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ABSTRACT

A datistical space-time model for indoor wireless propagation
based on empirical measurements is compared with results from
the deterministic ray-tracing simulation tool WISE for the same
environment. Excellent agreement is found in terms of the dis-
tributions of arrival times and angular spread for both modeling
approaches. The WISE package is also use to synthesize MIMO
channel matrices and determine the theoretical capacity available
in the tested environments. It is found that, for narrowband chan-
nels, the spatial clustering of the multipaths limits the capacity
gains associated with increased array size.

1. INTRODUCTION

The parametersf ary givenwirelesscommunicationsystemare
to alarge extentdeterminedby the propagatiorcharacteristiceof
theernvironmentin whichit is deployed. Numerouswirelesschan-
nel modelshave beendeveloped,primarily for propagationout-
doors,in aneffort to predictthe effect of the channelwithout the
expenseof directly measuringt. Most of thesemodelsdescribe
the temporalpropertiesof the channel,but recentinterestin the
useof multiple antenna®n both endsof the communicatiorink
have ledto the developmenbf modelsthatalsoaccounfor spatial
spreadingf thesignal.

In this paper we comparetwo space-timepropagatiormodel-
ing toolsfor indoorenvironments. Thefirst is a statisticalmodel
developedin [1] using empiricalmeasurementsaken at 7 GHz.
This modelgeneralizedhetemporal-onlymodelof [2] to include
spatialmultipathpropagatiorstatistics.A key componenbf both
[1] and[2] is the groupingof multipath arrivals into clustersin
both spaceandtime. The secondnodelwe consideris onebased
on ray-tracingusingthe WL SE (for Wireless System Engineering)
simulationtool developedby LucentTechnologieg§3]. We used
the WIiSE packageo simulatethe sameindoor propagatiorenvi-
ronmentthatwasexperimentallyprobedin [1], andcomparedhe
resultswith thosepresentedn [1]. As describedn theremainder
of the paperwe foundexcellentagreemenbetweerthetwo mod-
els, from the heuristicclusteringstructureoriginally obsered in
the channelmeasurement® the measuredtatisticalparameters
in themodelof [1]. Ourobserationscomplementhosepresented
in [4], whereagreemenivasfoundbetweerresultsfrom the WiSE
software and measurementtaken in an outdoorurban erviron-
ment.

With confidencethat WISE is accuratelymodeling our in-
door channelwe usedits outputto synthesizehe multiple-input
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Fig. 1. Distribution of Relatve Anglesof Arrival for Measured
Channelwith BestFit LaplacianDistribution.

multiple-output(MIMO) channelmatrix that would resultwhen
emplg/ing antennaarraysat both transmitterand recever. This
allows usto quickly simulatevarioustypesof arraysizes,geome-
tries,andlocations andseetheir effecton capacitywithoutatime-
consumingmeasurementampaign. We have found that, for the
particularbuilding environmentgestedthe effect of the multipath
clusteringis to limit the capacitygainsthatarepredictedvhenthe
sizeof thearrayis increasedat leastfor narravbandchannels.

2. PROPAGATION MODELING

In developinga propagatiormodelfor the wirelessindoor chan-
nel, we may approaclthe problemfrom eithera deterministicor
a statisticalviewpoint. A statisticalmodel can be basedon the
bulk propertiesof channeksoundingmeasurementshich obsere
thechanneMlirectly. Alternatively, we may useclassicapropaga-
tion theoryanda knowledgeof the physicalindoor environment
to deterministicallypredictthe behaior of the channel. Ideally,
thereshouldbe a firm agreemenbetweerconstructie, determin-
istic channemodelsandthestatisticabehaior obseredin actual
channels.



2.1. Statistical Channel Modeling

As anexampleof a statisticalmodel, Spenceret al. [1] have ob-
senedthattheindoorwirelesschannefollows the statisticalclus-
teringmodelproposecby SalehandValenzueld2] andextended
thismodelto includeangleof arrival informationin additionto the
time domainimpulseresponse The time/angleimpulseresponse
is describedn [1] by:
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whichgroupsarrivalsinto clusterqindicatedoy theindex ) whose
arrival is dictatedby a Poissorprocesaith rateparameteA. Ray
arrivalswithin clustergdenotedy theindex k) alsoarrive accord-
ing to anindependenPoissorproceswith rateparametei. As a
result,we expectthattherelative timesof arrival for both clusters
andindividualrayswill bedistributedexponentially

