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ABSTRACT In all cases, the computational complexity of these methods, for a

. ) ) ) ... given redundancy, is higher than that of linear reconstruction while
The use of quantized redundant expansions is useful in appllcatlons[hey provide substantially better accuracy for high enough redun-

where the cost of having (_)versampli_ng in the repr_esentation Ismuchyancies. Our system provides excellent performance while having
lower than the use of a high resolution quantization (€.g. Oversam-yw,e same complexity as linear reconstruction, but is more suitable

pled A/D). Most work to date has assumed that simple uniform quan;, pe used iR for low values of dimension and redundancy.
tization was used on the redundant expansion and then has dealt ;g paper is organized as follows. First in section 2 we de-

with methods to improve the reconstruction. Instead, in this paper g ipe the oversampled representation system in terms of an equiv-
we consider the design of quantizers for overcomplete exXpansions.ant VQ system. This allows us to introduce in section 3 the con-

Our goal is to d_esign quan_tizers such that simple _reconstru_ction al-Cept of periodic quantizer that leads to an equivalent regular VQ
gorithms (e.g. linear) provide as good reconstructions as with MOreg-heme. Numerical results are shown in section 4.
complex algorithms. We achieve this goal by designing quantizers

with different stepsizes for each coefficient of the expansion in such
a way as to produce a quantizer with periodic structure. 2. LINEAR RECONSTRUCTION, CONSISTENCY AND

EQUIVALENT VQ

1. INTRODUCTION AND MOTIVATION Letz € RY and letd = {y,}, be a tight frame ifR™ with
lg;ll =1Vi=1,---,M. ThenVx € RY, the expansion

The purpose of using redundant expansions is to achieve high acwith respect to the framé = {p; Y, whose coefficients have
curacy in digital signal representations under scenarios where thethe minimum possible norm is given by [6]:
cost of implementing a high resolution quantization with the cur-
rent technology is much higher than that of having a high oversam- 1 M 1
pling or redundancy. The most important practical case is that of r= Zyi% =5 Z(w, )P 1)
oversampled A/D conversion of band-limited signals, where accu- i=1
racy is attained by performing an oversampling in the time domain. wherey; = (z, ;) is thei-th coefficient of the frame. We re-

The accuracy that can be attained with quantized overcompleteyrict our attention in this paper to tight frames with integer redun-
expansions depends on two things: the reconstruction algorithmgancy, and composed of a set of orthogonal bases. This is both
and the quantization scheme. Unlike previous work [1, 6, 5, 3], pecause of the greater simplicity of the geometric analysis and due
which assumes a known quantization and focuses on improving theyg their relevance for practical applications. With this restriction,

reconstruction, in our work we assume that a simple reconstruc-ye can group the VeCtOI{SP-}Ml that compose the tight frame as

. . . 1Ji=

tion (e.g. linear or look-up table) will be used. Our approach has {{(pj}gv O Where{cpjf}?" _is the j-th basis. The-th coeffi-
g h i=1fj=1s i= .

fc_)cused on providing _the tools _to d_e5|gn the overcomplete e_Xpan'cienE of the]j-th basis is auantized with a uniform quantizer with

slons gnd 'correspondlng qgantlzatlon SyStefT‘ so that 'the equ'Valemstepsizeﬁj. In general all these quantizers are assumed to be dif-

quantizer is regular under simple reconstruction algorithms. We re- ferent. For the sake of simplicity, we restrict most of the equations,

strict ourselves to using scalar quantizers for each component ofWithout any loss of generality, t&2. For N' = 2, we define each

the expansion, but allow the stepsizes to be different in each Com'orthogonal matrisk asFi — [;pj Lp?’]T and we C’alyj _ [yj yj]T

pc_)ner_n. The approqches developed prewou_sly in [3, 1] can be @Pthe 2-dimensional vector of coellﬁcizents associated witlj{lﬂ;ebza-

plied inRY for any finite values ofV andr, while the method de- sis, which is given by’ = Fig

