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ABSTRACT can significantly improve performance for large vocabulary recog-
This paper presents three forms of linear transform based speakehition over the best MLE systems [14]. Hence, in this paper, we
adaptation that can give better performance than standard maxi-2lso address the issue of estimating the linear transform parameters
mum likelihood linear regression (MLLR) adaptation. For unsu- by MMIE which we denote MMILR. This is applied to the task of
pervised adaptation, a lattice-based technique is introduced whichsupervised adaptation to non-native speech.
is compared to MLLR using confidence scores. For supervised A common thread for all the adaptation techniques discussed
adaptation, estimation of the adaptation matrices using the max-is the use of word lattices. These are either used to explicitly
imum mutual information criterion is discussed which leads to extract word-level confidence scores; to represent an utterance in
the MMILR approach. Recognition experiments show that lat- lattice-based MLLR or as a compact representation of confusable
tice MLLR can reduce word error rates on a Switchboard task by utterances for use in MMILR. The lattices consist of nodes repre-
1.4% absolute. For recognition of non-native speech from the Wall senting points in time and corresponding to the ends of particular
Street Journal database, a reduction in word error rate of 10-16%words. These are joined by arcs that record the language model

relative was obtained using MMILR compared to standard MLLR. probability of a particular word transition and, if necessary, the
acoustic score. For some purposes we also use model-marked lat-

1. INTRODUCTION tices, in which the HMM model segmentation points are explicitly
encoded for each lattice arc.

Maximum likelinood linear regression (MLLR) [6, 7, 2] is a widely- The rest of the paper is _organlsed as follows. First confldence

used technique for speaker adaptation. It can be successful wittscore based MLLR is described; then lattice-based MLLR, which

fairly limited amounts of training data and can operate in all adap- IMPlicitly uses a confidence score measure, is discussed. These

tation modes including supervised and unsupervised. MLLR es- tec_hnlqugs are _evaluated using iterative transcription mode_ adgp-

timates linear transformation matrices for HMM Gaussian means tation using Switchboard data. The use of MMILR adaptation is

and variances to maximise the likelihood of the adaptation data,the_” described and evaluated in the context of recognition of non-

and the relatively small number of parameters estimated gives then@tive speech from the Wall Street Journal corpus.

technique its robustness and data efficiency. This paper aims to

improve on the estimation of transform matrix parameters in two 2. CONFIDENCE SCORE BASED MLLR

directions: unsupervised adaptation via the use of confidence mea-

sures and lattices; and discriminative training techniques for trans- The use of confidence scores in unsupervised MLLR-based speaker

form estimation in supervised adaptation. adaptation has previously been investigated in a number of papers
Unsupervised adaptation uses recognition hypotheses to pro{e.g. [15, 1, 11]). The general approach is to compute a confidence

vide the adaptation supervision. The effect of errors in adapta- score for each word of an automatically generated transcription

tion supervision can mean that either fewer transform parametersand then, during adaptation, only use data which has a high confi-

can be estimated from a certain amount of adaptation data, or thagdence score to accumulate statistics for transform generation. This

performance of unsupervised adaptation is degraded significantlymethod may be particularly useful in situations where the auto-

with respect to supervised adaptation. This is particularly impor- matically generated transcription has a high word error rate, such

tant for high error rate tasks such as Switchboard. The poten-as for the Switchboard corpus. In this paper the incorporation of

tial beneficial effect of word correctness confidence scores is dis-a confidence score in MLLR adaptation is used as a point of com-

cussed. This information is included either explicitly or implicitly ~ parison for the lattice-based technique discussed in Section 3.

by using a lattice-based estimation process. The techniques are

considered in the context of transcription-mode MLLR in which 2.1. Confidence Score Calculation

the (unsupervised) adaptation data is also the test data. In this cas

iterative MLLR adaptation [13] can be used to interleave adapta-

tion and decoding.

e
To calculate the confidence score, a version of the approach pre-
sented in [3] was used which can compute the confidence score for

It is well-known that maximum likelihood estimation (MLE) @ particular word sequence from a lattice.
relies on model correctness assumptions and hence other parame- _First, the forward-backward algorithm is used to calculate a
ter estimation criteria which have a closer relationship to minimis- 'attice arc posterior probability’({©) for each arc in the lattice
ing the training data word error rate, such as maximum mutual in- 1

. . . . Pim Py
formation estimation (MMIE), can improve performance. Further- P(1|0) = 24eq, Pace(019)7 Pim (w) Por(glw)
more, it has recently been shown that MMIE training techniques p(0)
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where~ is the language model scale factgris a path through guage model. For similar reasons to those discussed in Section 2,
the lattice corresponding to the word sequengeQ); is the set this is again done by scaling the acoustic model log likelihoods

of paths passing through af¢ p...(Olq) is the acoustic like- by the inverse of of the normal language model scale factor. This
lihood, P, (w) is the language model probability,. (q|w) is is important in the context of lattice-based MLLR since it greatly
the pronunciation probability ane(©O) is the overall likelihood of broadens the posterior distribution of Gaussians at each time.

