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ABSTRACT

The use of quantized redundant expansions is useful in applications
where the cost of having oversampling in the representation is much
lower than the use of a high resolution quantization (e.g. oversam-
pled A/D). Most work to date has assumed that simple uniform quan-
tization was used on the redundant expansion and then has dealt
with methods to improve the reconstruction. Instead, in this paper
we consider the design of quantizers for overcomplete expansions.
Our goal is to design quantizers such that simple reconstruction al-
gorithms (e.g. linear) provide as good reconstructions as with more
complex algorithms. We achieve this goal by designing quantizers
with different stepsizes for each coefficient of the expansion in such
a way as to produce a quantizer with periodic structure.

1. INTRODUCTION AND MOTIVATION

The purpose of using redundant expansions is to achieve high ac-
curacy in digital signal representations under scenarios where the
cost of implementing a high resolution quantization with the cur-
rent technology is much higher than that of having a high oversam-
pling or redundancy. The most important practical case is that of
oversampled A/D conversion of band-limited signals, where accu-
racy is attained by performing an oversampling in the time domain.

The accuracy that can be attained with quantized overcomplete
expansions depends on two things: the reconstruction algorithm
and the quantization scheme. Unlike previous work [1, 6, 5, 3],
which assumes a known quantization and focuses on improving the
reconstruction, in our work we assume that a simple reconstruc-
tion (e.g. linear or look-up table) will be used. Our approach has
focused on providing the tools to design the overcomplete expan-
sions and corresponding quantization system so that the equivalent
quantizer is regular under simple reconstruction algorithms. We re-
strict ourselves to using scalar quantizers for each component of
the expansion, but allow the stepsizes to be different in each com-
ponent. The approaches developed previously in [3, 1] can be ap-
plied inRN for any finite values ofN andr, while the method de-
scribed in [5] can be applied to oversampled A/D of general band-
limited signals (in addition to periodic band-limited signals, which
can be viewed as a particular quantized frame expansion inRN ).

This work was supported in part by the National Science Foundation
under grant MIP-9804959, a Ph. D. Fellowship from the Ministry of Ed-
ucation and Science of Spain, and the Integrated Media Systems Center, a
National Science Foundation Engineering Research Center.

In all cases, the computational complexity of these methods, for a
given redundancy, is higher than that of linear reconstruction while
they provide substantially better accuracy for high enough redun-
dancies. Our system provides excellent performance while having
the same complexity as linear reconstruction, but is more suitable
to be used inRN for low values of dimension and redundancy.

This paper is organized as follows. First in section 2 we de-
scribe the oversampled representation system in terms of an equiv-
alent VQ system. This allows us to introduce in section 3 the con-
cept of periodic quantizer that leads to an equivalent regular VQ
scheme. Numerical results are shown in section 4.

2. LINEAR RECONSTRUCTION, CONSISTENCY AND
EQUIVALENT VQ

Let x 2 RN and let� = f'ig
M
i=1 be a tight frame inRN with

k'ik = 1 8 i = 1; � � � ;M . Then,8 x 2 RN , the expansion
with respect to the frame� = f'ig

M
i=1 whose coefficients have

the minimum possible norm is given by [6]:

x =
1

r

MX
i=1

yi'i =
1

r

MX
i=1

hx;'ii'i (1)

whereyi = hx;'ii is the i-th coefficient of the frame. We re-
strict our attention in this paper to tight frames with integer redun-
dancyr and composed of a set of orthogonal bases. This is both
because of the greater simplicity of the geometric analysis and due
to their relevance for practical applications. With this restriction,
we can group the vectorsf'ig

M
i=1 that compose the tight frame as

ff'j
ig
N
i=1g

r
j=1, wheref'jig

N
i=1 is thej-th basis. Thei-th coeffi-

cient of thej-th basis is quantized with a uniform quantizer with
stepsize�j

i . In general all these quantizers are assumed to be dif-
ferent. For the sake of simplicity, we restrict most of the equations,
without any loss of generality, toR2. ForN = 2, we define each
orthogonal matrixF j asF j = ['j1'

j
2]
T and we callyj = [yj1; y

j
2]
T

the 2-dimensional vector of coefficients associated with thej-th ba-
sis, which is given byyj = F jx.

