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ABSTRACT
This paper presents three forms of linear transform based speaker
adaptation that can give better performance than standard maxi-
mum likelihood linear regression (MLLR) adaptation. For unsu-
pervised adaptation, a lattice-based technique is introduced which
is compared to MLLR using confidence scores. For supervised
adaptation, estimation of the adaptation matrices using the max-
imum mutual information criterion is discussed which leads to
the MMILR approach. Recognition experiments show that lat-
tice MLLR can reduce word error rates on a Switchboard task by
1.4% absolute. For recognition of non-native speech from the Wall
Street Journal database, a reduction in word error rate of 10-16%
relative was obtained using MMILR compared to standard MLLR.

1. INTRODUCTION

Maximum likelihood linear regression (MLLR) [6, 7, 2] is a widely-
used technique for speaker adaptation. It can be successful with
fairly limited amounts of training data and can operate in all adap-
tation modes including supervised and unsupervised. MLLR es-
timates linear transformation matrices for HMM Gaussian means
and variances to maximise the likelihood of the adaptation data,
and the relatively small number of parameters estimated gives the
technique its robustness and data efficiency. This paper aims to
improve on the estimation of transform matrix parameters in two
directions: unsupervised adaptation via the use of confidence mea-
sures and lattices; and discriminative training techniques for trans-
form estimation in supervised adaptation.

Unsupervised adaptation uses recognition hypotheses to pro-
vide the adaptation supervision. The effect of errors in adapta-
tion supervision can mean that either fewer transform parameters
can be estimated from a certain amount of adaptation data, or that
performance of unsupervised adaptation is degraded significantly
with respect to supervised adaptation. This is particularly impor-
tant for high error rate tasks such as Switchboard. The poten-
tial beneficial effect of word correctness confidence scores is dis-
cussed. This information is included either explicitly or implicitly
by using a lattice-based estimation process. The techniques are
considered in the context of transcription-mode MLLR in which
the (unsupervised) adaptation data is also the test data. In this case,
iterative MLLR adaptation [13] can be used to interleave adapta-
tion and decoding.

It is well-known that maximum likelihood estimation (MLE)
relies on model correctness assumptions and hence other parame-
ter estimation criteria which have a closer relationship to minimis-
ing the training data word error rate, such as maximum mutual in-
formation estimation (MMIE), can improve performance. Further-
more, it has recently been shown that MMIE training techniques

can significantly improve performance for large vocabulary recog-
nition over the best MLE systems [14]. Hence, in this paper, we
also address the issue of estimating the linear transform parameters
by MMIE which we denote MMILR. This is applied to the task of
supervised adaptation to non-native speech.

A common thread for all the adaptation techniques discussed
is the use of word lattices. These are either used to explicitly
extract word-level confidence scores; to represent an utterance in
lattice-based MLLR or as a compact representation of confusable
utterances for use in MMILR. The lattices consist of nodes repre-
senting points in time and corresponding to the ends of particular
words. These are joined by arcs that record the language model
probability of a particular word transition and, if necessary, the
acoustic score. For some purposes we also use model-marked lat-
tices, in which the HMM model segmentation points are explicitly
encoded for each lattice arc.

The rest of the paper is organised as follows. First confidence
score based MLLR is described; then lattice-based MLLR, which
implicitly uses a confidence score measure, is discussed. These
techniques are evaluated using iterative transcription mode adap-
tation using Switchboard data. The use of MMILR adaptation is
then described and evaluated in the context of recognition of non-
native speech from the Wall Street Journal corpus.

2. CONFIDENCE SCORE BASED MLLR

The use of confidence scores in unsupervised MLLR-based speaker
adaptation has previously been investigated in a number of papers
(e.g. [15, 1, 11]). The general approach is to compute a confidence
score for each word of an automatically generated transcription
and then, during adaptation, only use data which has a high confi-
dence score to accumulate statistics for transform generation. This
method may be particularly useful in situations where the auto-
matically generated transcription has a high word error rate, such
as for the Switchboard corpus. In this paper the incorporation of
a confidence score in MLLR adaptation is used as a point of com-
parison for the lattice-based technique discussed in Section 3.

2.1. Confidence Score Calculation

To calculate the confidence score, a version of the approach pre-
sented in [3] was used which can compute the confidence score for
any particular word sequence from a lattice.

First, the forward-backward algorithm is used to calculate a
lattice arc posterior probabilityP (l|O) for each arc in the lattice

P (l|O) =

P
q∈Ql

pacc(O|q)
1
γ Plm(w)Ppr(q|w)

p(O)
(1)



whereγ is the language model scale factor,q is a path through
the lattice corresponding to the word sequencew, Ql is the set
of paths passing through arcl, pacc(O|q) is the acoustic like-
lihood, Plm(w) is the language model probability,Ppr(q|w) is
the pronunciation probability andp(O) is the overall likelihood of
all paths through the lattice. Note that in this process the acous-
tic model likelihood and language model probabilities are com-
bined by scaling down the acoustic scores rather than scaling the
language model probabilities as is commonly done in decoding.
While this scaling process makes no difference when finding only
the best path, when probabilities are added the way scaling is per-
formed is very important. This acoustic scaling process leads to
a much broader posterior distribution of arc probabilities and is
essential when computing confidence scores.

