show an optimal solution for
morphological operations with rectangular structuring elements.
Morphological operations, however, often use various kinds of

∗ This work is supported by SiS Education Foundation.

structuring elements, such as circle and disk. Therefore, a more
general partial-result-reuse architecture should be develped.

In this paper, we propose a new architecture named Partial-
Result-Reuse (PRR) architecture. The PRR architecture has sev-
eral features. First, with graphic method, the PRR architecture is
very easy to design. In addition, when dealing with morphological
operations with rectangular structuring elements, the PRR archi-
tecture can achieve optimal hardware cost. The PRR architecture,
moreover, can deal with arbitrary shape structure elements, such
as disk, without large overhead. Finally, this architecture can be
used for not only morphological operations but also other running
semi-group operations[7] (or T operations[11]).

In Section 2, basic operations of mathematical morphology
are introduced. Then the proposed PRR architecture is presented
in Section 3. Section 4 compares the PRR architecture to other
existing architectures. Finally, Section 5 gives a conclusion.

2. MORPHOLOGICAL OPERATIONS

There are a lot of operations in mathematical morphology,
such as dilation, erosion, opening, closing, hit-and-miss, thinning,
and thickening[1]. All of these operations are neighborhood op-
erations, the operation result of each point only depends on the
points in its neighborhood. The operands of morphological oper-
ations include two parts: input signal f , which is usually an im-
age; structuring element B, which records the range and shape
of neighborhood region. Almost all morphological operations are
combinations of two basic operations: dilation and erosion.

Let f(x, y) and B(x, y) are 2-D gray-scale signals. f(x, y) is
input signal and B(x, y) is structuring element. Let f : φ → E
and B : β → E. The dilation operation, which is denoted by ⊕
can be expressed as following equation:

f ⊕ B(x, y) = max{f(x − i, y − j) + b(i, j)

|(i, j) ∈ β,and(x − i, y − j) ∈ φ} (1)
Usually, the dilation operation is simplified to:

f ⊕ B(x, y) = max{f(x − i, y − j)

|(i, j) ∈ β,and(x − i, y − j) ∈ φ} (2)
The dilation operation takes max operation as key operation, hence
it will enhance and grow the bright parts of an image.

On the other hand, erosion operation, which is used to enhance
the dark regions of an image and denoted by 
 can be expressed
as following equation:

f 
 B(x, y) = min{f(x + i, y + j)

|(i, j) ∈ β,and(x − i, y − j) ∈ φ} (3)



(r-1,c-1) (r-1,c) (r-1,c+1)

(r,c-1) (r,c) (r,c+1)

(r+1,c-1) (r+1,c) (r+1,c+1)

(r-1,c) (r-1,c+1)

(r,c) (r,c+1)

(r+1,c) (r+1,c+1)

(r-1,c+2)

(r,c+2)

(r+1,c+2)

(a) (b) (c)

Fig. 1. (a) 3x3 structuring element; (b) pixels needed when com-
puting I⊕B(r, c); (c) pixels needed when computing I⊕B(r, c+
1).

3. PARTIAL-RESULT-REUSE ARCHITECTURE

The morphological operations are very regular and very suit-
able for hardware implementation. Many of existing architectures
make use of data-reuse technique to reduce memory access amount
of these operations. However, a lot of calculation in these archi-
tectures is redundant, which means the hardware can be further
reduced. The concept can be shown as following example:

When dilating with 3x3 structuring element, which is shown
in Fig. 1(a). The dilation result of point (r, c) is the maximum of
the nine points in Fig. 1(b), and the result of adjacent point (r, c +
1) is the maximum of the nine points in Fig. 1(c). It is obvious
that many operations are duplicate and redundant. If the result
of max{I(r − 1, c), I(r, c), I(r + 1, c), I(r − 1, c + 1), I(r, c +
1), I(r + 1, c + 1)} can be propagated, Only three comparators
instead of eight comparators are needed.

The partial-result-reuse concept can be used for running max
operations and other running semi-group operations (or T opera-
tions) [11]. This kind of operations, such as max, min, +, and ×,
has several important properties[11]:

(1) Associativity: (xTy)Tz = xT (yTz).
(2) Commutativity: xTy = yTx.
(3) Idempotence: xTx = x.

where the T denotes one semi-group operation.
Based on the partial-result-reuse concept and these three prop-

erties, the PRR architecture is proposed. First, a PRR architecture
for structuring elements with self-affinity property is shown. After
that, a PRR architecture for other kinds of structuring elements is
proposed.