In terms of quantization we have a series of orthogonal basis
over which a scalar quantizer is used. Considering in isolation each
of these structures lead to a partition ofR2 with a rectangular grid,
i.e., with rectangular (or hypercubic) Voronoi regions. Clearly, each
of these grids is defined in terms of a lattice where the quantization
stepsizes determine the position of the vertices. The corresponding
real lattice�j has a generator matrixM�j = (�j

1'
j
1j�

j
2'

j
2)
T .
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Fig. 1. Definition of a quantizerQ inR2 based on the linear recon-
struction of a tight frame

Now consider quantization using several of these orthogonal
bases jointly in an overcomplete system. Clearly, the resulting Voronoi
regions of the combined system are the intersections of the Voronoi
regions of the individual grids. This is illustrated in Figs. 1 and 2.

Linear reconstruction is illustrated in Fig. 2. An input that falls
in the intersection of two specific (rectangular) Voronoi regions is
reconstructed as the average of the centers of those two regions.
In some cases, as for the upper cell (indicated with bold line), the
average point falls again in the same intersection so that we have
a regular quantization and consistent reconstruction. However, in
the case of the lower cell, the average point falls outside the original
region of intersection thus leading to inconsistency.
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Fig. 2. Reconstructions for the quantizersQ1,Q2 andQ when lin-
ear reconstruction is used. The linear reconstructionsx̂j , j = 1; 2
are represented by0�0 and the final reconstruction̂x is represented
by 0Æ0. The final reconstructions are obtained by taking the halfway
point between̂x1 andx̂2, that is,x̂ = 1

2
(x̂1 + x̂2).

3. QUANTIZERS WITH PERIODIC STRUCTURE

3.1. Definition and Construction

A “periodic quantizer” Q is a quantizer where there is only a finite
number of distinct Voronoi cellsfV Q

i g (see Fig. 3). Let us assume
to facilitate the understing thatQ is a quantizer inR2 andr = 2.

Fig. 3. Example of a linearly consistent quantizerQ. The recon-
structionsx̂j , j = 1; 2 are represented by0�0 and the final re-
constructionx̂ is represented by0Æ0. Parameters:�1
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In order to impose a periodic structure inQ, we have to find certain
type of sublattices [4]. A sublatticeS� � � of a given lattice� is
a subset of the elements of� that is itself a lattice. Given a real lat-
tice� with generator matrixM�, a sublattice1 S� is completely
specified by an integer matrixBS� that maps a basis of� into a
basis ofS�, that is,MS� = BS�M�.

Definition 1 Given a real lattice� in R2 with generator matrix
M�, a lattice�0 is geometrically scaled-similar to� iff:

M�0 =

�
c1 0
0 c2

�
UM�R; c1; c2 � 1 (2)

whereR is a 2 � 2 orthogonal matrix, that is, a rotation and/or
a reflection inR2, andU is a2 � 2 unimodular matrix, that is, a
matrix with integer components satisfying thatjdet(U)j = 1. If
�0 = S� � �, thenS� is a geometrically scaled-similar sublat-
tice of� andc1, c2 andR are constrained.

It can be seen in (2) that a sublatticeS� is obtained by simply ro-
tating and/or reflecting the lattice� and then scaling each of the
new rotated axes by a certain amount. Notice that in the particular
case of havingc1 = c2, S� would be a geometrically similar (or
equivalent) sublattice of�, as defined by Conway et al. [4]. Fig.
4 shows an example of sublattice forr = 2, where the cell indi-
cated with bold line is the fundamental polytope ofS�, which we
denote byV S�

o . Without loss of generality, let us assume we want
to construct geometrically scaled-similar sublattices of a lattice�1

whereM�1 = diag[�1
1;�

1
2], which defines a quantizerQ1. If

there arer sublattices of�1, we will denote them byS�1, S�2,
...,S�r, and for notational convenience, we takeS�1 = �1. We
will always takeU = I in (2) so that the basis vectors of thej-th
geometrically scaled-similar sublattice are orthogonal and can be
associated with thej-th orthogonal basis of a tight frame.