all paths through the lattice. Note that in this process the acous-  In order not to take into account very unlikely Gaussians when

tic model likelihood and language model probabilities are com- gathering MLLR statistics, a threshold on the Gaussian posteriors

bined by scaling down the acoustic scores rather than scaling thecan be set. It should be noted that unlike the use of a confidence

language model probabilities as is commonly done in decoding. threshold in in Section 2, the lattice MLLR posterior threshold still

While this scaling process makes no difference when finding only (in general) retains the contribution of all data frames to the MLLR

the best path, when probabilities are added the way scaling is pertransformations.

formed is very important. This acoustic scaling process leads to Finally it should be noted that both lattice based MLLR and

a much broader posterior distribution of arc probabilities and is confidence based MLLR solely alter the way that the posterior

essential when computing confidence scores. probability of Gaussian occupation during the forward-backward
The arc posteriors are used to calculate time-dependent wordpass is computed. Therefore the techniques can be applied to es-

posteriors for each time frame in the utterance. For a given time timate either unconstrained MLLR or constrained MLLR trans-

the arc posteriors of all arcs spanning this time which correspondforms [4]. In this paper, results for only unconstrained MLLR

to the same word are summed. The final word posterior probability adaptation are presented in which the Gaussian mean and variance

of a word, with particular start and end times, is calculated as the transforms are calculated separately.

geometric mean of the corresponding time-dependent posteriors in

this interval and this value is used as a confidence score. 4. MMILR

3. LATTICE-BASED MLLR Maximum mutual information linear regression (MMILR) esti-
mates the parameters of the linear transformation matrices to opti-

One problem with confidence score based MLLR is that a reason-Mise the MMI criterion for the adaptation data.
able amount of adaptation data may need to be discarded which ~ The MMIE objective function can be computed oveadapta-
limits the accuracy of the estimated transformation matrices. As tion observation sequencé®)s, ..., Or, ..., Or} with the cor-
an alternative, a method was developed to directly use a lattice'®sponding word level transcriptian, by
representation of each utterance which is traversed to provide the R
statistics needed for MLLR adaptation. This, in principle, means _ PA(Or[Mu, ) P(wr)
g, > Famie(A) = Y log a )
that no data needs is discarded but rather is included so that each = 7 3 PA(Or | M) P()
frames gives a weighted contribution to the statistics gathered for ) ] ]
several HMM states. A similar lattice-based MLLR adaptation Where,M., is the composite model corresponding to the word se-
method to that presented here, which appears to have been deduencew and P(w) is the probability of the corresponding se-
veloped contemporaneously with the current work, was recently quence given the language model. The numerator term in (2),
reported in [9]. pa(Or|M,,.), is the MLE objective function. The denominator
Standard MLLR uses a forward-backward pass through just a ¢an be represented by the likelihood of each utterance given the
single HMM model sequence when computing the posterior prob- full recognition model that encodes all possible word sequences.
ability of each Gaussian at each frame and accumulating the nec- ~ However, computation of the denominator for a large vocab-
essary statistics for MLLR. The idea behind lattice based MLLR Ulary task is still very computationally expensive and an approx-
is that the forward-backward pass is performed through the recog-imation using word lattices to compactly encode the most likely
nition lattice of alternatives paths. Therefore the posterior proba- Word sequences can be used to make large vocabulary MMIE es-
bility of a particular state at a particular time will include weighted timation feasible. Further details of lattice-based MMIE training
contributions from all relevant word instances that were in the lat- ¢&n be found in [14].
tice at that time. Assume for simplicity of notation that there is a single adap-
The implementation used here employs model-marked latticesation observation sequence of lengthand that a particular mean
which give the HMM boundary information for each arc of aword  transformation matrix.,, is shared by” Gaussiangm. . .. mp}
lattice. This boundary information is used to compact the word With meansy.,,, and diagonal covariance mati,,,,. It can be
level lattice to a model-level structure while still retaining the as- Shown that the MMIE objective function is optimised with respect
sociated language model information. A full forward-backward t© to @mean transformation matri¥,,, by solving the following
pass through the lattice using the current model set is then per-€quation
formed with pruning performed using the times associated with
model boundaries with an additional margin of typically 50ms.
This process is the same as that used for MMIE training in [14].
The forward-backward pass computes the posterior probability of
being in each Gaussian of each HMM state for every lattice arc at
each time. This is equivalent to computing the product of an arc
posterior probability (from a forward-backward pass at the lattice
node level) with a Gaussian posterior probability given the arc.  where¢,,,, is the extended mean vector Gaussian compongnt
During the forward-backward pass it is necessary to combine o(t) is the observation at timg and L, (t) is the posterior prob-
the likelihoods from an HMM-based acoustic model and the lan- ability of occupying Gaussiam at timet. The use ofrum and
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den refer to the use of either the numerator (correct word se- scores yields a 0.32% absolute redcution in WER using a regres-
guence) or the denominator (word lattice approximation to recog- sion class tree. In this case also, the global transform and the tree
nition model) of (2) when computing the,. , () values. give similar performance. The threshold used in confidence-based
Equation (3) can be viewed as simply the standard MLLR for- MLLR was 20%.
mulation with the normal Gaussian occupation probabilities re- For lattice MLLR, a global transform gives similar results to a
placed by(Ly, " (t) — L;‘,?;‘(t)), and hence can be solved in the global transform with confidence-based MLLR and hence slightly
same way as MLLR [6]. better than standard MLLR. However when the regression class
The implementation of lattice-based MMIE was used to com- tree is used and several iterations of adaptation/decoding are used,
pute the statistics required for MMILR transform estimation. The improved results are obtained. For instance, after 6 iterations of
forward-backward pass again uses acoustic model likelihood scal-adaptation and decoding a reduction in WER of 1.43% absolute is
ing to broaden the posterior distribution and also uses unigram lan-obtained using lattice MLLR relative to the standard case.
guage model scores for the same reasons of improved generalisa-