S.u.'bed In [5] can be a_p_plled to o_ver_sampled_ A./D ofgeneral b"?‘”d' In terms of quantization we have a series of orthogonal basis

limited signals (in addition to periodic band-limited signals, which

be vi q el ed f G over which a scalar quantizer is used. Considering in isolation each
can be viewed as a particular quantized frame expansigtij of these structures lead to a partitior?df with a rectangular grid,
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ucation and Science of Spain, and the Integrated Media Systems Center, &tepsizes determine the position of the vertices. The corresponding
National Science Foundation Engineering Research Center. real latticeA? has a generator matrid ,; = (A7) |AL@?)T.

M

i=1




! %@ (FY'
F2 '%(FZ)T
: S

F )

. o . oy . Fig. 3. Example of a linearly consistent quantizgr The recon-
Fig. 1. Definition of a quantize€ in R~ based on the linearrecon-  gyyyctions#’, j = 1,2 are represented by’ and the final re-

struction of a tight frame constructiong is represented bjo’. ParametersA} = Al,
A} = A} = AL tan(d) = &

Now consider quantization using several of these orthogonal
bases jointly in an overcomplete system. Clearly, the resulting Voror?oi

regions of the combined system are the intersections of the Voronoitn ord?r tObllthtJPSG a 4pe:od|glsttrtg(§:§txre@)/\wef haye to T"}? c;\rt_aln
regions of the individual grids. This is illustrated in Figs. 1 and 2. ypebo stu f{ah |ce|s[ 1 i ;L&h‘i.' it % | (:t'a gl\(/zt‘a_n attic IIT ¢
Linear reconstruction is illustrated in Fig. 2. An input that falls asubset orthe elementsAlhat s ltset a latlice. Liven areal ‘at-

in the intersection of two specific (rectangular) Voronoi regions is tice A with generator matridM », a sublatticé SA is completely

reconstructed as the average of the centers of those two regions?’bpe.c'f'efg:y f:n |_nt(§8’er m_atg:&'s ,}Vfrhat maps a basis of into a
In some cases, as for the upper cell (indicated with bold line), the 225!S 01544 thatis, Misx = BsaMa.
average point falls again in the same intersection so that we haveDefinition 1 Given a real latticeA in R2
a regular quantization and consistent reconstruction. However, in
the case of the lower cell, the average point falls outside the original

region of intersection thus leading to inconsistency.
MAI = <

with generator matrix
M ,, alattice A’ is geometrically scaled-similar ta iff:

“ 02 >UMAR, >l (@)

whereR is a2 x 2 orthogonal matrix, that is, a rotation and/or
areflection inR?, andU is a2 x 2 unimodular matrix, that is, a
X R matrix with integer components satisfying théitt(U)| = 1. If
le A = SA C A, thenSA is a geometrically scaled-similar sublat-
tice of A andcy, co and R are constrained.

It can be seen in (2) that a sublatti§d. is obtained by simply ro-

A tating and/or reflecting the lattick and then scaling each of the

2 new rotated axes by a certain amount. Notice that in the particular
case of having: = c¢», SA would be a geometrically similar (or
equivalent) sublattice of, as defined by Conway et al. [4]. Fig.

4 shows an example of sublattice for= 2, where the cell indi-

/x>
-

~ cated with bold line is the fundamental polytopesf, which we
denote byl,S*. Without loss of generality, let us assume we want
Fig. 2. Reconstructions for the quantizeps, Q* and@ when lin- to construct geometrically scaled-similar sublattices of a lattite
ear reconstruction is used. The linear reconstruct#ng = 1,2 where M y1 = diag[A}, A}], which defines a quantizep'. If

are represented By and the final reconstructiaiis represented  there are- sublattices ofA®, we will denote them bySA!, SAZ,
by'o’. The final reconstructions are obtained by taking the halfway ..., SA", and for notational convenience, we tafa' = A'. We
point betweeni' and#?, thatis,& = 1 (&' + &°). will always takeU = I in (2) so that the basis vectors of tfieh
geometrically scaled-similar sublattice are orthogonal and can be
associated with thg¢-th orthogonal basis of a tight frame.
Given A, it can be shown [2] that iFA is a geometrically