3.1. structuring element with self-affinity property

A lot of usual structuring elements have self-affinity property,
which is, a structuring element can be generated by duplicating a
small basic element several times, and a structuring element can
also be duplicated several times to generate other larger affined
structuring elements. This property can be used to find the opti-
mal ways for partial-result-reuse and reduce the computation and
hardware of morphological operations.

The procedure is easier to be described by an example. It con-
tains two steps: the self-affine step is to find the way to reuse par-
tial results; the architecture design step is to use the results of first
step to design hardware architecture. For simplification, only im-
plementation of dilation is described in this paper, and erosion can
be implemented with the same design technique. Dilation with 1x8
structuring element is considered, which is shown as Fig. 2(a). The
basic element is a square. We start from current point, which is de-
note by A in Fig. 2(b). Duplicate the square A and shift left one
point to B, which is shown in Fig. 2(c), a larger rectangle AB con-
sists of A and B is formed in Fig. 2(d). With the same procedure,

A

(a) (b)

AB

1

ABC

2

(c) (d)

D ABC

4

MAX
T

MAX
2T

MAX
4T

A

B

AB

C

ABC

D

(e) (f)

Fig. 2. PRR architecture for 1x8 structuring element.

A

(a) (b)

AB

1

ABC

2

(c) (d)

D ABC

3

MAX
T

MAX
2T

MAX
3T

A

B

AB

C

ABC

D

(e) (f)

Fig. 3. PRR architecture for 1x7 structuring element.

duplicating AB and shift it two points to C, a 1x4 rectangle ABC
is generated in Fig. 2(e), and the whole structuring element can be
generated by duplicating ABC and shift it four points to D. After
that, we can make use of this procedure to compute dilation with
less operations as following equations:
I ⊕ B(x) = max{I(x), I(x − 1), I(x − 2), I(x − 3), I(x− 4),

I(x− 5), I(x− 6), I(x − 7)} (4)

= max{Ax, Bx, Cx, Dx} (5)

where

Ak = max{I(k)} = I(k);

Bk = max{I(k − 1)} = I(k − 1);

Ck = max{I(k − 2), I(k − 3)};
Dk = max{I(k − 4), I(k − 5), I(k − 6), I(k − 7)};
ABk = max{Ak, Bk};
ABCk = max{ABk, Ck}.

Finally, only three comparators are needed to calculate (5), instead
of seven comparators to calculate (4) directly. The value of Ax is
equal to the value of current point I(x), and the value of Bx is
equal to the Ak value when k = x − 1. Besides, the value of Cx

and Dx is equal to the ABk value and ABCk value when k = x−
2 and k = x − 4 respectively. Here, the value of Bx, Cx, and Dx

are the partial results of former computation. The corresponding
PRR architecture for 1x8 structuring element is shown in Fig. 2(f).
Only three comparators and seven delay elements are needed. It
is obvious that the same design technique can deal with operations
with all power-of-2 length structuring elements. If the length is
not power-of-2, this procedure can be also used. An example with
1x7 structuring element is shown in Fig. 3. Note that the rectangle
ABC, which is shown as normal block, and rectangle D, which is
shown as bold block, are overlapped as shown in Fig. 3(e).

The same technique can be extended to deal with morpho-
logical operations with 2-D structuring elements with self-affinity
property. For example, when the structuring element is 8x8 as
shown in Fig. 4(a), the self-affine procedure is shown in Fig. 4(b)(c)
(d)(e)(f)(g)(h). In Fig. 4(c)(e)(g), W denotes the width of image.



4

A
4

A

B

W
4

C AB

1

(a) (b) (c) (d)

ABC
2W

D

4

E ABCD

2

ABCDE

F

4W

4

A B C D E FG

4

(e) (f) (g) (h)

MAX
WT

MAX
T

MAX
2WT

A

B

AB

C

ABC

D

MAX
2T

MAX
4WT

MAX
4T

ABCD

E

ABCDE

F

ABCDEF

G

(i)

Fig. 4. PRR architecture for 8x8 structuring element.

If the data of a point needs to be propagated vertically to next row,
W delay elements is required since the data is inputted and manip-
ulated in raster-scan manner. The direction of duplicate-and-shift
procedure is both horizontal and vertical, which implies that the
partial results are reused in two directions. The associate architec-
ture for 8x8 structuring element is presented in Fig. 4(i). Only six
comparators and 7W + 7 delay elements are needed. The number
of required comparators for nxn structuring element is

C(n) = 2�log2 n�, (6)
which is proved as optimal solution in [11].