tion as discussed in [14] 6. WSJ/NAB S3 EXPERIMENTS

5. SWITCHBOARD EXPERIMENTS This section describes experiments used to evaluate the effective-
ness of MMILR for the case of supervised adaptation to non-native

The confidence score and lattice-based MLLR techniques werespeakers of an HMM system trained on natives. In a case such as
evaluated using the Switchboard-1 corpus. Each speech frame ighis, there is a severe mismatch between the original HMMs and
represented by a 39 dimensional feature vector with 13 MF-PLP the adaptation data, and effective transform parameter estimation
(including co) cepstral parameters with their first and second dif- is important.
ferentials. The basic HMM set uses decision tree clustered cross-  The speaker independent system used gender independent de-
word triphones with 2945 speech states and 12 Gaussians per statgision tree clustered triphone HMMs with 6399 speech states and
and is trained on the 18 hour Minitrain corpus as defined by BBN. 12 component Gaussian mixture output distributions. It was trained
Recognition uses a trigram language model trained on 2 million using the SI-284 WSJO0+1 data set. The speech is represented by
words of Switchboard transcriptions trigrams, a 24k word vocabu- 39 dimensional feature vectors with 13 MF-PLP coefficients and
lary and a pronunciation dictionary based on the 1993 LIMSI pro- their first and second differentials with cepstral mean normalisa-
nunciation dictionary. The data used for testing was from the Mini- tion applied to each utterance. This setup is an MF-PLP version of
train Test set. For recognition lattices generated by a non-adaptedthe HMM-1 model set described in [12].
system were rescored. Further details of the system setup can be The MMILR technique was tested on the 1994 North Ameri-
found in [10]. can Business News (NAB) Spoke 3 (S3) task. There are 40 sen-

The test set was warped using a bilinear transform [8]. Block tences of adaptation data for each speaker. For MMILR, the adap-
diagonal mean and diagonal variance unsupervised MLLR trans-tation sentences were recognised using the standard Lincoln Labs
forms were generated using interleaved decoding and adaptatiorOk bigram grammar (modified to include the words missing in
passes (iterative MLLR). Adaptation setups that either used a sin-the adaptation data) and word lattices generated. The actual de-
gle global transform for speech (global) or a 128 leaf regression nominator lattices used unigram scores from this grammar during
class (tree) were used. In both cases a separate silence transforMILR transform estimation. The test data for the task is lim-
was estimated. When the regression class tree was used, an awted to a 5k word vocabulary and the standard Lincoln Labs 5k
erage of 10 speech transforms were calculated from the availablerrigram language model was used. Results are reported using both
data. the 1994 S3 development and evaluation sets.

Table 1 presents the word error rates (WER) for standard unsu- ~ The baseline word error rates for the system using the na-
pervised MLLR (Standard), MLLR using confidence scores (Con- tive speaker models are 21.42% for the development test data and
fidence) and lattice MLLR (Lattice) for six adaptation/decoding 17.61% for the evaluation data. Standard supervised mean and
iterations. The baseline unadapted system has a WER of 40.73%.variance MLLR adaptation was used and test-set lattices created

from these adapted models, which gave error rates of 13.70% and

It. Standard Confidence Lattice 11.68% respectively. It should be noted that the word error rates
global [ tree | global [ tree | global [ tree do not use the official NIST tools/mappings to compute word error

1 | 3833 | 3836 | 37.97 | 37.89| 38.35 | 37.94 rate which results in an increase in WER values.