Given�1, it can be shown [2] that ifS� is a geometrically
scaled-similar sublattice of�1, the partition defined byfV �1

i g \
fV S�

i g has a periodic structure (tesselation) with the basic unit cell

beingfV �1

i g \ V S�
o (see Fig. 4). The following Lemma can be

1We assume that both� andS� are full rank lattices, that is, the matri-
cesM� andMS� are full rank



Fig. 4. Example 1: Voronoi cellsfV Q
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proved in a straightforward manner by using the definition of geo-
metrically scaled-similar sublattices.

Lemma 1 Given a rectangular lattice�1 in R2 whose generator
matrix is diagonal, all the geometrically scaled-similar sublattices
S� � �1 (with the matrixR in (2) constrained to be a rotation),
have generator matrices of the form:

MS� =

�
c1�

1
1 0

0 c2��
1
1

��
cos(�) sin(�)
�sin(�) cos(�)

�

=

�
k11 k12
�k21 k22

��
1 0
0 �

�
�1
1 where

� =
�1

2

�1

1

=
q

k11k21
k12k22

; tan(�) =
q

k12k21
k11k22

= k12
k11

�

c1 = k11
cos(�)

; c2 = k22
cos(�)

;

k11; k12; k21; k22 2 Z+; 0 < � < �
2

We denote byBS� the integer matrix with entriesfklmg.

Notice that only those angles�, whose tangent is the square root of
two integers lead to a geometrically scaled-similar sublattice.

In order to construct a general periodic quantizerQ for a redun-
dancyr, it is sufficient to design the system so that there arer� 1
lattices�2; � � � ;�r each containing a sublattice of�1. This guar-
antees that the intersection of all the lattices�j , j = 1; � � � ; r is not
empty, and therefore, by group theory, is a lattice. In general, the
lattices�j � S�j (S�j being a geometrically scaled-similar sub-
lattice of�1), associated with the quantizersfQjgrj=2, have gener-
ator matrices of the formM�j = diag[1=dj1; 1=d

j
2]MS�j , where

dj1; d
j
2 2 Z+. The division by the integersfdj1; d

j
2g ensures that the

Voronoi cellsfV Q
i gwill keep a periodic structure, which is still de-

termined byV S�j

o (see Fig. 4).

Definition 2 Given a set of lattices�j j = 1; � � � ; r, we define the
coincidence site lattice (CSL)�CSL as:

�CSL = �1 \ �2 \ � � � \ �r (3)

and thus, it is the finest common sublattice of all the lattices�j ,
j = 1; � � � ; r.

Fig. 5. Example forr = 3: Structure of the quantizerQ and unit
cell of the structure

The importance of calculating the coincidence site lattice�CSL

comes from the fact that its fundamental polytopeV �CSL

o is the
unit cell that is repeated in the the periodic structure of the result-
ing quantizerQ. This follows directly from group theory because
�CSL is the finest common sublattice (subgroup) of all the lattices
�j , j = 1; � � � ; r.

Example 1 An example forr = 3 is composed by the following
tight frame and stepsizes:
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Fig. 5 shows the unit cell that is repeated periodically (fundamen-
tal polytope of�CSL) and the resulting Voronoi cells of the final
quantizerQ.

The extension of periodicity for more general redundant families
and for higher dimensions is given in [2].

3.2. Consistent reconstruction in Periodic Quantizers

Let � = ff'jig
N
i=1g

r
j=1 be a tight frame of redundancyr which

is composed ofr orthogonal bases. It turns out that a necessary
condition to have consistency under linear reconstruction for this
tight frame is that the quantizerQ has to be periodic. This result is
stated in Theorem 1, which is proved in [2].