Besides rectangular structuring elements, other shape of struc-
turing elements, such as disk, can also be handled. Disk-shaped
structuring elements are very useful; however, almost all exist-
ing architectures with partial-result-reuse concept cannot deal with
them. Fortunately, disk has self-affinity property as rectangle. It
can be generated by duplicating with a basic element, cross. For
example, when the structuring element is a disk with 5 diameter,
the self-affine procedure is shown in Fig. 5(b)(c)(d). First, dupli-
cate A to form ABCDE, which is in a shape of cross. Then dupli-
cate ABCDE and shift it upper-right to F to form ABCDEF .
Finally, duplicate ABCDEF and shift it upper-left to G to form
the disk structuring element. With this procedure, the correspond-
ing PRR architecture is shown as Fig. 5(e). Only six comparator
and 4W delay elements are needed to implement this operation.
The number of required comparators for n diameter disk structur-
ing element is

C(n) =

{
2�log2(n − 1)� + 2 if n=odd
2�log2 n� + 2 if n=even

(7)

3.2. arbitrary structuring element

Although most of the usual structuring elements have self-
affinity property, structuring elements without this property are
sometimes used for special purposes, such as hit-and-miss oper-
ations. For these structuring elements, another design technique
can be applied. Only the redundant operations between adjacent
pixels are considered in this technique. The procedure contains
three steps. First, the structuring element is divided into several ex-
clusive segments with different delay number consideration. Then
combine all the segmentation results. At last, according to the seg-
mentation, the PRR architecture can be designed.

There are three rules for dividing the structuring element into

D C B

A

E

(a) (b)

ABCDE

F

W-1 W+1

ABCDEF

G

(c) (d)

MAX

(W-1)T

A

B C D E
T T (W-1)T

MAX MAX MAX MAX

(W-1)T

ABCDE

F

MAX

(W+1)T

ABCDEF

G

(e)

Fig. 5. PRR architecture for 5 diameter disk structuring element.

Overlap boundary Overlap boundary Overlap boundary

direction of
partial-result-

reuse

w
id

th

(a) (b) (c)

Fig. 6. The rules of PRR architecture for arbitrary structuring ele-
ments.

several segments: (1) any segment cannot cross the overlap bound-
ary; (2) the overlap of segments should be avoided; (3) the width
of a segment should be maximized until overlap occurs. Here, the
overlap boundary is defined as the boundary of data needed by ad-
jacent points. In Fig. 6, 3x3 structuring element is considered. In
Fig. 6(a), the data needed for current point is presented by bold
blocks, and that for its adjacent points are presented by normal
blocks. If only n-delay situation and horizontal reusing is consid-
ered, which means only partial results generated n cycles before
can be reused, each block is n points apart horizontally, and n = 1
in this example. The overlap boundary is shown as Fig. 6(b). In
addition, the width of segment is defined as length of the border
perpendicular to the direction of partial-result-reuse as shown in
Fig. 6(c).

It is easier to show this technique by an example. In Fig. 7(a),
a structuring element without self-affinity property is shown. In
Fig. 7(b)(c), the overlap boundary and segmentation by consider-
ing one delay are shown, and those by considering two delay are
shown in Fig. 7(d)(e). Note that the bold blocks mean that the re-
quired data here can be reused from its adjacent blocks. The com-
bination of Fig. 7(c) and Fig. 7(e) is Fig. 7(f), where the segment
D comes from Fig. 7(c), which means it can be reused with only
one delay element, and the segment E comes from Fig. 7(e), which
means it can be reused with two delay elements. The correspond-
ing PRR architecture is shown in Fig. 7(g). The detail explanation
and proof of this design technique will be presented in future pub-
lications.

4. COMPARE WITH OTHER ARCHITECTURES

The proposed architecture is compared with other existing ar-
chitectures as shown in Table 1. Morphological dilation operation
with 7x7 structuring element is considered. W and H respec-



(a) (b) (c)

C

B

A

F

E D

(d) (e) (f)

MAX

MAXT

MAX

(W-1)T

WT

MAX
(W+2)T

MAX

A

B

C

D

E

F

2T

(g)

Fig. 7. PRR architecture for arbitrary structuring elements.

Table 1. Comparison between proposed morphology architecture
and other’s architectures.