The arc posteriors are used to calculate time-dependent word
posteriors for each time frame in the utterance. For a given time
the arc posteriors of all arcs spanning this time which correspond
to the same word are summed. The final word posterior probability
of a word, with particular start and end times, is calculated as the
geometric mean of the corresponding time-dependent posteriors in
this interval and this value is used as a confidence score.

3. LATTICE-BASED MLLR

One problem with confidence score based MLLR is that a reason-
able amount of adaptation data may need to be discarded which
limits the accuracy of the estimated transformation matrices. As
an alternative, a method was developed to directly use a lattice
representation of each utterance which is traversed to provide the
statistics needed for MLLR adaptation. This, in principle, means
that no data needs is discarded but rather is included so that each
frames gives a weighted contribution to the statistics gathered for
several HMM states. A similar lattice-based MLLR adaptation
method to that presented here, which appears to have been de-
veloped contemporaneously with the current work, was recently
reported in [9].

Standard MLLR uses a forward-backward pass through just a
single HMM model sequence when computing the posterior prob-
ability of each Gaussian at each frame and accumulating the nec-
essary statistics for MLLR. The idea behind lattice based MLLR
is that the forward-backward pass is performed through the recog-
nition lattice of alternatives paths. Therefore the posterior proba-
bility of a particular state at a particular time will include weighted
contributions from all relevant word instances that were in the lat-
tice at that time.

The implementation used here employs model-marked lattices
which give the HMM boundary information for each arc of a word
lattice. This boundary information is used to compact the word
level lattice to a model-level structure while still retaining the as-
sociated language model information. A full forward-backward
pass through the lattice using the current model set is then per-
formed with pruning performed using the times associated with
model boundaries with an additional margin of typically 50ms.
This process is the same as that used for MMIE training in [14].
The forward-backward pass computes the posterior probability of
being in each Gaussian of each HMM state for every lattice arc at
each time. This is equivalent to computing the product of an arc
posterior probability (from a forward-backward pass at the lattice
node level) with a Gaussian posterior probability given the arc.

During the forward-backward pass it is necessary to combine
the likelihoods from an HMM-based acoustic model and the lan-

guage model. For similar reasons to those discussed in Section 2,
this is again done by scaling the acoustic model log likelihoods
by the inverse of of the normal language model scale factor. This
is important in the context of lattice-based MLLR since it greatly
broadens the posterior distribution of Gaussians at each time.

In order not to take into account very unlikely Gaussians when
gathering MLLR statistics, a threshold on the Gaussian posteriors
can be set. It should be noted that unlike the use of a confidence
threshold in in Section 2, the lattice MLLR posterior threshold still
(in general) retains the contribution of all data frames to the MLLR
transformations.

Finally it should be noted that both lattice based MLLR and
confidence based MLLR solely alter the way that the posterior
probability of Gaussian occupation during the forward-backward
pass is computed. Therefore the techniques can be applied to es-
timate either unconstrained MLLR or constrained MLLR trans-
forms [4]. In this paper, results for only unconstrained MLLR
adaptation are presented in which the Gaussian mean and variance
transforms are calculated separately.

4. MMILR

Maximum mutual information linear regression (MMILR) esti-
mates the parameters of the linear transformation matrices to opti-
mise the MMI criterion for the adaptation data.

The MMIE objective function can be computed overR adapta-
tion observation sequences{O1, . . . ,Or, . . . ,OR} with the cor-
responding word level transcriptionwr by

FMMIE(λ) =
RX

r=1

log
pλ(Or|Mwr )P (wr)P

ŵ pλ(Or|Mŵ)P (ŵ)
(2)

where,Mw is the composite model corresponding to the word se-
quencew andP (w) is the probability of the corresponding se-
quence given the language model. The numerator term in (2),
pλ(Or|Mwr ), is the MLE objective function. The denominator
can be represented by the likelihood of each utterance given the
full recognition model that encodes all possible word sequences.

However, computation of the denominator for a large vocab-
ulary task is still very computationally expensive and an approx-
imation using word lattices to compactly encode the most likely
word sequences can be used to make large vocabulary MMIE es-
timation feasible. Further details of lattice-based MMIE training
can be found in [14].