scaled-similar sublattice of', the partition defined b{ViAl} N

3.1. Definition and Construction {Vi®*} has a periodic structure (tesselation) with the basic unit cell

being{VA'} N V54 (see Fig. 4). The following Lemma can be

3. QUANTIZERS WITH PERIODIC STRUCTURE

A “periodic quantizer” Q is a quantizer where there is only a finite

number of distinct Voronoi cell§V;?} (see Fig. 3). Letus assume We assume that both andS A are full rank lattices, that is, the matri-
to facilitate the understing th&} is a quantizer imiR2 andr = 2. cesM 5 and M g5 are full rank




Fig. 4. Example 1: Voronoi ceIIs{ViQ}. The sublattice structure
is indicated with bold line. Parameterg: = \/E A} = BAL,

Al = zcos(o)Al' Af = 30015(9)’3A%‘ tan(d) = V6

proved in a straightforward manner by using the definition of geo-
metrically scaled-similar sublattices.

Lemma 1 Given a rectangular lattic\! in R? whose generator
matrix is diagonal, all the geometrically scaled-similar sublattices
SA C A' (with the matrixR in (2) constrained to be a rotation),
have generator matrices of the form:

_( aAl 0 cos(f)  sin(6)

Msa = ( 0 c2BAL ) ( —sin(f) cos(0)
_ kin k12 10 1

= ( A ) ( 0 3 )Al where

_ A _ k11koy t 9) = kioko1 _ kio

p= Al TV Eizke? an(f) = ki1kas T E’B
= coksl(lew 2 = cfsz(zoy
ki1,ki2, ko1, ks € 24, 0<0< 3

We denote byB s the integer matrix with entrie§k;,,, }.

Notice that only those angléswhose tangent is the square root of
two integers lead to a geometrically scaled-similar sublattice.

In order to construct a general periodic quanti@dor a redun-
dancyr, it is sufficient to design the system so that thererarel
latticesA?, - - -, A" each containing a sublattice af . This guar-
antees that the intersection of all the lattiddsj = 1,- - - ,ris not

Fig. 5. Example forr = 3: Structure of the quantiz&p and unit
cell of the structure

The importance of calculating the coincidence site latfiée’~

comes from the fact that its fundamental pontdﬁ,éCSL is the

unit cell that is repeated in the the periodic structure of the result-
ing quantizer. This follows directly from group theory because
A?SL is the finest common sublattice (subgroup) of all the lattices
N,j=1,---,r

Example 1 An example forr = 3 is composed by the following
tight frame and stepsizes:

1 0
0 1
P co§(%72 sin(%)
—sin(%) cos(%)
cos(3) sin(%)
—sin(%) cos(3) (4)
=2, Ab=pAl = LAl
2 _ 1 1 1 2 _ 3 1
3= () ot 3= () () o
3_1 1 1 3_1 1 1
Al 2 (COS(%) Al’ A2 -2 (COS(%) (%) Al

Fig. 5 shows the unit cell that is repeated periodically (fundamen-
tal polytope ofA“S) and the resulting Voronoi cells of the final
quantizerQ.

The extension of periodicity for more general redundant families

empty, and therefore, by group theory, is a lattice. In general, the and for higher dimensions is given in [2].

latticesA? D SA7 (SA? being a geometrically scaled-similar sub-
lattice of A '), associated with the quantize{r@j }] », have gener-
ator matrices of the form\f ,; = diag[1/d}, 1/d]]MSA, , Where
d’, &, € Z,. Thedivision by the integers#/ , 4 } ensures that the
Voronoi cells{ ;% } will keep a periodic structure, which is still de-
termined byV,°’ (see Fig. 4).