Architecture Comparator
count

Delay
number

Estimated gate
counta

Required
cycles per
frame

Pitas[9] 8 7W+7 448W+840 W(H+7)+6
Coltuc[11] 6 6W+6 384W+678 W(H+6)+5
Ong[10] 7 6W+7 384W+791 7WH
Diamantaras[4]b 48 6W+42 384W+5040 W(H+6)
Ruetz[5] 12 6W+6 384W+972 W(H+6)+5
Sheu[6] 13 6W+20 384W+1917 7WH+8
This work(PRR) 6 6W+6 384W+678 W(H+6)+5

acomparator: 49gates, 8-bits register: 64gates.
bWith one PE

tively denote the width and height of input image. Gate count
is estimated with SYNOPSYSTM Design Compiler. Note that,
in order to make the comparison be fair, the input data of these
architectures is all set in raster-scan manner. The results show
that the Coltuc’s architecture[11] and our architecture are most ef-
ficient in gate count, delay element number, and required clock
cycles. However, Coltuc’s architecture can only deal with rectan-
gular structuring elements while PRR architecture can deal with
arbitrary structuring elements.

Another comparison of comparator number for nxn structur-
ing elements is shown in Fig. 8, where the ideal curve is C(n) =
2 log2(n). The number of comparators required by systolic array
architecture[4] increases in square-law and will be very hardware-
consuming when dealing with large structuring elements. Ruetz’s
architecture[5] needs comparators increasing linearly in number,
and it will also become large when n is large. The PRR architec-
ture is the optimal one, and the performance is very close to the
ideal, as shown in Fig. 8.

It shows that the PRR architecture is very cost-effective and
efficient for morphological operations. It can deal with operations
with arbitrary structuring elements.

5. CONCLUSION

A new Partial-Result-Reuse (PRR) architecture for mathemat-
ical morphology, which is very cost-effective, is proposed in this
paper. Several examples show that the PRR architecture is very
easy to design by graphic method. Besides, it can reduce hard-
ware cost of morphological operations with arbitrary structuring
elements via partial-result-reuse concept. For structuring elements
with self-affinity property, the hardware can be further reduced
with proposed design technique. Some simulation has been done
to show this architecture is more efficient than others.

0

10

20

30

40

50

60

70

80

90

100

3 5 7 9 11 13 15 17 19

Structuring Element Size n

N
um

be
r

of
C

om
pa

ra
to

rs

PRR
Pitas
Coltuc
Ruetz
Diamantaras
Ideal

Fig. 8. Comparison of comparators number between difference
architectures for nxn structuring elements.

6. REFERENCES

[1] J. Serra, Image Analysis and Mathematical Morphology,
London: Academic Press, 1982.

[2] S.-Y. Chien, S.-Y. Ma, and L.-G. Chen, “An efficient video
segmentation algorithm for real-time MPEG-4 camera sys-
tem,” in Proc. of Visual Communication and Image Process-
ing 2000, pp.1087-1098, 2000.

[3] E.N. Malamas, A.G. Malamos, and T.A. Varvarigou, “Fast
implementation of binary morphological operations on
hardware-efficient systolic architectures,” Journal of VLSI
Signal Processing, vol. 25, pp.79-93, 2000.

[4] K.I. Diamantaras and S.Y. Kung, “A linear systolic array for
real-time morphological image processing,” Journal of VLSI
Signal Processing, vol. 17, pp.43-57, 1997.

[5] P.A. Ruetz and R.W. Brodersen, “Architectures and Design
Techniques for Real-Time Image-Processing IC’s,” IEEE
Journal of Solid-State Circuit, vol. sc-22, no. 2, pp.233-250,
April, 1987.

[6] M.-H. Sheu, J.-F. Wang, J.-S. Chen, A.-N. Suen, Y.-L. Jeang,
and J.-Y. Lee, “A data-reuse architecture for gray-scale mor-
phologic operations,” IEEE Trans. on Circuits and Systems–
II Analog and Digital Signal Processing, vol. 39, no. 10,
pp.753-756, October, 1992.

[7] J. Cil and M. Werman, “Computing 2-D min, median, and
max filters,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, pp.504-507, vol. 15, no. 5, May, 1993.

[8] D.Z. Gevorkian, J.T. Astola, and S.M. Atourian, “Improv-
ing Gil-Werman algorithm for running min and max filters,”
IEEE Trans. on Pattern Analysis and Machine Intelligence,
pp. 526-529, vol. 19, no. 5, May, 1997.

[9] I. Pitas, “Fast glorithms for running ordering and max/min
calculation,” IEEE Trans. on Cirsuits and Systems, pp.795-
804, vol. 36, no. 6, June, 1989.

[10] S. Ong and M.H. Sunwoo, “A new cost-effective morpholog-
ical filter chip,” IEEE Worshop on Design Signal Processing
Systems 1997 (SiPS 97), pp.421-430, 1997.

[11] D. Coltuc and I. Pitas, “Fast computation of a class of run-
ning filters,” IEEE Trans. on Signal Processing, pp.549-553,
vol. 46, no. 3, March, 1998.