Assume for simplicity of notation that there is a single adap-
tation observation sequence of lengthT , and that a particular mean
transformation matrixWm is shared byP Gaussians{m1 . . . mP }
with meansµmp and diagonal covariance matrixΣmp . It can be
shown that the MMIE objective function is optimised with respect
to to a mean transformation matrixWm by solving the following
equation

TX
t=1

PX
p=1

(Lnum
mp (t)−Lden

mp (t))Σ−1
mpo(t)ξ′mp =

TX
t=1

PX
p=1

(Lnum
mp (t)− Lden

mp (t))Σ−1
mpWmξmpξ′mp (3)

whereξmp is the extended mean vector Gaussian componentm,
o(t) is the observation at timet, andLmp(t) is the posterior prob-
ability of occupying Gaussianm at timet. The use ofnum and



den refer to the use of either the numerator (correct word se-
quence) or the denominator (word lattice approximation to recog-
nition model) of (2) when computing theLmp(t) values.

Equation (3) can be viewed as simply the standard MLLR for-
mulation with the normal Gaussian occupation probabilities re-
placed by(Lnum

mp (t) − Lden
mp (t)), and hence can be solved in the

same way as MLLR [6].
The implementation of lattice-based MMIE was used to com-

pute the statistics required for MMILR transform estimation. The
forward-backward pass again uses acoustic model likelihood scal-
ing to broaden the posterior distribution and also uses unigram lan-
guage model scores for the same reasons of improved generalisa-
tion as discussed in [14].

5. SWITCHBOARD EXPERIMENTS

The confidence score and lattice-based MLLR techniques were
evaluated using the Switchboard-1 corpus. Each speech frame is
represented by a 39 dimensional feature vector with 13 MF-PLP
(includingc0) cepstral parameters with their first and second dif-
ferentials. The basic HMM set uses decision tree clustered cross-
word triphones with 2945 speech states and 12 Gaussians per state
and is trained on the 18 hour Minitrain corpus as defined by BBN.
Recognition uses a trigram language model trained on 2 million
words of Switchboard transcriptions trigrams, a 24k word vocabu-
lary and a pronunciation dictionary based on the 1993 LIMSI pro-
nunciation dictionary. The data used for testing was from the Mini-
train Test set. For recognition lattices generated by a non-adapted
system were rescored. Further details of the system setup can be
found in [10].

The test set was warped using a bilinear transform [8]. Block
diagonal mean and diagonal variance unsupervised MLLR trans-
forms were generated using interleaved decoding and adaptation
passes (iterative MLLR). Adaptation setups that either used a sin-
gle global transform for speech (global) or a 128 leaf regression
class (tree) were used. In both cases a separate silence transform
was estimated. When the regression class tree was used, an av-
erage of 10 speech transforms were calculated from the available
data.

Table 1 presents the word error rates (WER) for standard unsu-
pervised MLLR (Standard), MLLR using confidence scores (Con-
fidence) and lattice MLLR (Lattice) for six adaptation/decoding
iterations. The baseline unadapted system has a WER of 40.73%.

It. Standard Confidence Lattice
global tree global tree global tree

1 38.33 38.36 37.97 37.89 38.35 37.94
2 38.21 38.27 37.88 37.82 38.22 37.30
3 38.30 38.21 37.83 37.85 37.94 37.00
4 38.24 38.18 37.83 37.86 37.93 36.88
5 38.16 38.18 37.86 37.86 37.80 36.61
6 38.11 38.18 37.83 37.86 37.86 36.75

Table 1. % WER for standard unconstrained MLLR, confidence
score MLLR and lattice MLLR on the Switchboard Minitrain test
set.

It should be noted that for standard MLLR the use of the re-
gression class tree and more transformations is of no help (perfor-
mance is slightly poorer) since the transformation estimation lacks
robustness in the face of transcription errors. The use of confidence

scores yields a 0.32% absolute redcution in WER using a regres-
sion class tree. In this case also, the global transform and the tree
give similar performance. The threshold used in confidence-based
MLLR was 20%.

For lattice MLLR, a global transform gives similar results to a
global transform with confidence-based MLLR and hence slightly
better than standard MLLR. However when the regression class
tree is used and several iterations of adaptation/decoding are used,
improved results are obtained. For instance, after 6 iterations of
adaptation and decoding a reduction in WER of 1.43% absolute is
obtained using lattice MLLR relative to the standard case.

6. WSJ/NAB S3 EXPERIMENTS

This section describes experiments used to evaluate the effective-
ness of MMILR for the case of supervised adaptation to non-native
speakers of an HMM system trained on natives. In a case such as
this, there is a severe mismatch between the original HMMs and
the adaptation data, and effective transform parameter estimation
is important.

The speaker independent system used gender independent de-
cision tree clustered triphone HMMs with 6399 speech states and
12 component Gaussian mixture output distributions. It was trained
using the SI-284 WSJ0+1 data set. The speech is represented by
39 dimensional feature vectors with 13 MF-PLP coefficients and
their first and second differentials with cepstral mean normalisa-
tion applied to each utterance. This setup is an MF-PLP version of
the HMM-1 model set described in [12].