2 | 38.21 | 38.27| 37.88 | 37.82| 38.22 | 37.30

3 | 38.30 | 38.21| 37.83 | 37.85| 37.94 | 37.00 It. | Std MMILR

4 | 38.24 | 38.18| 37.83 | 37.86 | 37.93 | 36.88 Ul M1 M2 M5 M6 M7

5 | 38.16 | 38.18| 37.86 | 37.86 | 37.80 | 36.61 13.70 | 12.55| 12.24| 11.38 | 11.16 | 11.00

6 | 38.11 | 38.18| 37.83 | 37.86| 37.86 | 36.75 12,77 | 12.46 | 12.19| 11.12| 11.12| 10.90

12.75| 12.46| 12.27| 11.36| 11.16 | 11.00
12.55| 12.12 | 12.29 | 11.43| 11.19| 11.04
12.70| 12.12| 12.17 | 11.38| 11.16 | 11.02
12.60 | 12.10| 12.19| 11.48| 11.16 | 11.12

Table 1. % WER for standard unconstrained MLLR, confidence
score MLLR and lattice MLLR on the Switchboard Minitrain test
set.

OO WNE

It should be noted that for standard MLLR the use of the re- Tapje 2. % WER for the 1994 NAB Spoke 3 development test
gression class tree and more transformations is of no help (perfor-corpus_ U1 is result of standard MLLR and columns M1 to M7 use

mance is slightly poorer) since the transformation estimation lacks pmmiLR with adaptation/test lattices generated column by column.
robustness in the face of transcription errors. The use of confidencey, genotes the iteration of adaptation.



It. Std MMILR
Ul M1 M2 M5 M6 M7

1| 11.68| 11.01| 10.56 | 10.56 | 10.12 | 10.06
2 | 11.77] 10.98 | 10.68 | 10.37 | 10.12| 10.15
3 | 11.43| 11.07| 10.62| 10.26 | 10.17| 9.95
4 | 11.12| 10.84| 10.65| 10.26 | 10.03 | 10.12
5 | 11.35| 10.70 | 10.56 | 10.20 | 10.17| 10.15
6 | 11.01| 10.40 | 10.54| 10.17| 10.23 | 10.17

Table 3. % WER for the 1994 NAB Spoke 3 evaluation test cor-

pus. Ulis the result of standard MLLR and columns M1 to M7 use
MMILR with adaptation/test lattices generated column by column.
It. denotes the iteration of adaptation.

The effect of iterating MLLR i.e. performing multiple itera-
tions of MLLR estimation with the same supervised transcription
is shown in the U1 column in Tables 2 and 3. Further improve-
ments were obtained with this approach. The initial transforms
from the first line of U1 were used to generate test-set lattices for
further iterations of MLLR. A significant improvement in perfor-
mance was obtained by this iterative process especially for the de-
velopment corpus.

The results of using MMILR are also given in Tables 2 and 3.
Using the initial standard MLLR lattices, MMILR transforms were
estimated. The results in column M1 were generated first and all

use the adaptation and test data lattices generated by models U1.

The first iteration of MMILR transform estimation gives an espe-
cially large improvement relative to standard MLLR (1.15% abso-
lute for the development data), although the size of the improve-
ment is reduced slightly with more iterations. The first iteration
of MMILR was used to generate new adaptation and test lattices
for the next column of (M2), and this process is repeated until the
lattices for M7 were generated. Note that at each stage, six iter-
ations of MMILR were performed with the same adaptation and
test lattices. The missing columns (M3 and M4) show the same
trends as the other columns; which give a continued improvement
with more iterations.

The final results presented in M7 show relative improvements
of 19% and 13% for development and evaluation data sets respec-
tively over a single iteration of standard MLLR and 12% and 8%

[1] T. Anastasakos & S.V. Balakrishnan (1998).

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

respectively using iterative MLLR. The process of re-generating [10]

adaptation/test lattices is especially important for column M2 since
this is the first case where MMILR transforms are used. By the

time this process has been iterated to column M7 the performancg11]

has converged.

7. CONCLUSIONS

This paper has described three techniques for estimating the pa-

(12]

rameters of linear transforms for speaker adaptation. It was shown13]

that for unsupervised adaptation, lattice-based MLLR significantly
outperforms confidence score MLLR and allows the robust unsu-
pervised estimation of more adaptation transforms for high error

rate data such as Switchboard. The lattice-based adaptation procJ—M]

dure could also be applied to other techniques, such as MAP [5],
if unsupervised adaptation is being performed.

MMILR replaces the maximum likelihood estimation from
standard MLLR with the maximum mutual information objective
function. It was shown that significant improvements in perfor-
mance could be achieved using this method for the task of super-
vised adaption of a native-speaker system to non-natives.

(15]
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