Theorem 1 If Q is a non-periodic quantizer inRN , then it is al-
ways possible to find a linearly inconsistent cell, and hence,Q is
a quantizer which is not consistent linearly. Therefore, periodicity
in a quantizerQ is a necessary condition to achieve consistency
under linear reconstruction.



A sketch of the proof of Theorem 1 is as follows. When there is no
periodicity in the partition defined by a quantizerQ, the vertices of
any two lattices�j1 and�j2 can have arbitrary relative positions.
When this occurs it is always possible to find a situation where the
relative position of the lattices guarantees that an inconsistent linear
reconstruction occurs. Notice that since in a periodic quantizerQ
there are only a finite number of distinct Voronoi cellsfV Q

i g, to
check if consistency is satisfied linearly, we only need to check on
the Voronoi cells contained inside the fundamental polytope of the
coincidence site lattice�CSL. An example of linear consistency
for r = 2 is shown in Fig. 3.

Given a periodic quantizerQ, it is also possible to reconstruct
efficiently and accurately by using a look-up table of small size.
Assume, for simplicity in the discussion, thatN = 2 and letPo
be the smallest rectangular polytope, which is a basic unit cell for
the partition defined byQ (see Fig. 6). The basic idea is that given

Fig. 6. Reconstruction algorithm based on look-up table:0Æ0 repre-
sents reconstruction vectors,0�0 represents the values of the quan-
tized coefficients which define the equivalent cell in the unit cell
Po, ’x’ represents the input vector. All the information is first trans-
lated to the unit cellPo, then the reconstruction vector of the equiv-
alent cell is read, and finally it is translated back to the proper cell

any Voronoi cellV Q
i it is possible to find very fast (floor operation

and traslation) the equivalent cellV Q
io

which is insidePo. Given

an input signalx, a reconstruction vector̂xo 2 V Q
io

is read from
a look-up table and finally this reconstruction vector is translated
back into the proper cellV Q

i . The important advantage provided by
the periodicity is that if the periodic quantizerQ is well designed,
the size of the look-up table can be made very small, and does not
increase with the rate of the quantizerQ.

4. EXPERIMENTAL RESULTS

We have compared inR2 linear reconstruction (with equal step-
sizes) and reconstruction based on periodic quantizers (with differ-
ent stepsizes) using the look-up table scheme, with an input source
being a two dimensional Gaussian distributionN (0; �2I)with� =
0:3. Although we could have also compared linear reconstruction
using both a periodic quantizer and a non-periodic quantizer, we
have used a look-up table scheme because for the specific designs
that have been used, it is possible to reconstruct linearly with the
centroids (as in the look-up table) by using different weights in the
linear reconstruction. The comparison has been made by fixing the
total rate, which is calculated assuming that all the coefficients are

encoded independently with a fixed-length encoding. Actually, this
can be seen as being equivalent to making the comparison when the
density of points in the space is the same. LetS = f�j

ig be the
set of stepsizes used by a periodic quantizerQ and� the stepsize
used (to quantize all the coefficients of the frame) by another non-
periodic quantizerQ0. Notice that each stepsize�j

i of Q can be
expressed as�j

i = �
j
i�

1
1, for some�ji 2 R. The (fixed-length)

rate corresponding to each stepsize�j
i can be measured (associ-

ated with the density implied by�j
i ) aslog2(1=�

j
i ). In order to

have the same total rate in both quantizersQ andQ0, we need the
following condition:

X
i;j

log2

�
1

�j
i

�
= rN log2

�
1

�

�
) �1

1 =

 
1Q
i;j

�
j
i

! 1

rN

�

In this way, we can perform a comparison at each value of the step-
size�. For each value of�, the setS of stepsizesf�j

ig is calcu-
lated and theMSE is measured. Fig. 7 represents2 comparisons,
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Fig. 7. Comparison between linear reconstruction with equal step-
sizes and reconstruction based on look-up table for a periodic quan-
tizer
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1), and
r = 3 (represented in Fig. 5), where a gain is clearly observed.
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