The MMILR technique was tested on the 1994 North Ameri-
can Business News (NAB) Spoke 3 (S3) task. There are 40 sen-
tences of adaptation data for each speaker. For MMILR, the adap-
tation sentences were recognised using the standard Lincoln Labs
20k bigram grammar (modified to include the words missing in
the adaptation data) and word lattices generated. The actual de-
nominator lattices used unigram scores from this grammar during
MMILR transform estimation. The test data for the task is lim-
ited to a 5k word vocabulary and the standard Lincoln Labs 5k
trigram language model was used. Results are reported using both
the 1994 S3 development and evaluation sets.

The baseline word error rates for the system using the na-
tive speaker models are 21.42% for the development test data and
17.61% for the evaluation data. Standard supervised mean and
variance MLLR adaptation was used and test-set lattices created
from these adapted models, which gave error rates of 13.70% and
11.68% respectively. It should be noted that the word error rates
do not use the official NIST tools/mappings to compute word error
rate which results in an increase in WER values.

It. Std MMILR
U1 M1 M2 M5 M6 M7

1 13.70 12.55 12.24 11.38 11.16 11.00
2 12.77 12.46 12.19 11.12 11.12 10.90
3 12.75 12.46 12.27 11.36 11.16 11.00
4 12.55 12.12 12.29 11.43 11.19 11.04
5 12.70 12.12 12.17 11.38 11.16 11.02
6 12.60 12.10 12.19 11.48 11.16 11.12

Table 2. % WER for the 1994 NAB Spoke 3 development test
corpus. U1 is result of standard MLLR and columns M1 to M7 use
MMILR with adaptation/test lattices generated column by column.
It. denotes the iteration of adaptation.



It. Std MMILR
U1 M1 M2 M5 M6 M7

1 11.68 11.01 10.56 10.56 10.12 10.06
2 11.77 10.98 10.68 10.37 10.12 10.15
3 11.43 11.07 10.62 10.26 10.17 9.95
4 11.12 10.84 10.65 10.26 10.03 10.12
5 11.35 10.70 10.56 10.20 10.17 10.15
6 11.01 10.40 10.54 10.17 10.23 10.17

Table 3. % WER for the 1994 NAB Spoke 3 evaluation test cor-
pus. U1 is the result of standard MLLR and columns M1 to M7 use
MMILR with adaptation/test lattices generated column by column.
It. denotes the iteration of adaptation.

The effect of iterating MLLR i.e. performing multiple itera-
tions of MLLR estimation with the same supervised transcription
is shown in the U1 column in Tables 2 and 3. Further improve-
ments were obtained with this approach. The initial transforms
from the first line of U1 were used to generate test-set lattices for
further iterations of MLLR. A significant improvement in perfor-
mance was obtained by this iterative process especially for the de-
velopment corpus.

The results of using MMILR are also given in Tables 2 and 3.
Using the initial standard MLLR lattices, MMILR transforms were
estimated. The results in column M1 were generated first and all
use the adaptation and test data lattices generated by models U1.
The first iteration of MMILR transform estimation gives an espe-
cially large improvement relative to standard MLLR (1.15% abso-
lute for the development data), although the size of the improve-
ment is reduced slightly with more iterations. The first iteration
of MMILR was used to generate new adaptation and test lattices
for the next column of (M2), and this process is repeated until the
lattices for M7 were generated. Note that at each stage, six iter-
ations of MMILR were performed with the same adaptation and
test lattices. The missing columns (M3 and M4) show the same
trends as the other columns; which give a continued improvement
with more iterations.

The final results presented in M7 show relative improvements
of 19% and 13% for development and evaluation data sets respec-
tively over a single iteration of standard MLLR and 12% and 8%
respectively using iterative MLLR. The process of re-generating
adaptation/test lattices is especially important for column M2 since
this is the first case where MMILR transforms are used. By the
time this process has been iterated to column M7 the performance
has converged.

7. CONCLUSIONS

This paper has described three techniques for estimating the pa-
rameters of linear transforms for speaker adaptation. It was shown
that for unsupervised adaptation, lattice-based MLLR significantly
outperforms confidence score MLLR and allows the robust unsu-
pervised estimation of more adaptation transforms for high error
rate data such as Switchboard. The lattice-based adaptation proce-
dure could also be applied to other techniques, such as MAP [5],
if unsupervised adaptation is being performed.

MMILR replaces the maximum likelihood estimation from
standard MLLR with the maximum mutual information objective
function. It was shown that significant improvements in perfor-
mance could be achieved using this method for the task of super-
vised adaption of a native-speaker system to non-natives.
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