Definition 2 Given a set of latticed’ j = 1,---
coincidence site lattice (CSI)“>* as:

,r, we define the

AP = A'NATN-NAT 3)

and thus, it is the finest common sublattice of all the lattités
j = 17 e, T

3.2. Consistent reconstruction in Periodic Quantizers

Let® = {{¢]}iL,}j=, be atight frame of redundaneywhich

is composed of orthogonal bases. It turns out that a necessary
condition to have consistency under linear reconstruction for this
tight frame is that the quantiz€} has to be periodic. This result is
stated in Theorem 1, which is proved in [2].

Theorem 1 If Q is a non-periodic quantizer iR, then it is al-
ways possible to find a linearly inconsistent cell, and hefzés

a quantizer which is not consistent linearly. Therefore, periodicity
in a quantizerQ is a necessary condition to achieve consistency
under linear reconstruction.



A sketch of the proof of Theorem 1 is as follows. When there is no encoded independently with a fixed-length encoding. Actually, this
periodicity in the partition defined by a quantizgr the vertices of can be seen as being equivalent to making the comparison when the
any two lattices\’* andA72 can have arbitrary relative positions. density of points in the space is the same. Set= {A’} be the
When this occurs it is always possible to find a situation where the set of stepsizes used by a periodic quant@endA the stepsize
relative position of the lattices guarantees that an inconsistent linearused (to quantize all the coefficients of the frame) by another non-
reconstruction occurs. Notice that since in a periodic quanfzer  periodic quantize)’. Notice that each stepsizé! of Q can be
there are only a finite number of distinct Voronoi CGﬂlB;-Q}, to expressed aAZ = QZA}‘ for someaz.' € R. The (fixed-length)
check if consistency is satisfied linearly, we only need to check on rate corresponding to each stepsixg can be measured (associ-
the_ Vqron0| ce_IIs contalrggdelnS|de the fundam_ental polytc_Jpe of the 4ted with the density implied b&?) aslogQ(l/A{). In order to
coincidence site latticd~~~. An example of linear consistency  4ve the same total rate in both quantizerand@Q’, we need the

forr =2isshowninFig. 3. _ following condition:
Given a periodic quantizep, it is also possible to reconstruct

efficiently and accurately by using a look-up table of small size. 1 1 1 N
Zlog2 (—J) = rNlog, <Z> = Al = - A

Assume, for simplicity in the discussion, thadt = 2 and letP, 3

be the smallest rectangular polytope, which is a basic unit cell for . ig %

the partition defined by (see Fig. 6). The basic idea is thatgiven |n this way, we can perform a comparison at each value of the step-
sizeA. For each value of\, the setS of stepsize{A?} is calcu-
lated and thél/ SE is measured. Fig. 7 represeftsomparisons,

-25

=1

6 Linear Rec. (equal stepsizes): = 2, equispaced angles
—— Linear Rec. (equal stepsizes): r = 3, equispaced angles

~6- Periodic Quantizer (different stepsizes). r = 2, equispaced angles
—4r — Periodic Quantizer (different stepsizes): r = 3, angles

DIFFERENCE IN MSE(dB) WITH RESPECT TO r
!

Fig. 6. Reconstruction algorithm based on look-up tabtérepre-
sents reconstruction vectofs, represents the values of the quan- 005 o105 02 02 03 03 04 045 08

tized coefficients which define the equivalent cell in the unit cell

P,,'x represents the input vector. Allthe information is first trans- F|g 7. Comparison between linear reconstruction with equa| step-

lated to the unit celP,, then the reconstruction vector of the equiv-  sjzes and reconstruction based on look-up table for a periodic quan-
alent cell is read, and finally it is translated back to the proper cell tizer

any Voronoi cellV;< it is possible to find very fast (floor operation ~ for r = 2 (3 = 1,tan() = 1andA? = A3 = V2A}), and

and traslation) the equivalent cél]? which is insideP,. Given r = 3 (represented in Fig. 5), where a gain is clearly observed.
an input signale, a reconstruction vecta, € Vi? is read from
a look-up table and finally this reconstruction vector is translated 5. REFERENCES
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