Theadditionalangulardependencef themodeldescribeglus-
tersthatarespatiallylocalizedarounda meanclusterangleof ar
rival, ©;. The parametety;, which representshe deviation of
eachray'sangleof arrival from themearclusterangle js described
by anindependentaplacianrandomprocessn which the distri-
bution of wg; is givenby:
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By simultaneouslymeasuringthe channelimpulse responsen
both time and arrival angle,it wasobsered in [1] thatthe mul-
tipath arrivals accuratelyfit into the proposedclusteringmodel.
Most significantly the distribution of relative anglesof individ-
ual arrivals closely followed the Laplaciandistribution from the
model,asseenin Figurel. This plot wasgeneratedisingdatacol-
lectedat 7 GHz by taking the histogramof the relative anglesof
arrival overall of themeasurementssing100equallyspacedins
between—180° and180°. Thesolidline representthe Laplacian
distribution that minimizesthe squarecerrorfrom samplesof the
dataintegratedover identicalbin widths.

for (W) = (2

2.2. Deterministic Channel Modeling

As a complementanapproachray-tracingandcomputationagje-
ometrycanbe usedto predicttheimpulseresponsef theindoor
wirelesschannebasedon transmitterandrecever characteristics
andthe physicalreflection/transmissioanvironmentof the build-
ing. LucentTechnologiehasdevelopeda 3-D predictive simula-
tor for wirelesschannepropagatiorreferredto asWSE for Wire-
less System Engineering. It makesuseof computationabeome-
try, building ervironmentdescriptionsanda complex propagation
modelto predictthe higheststrengthpropagatiorpathsfrom arbi-
trary transmitterandrecever locationswithin a staticervironment
[3]. Threedimensionakay-tracingis usedto includethe effects
of frequeng, polarization thedielectricpropertiesof encountered
materials diffraction aroundcorners,and antennadirectiity. To
speedipthecomputationallyntensve taskof predictingall possi-
ble illumination pathsfrom transmitterto recever, only rayswith
power above a fixedthresholdare perpetuatedhroughthe model.
Also, rayswhich areoutsideof thethreedimensionatoneillumi-
natedby reflectionsoff of aparticularwall interfacearediscarded.
Thissimulationtool allows deterministigoredictionof theimpulse
respons®f wirelesschanneldor bothtime andangleof arrival.
By comparinghechanneimpulseresponsewhichresultfrom
both statisticalobsenation anddeterministicsimulation,we hope
to shaw consisteng betweerthe two modelingapproacheandto
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Fig. 2. Typical Resultsof Ray Tracing Simulationfor a single
transmitter/receer locationpair.

validatethe major featuresof the results. Also, the ray-tracing
simulationprovidesfull definitionof eachpropagatiorpath. This
allows someexplanationof the underlyingcause®f the obsered
clusteringstructurein the channel. In particular it is possibleto
measurethe statisticsof the anglesof departurefrom the trans-
mitter andto obsere their possiblecorrelationwith the anglesof
arrival atthereceverwithoutacomplec systencapableof directly
measuringhis information. This would provide a bridgebetween
thesetwo channelmodelingparadigmsandtheir contrikbution to
thedesignof highercapacityindoorwirelessnetworksandMIMO
systems.

3. METHODOLOGY

We usedthe WiSE SimulationPackagg3] to duplicatethe 7 GHz
channelsoundingexperimentsperformedby Spencer{5] in the
W.W. Clyde EngineeringBuilding locatedon the BrighamYoung
University Campusn Provo, Utah. The Clyde Engineeringouild-
ing is representate of steel-reinforcedcementblock construc-
tion. The parameter®f the simulationwere setto mostclosely
matchthe operationof the original measuremergystem.An ex-
ampleof theray-tracingresultsfrom thesesimulationds shavn in
Figure2. Theapparensystermpowerwasnormalizedby adjusting
the simulationray power thresholdto generateahe samenumber
of arrivalstakenover all of thedatacumulatvely asweredetected
in the measurementdn groupingthe impulseresponselatainto
clustersfor analysiswe usedthe samealgorithmthatwasapplied
totheearlierresults.

The building geometrydatabaseneededfor simulationswas
taken from original architecturalCAD files. To reducethe com-
plexity of the geometry it wasassumedhat the dominantpaths
in the channelimpulseresponse@emainedn the samehorizontal
planeasthe transmitterandrecever. Initially, the building model
of asinglefloor consistecf over 2500wall entitieswith uniform
dielectric composition. Using this as a starting point, we con-
densedhemodelto focusonthelocationandpropertieof scatter
ersin thebuilding. Thisresultedn afinal modelwith muchlower
wall entitydensityandcorrespondinglyower simulationtime with
improved statisticalresults.
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Fig. 3. Typical Arrival Angle vs. Time ScatterPlot for Simulated
IndoorChannel.

4. RESULTS

Theclusteringstructurein bothtime andangleof arrival obsered
in [1] wasimmediatelyevidentin the simulationresults,asseen
in Figure 3. Using the samemethodsas before,the ray-tracing
datawereusedto estimatethe procesgparametersf the extended
clusteringmodelof (1). To derive theclusterarrival rateparameter
A, thefirst arrival in eachclusterwastaken asthe clusterarrival
time, andtherelative delaysweremeasuredvith respecto thear
rival time of the previous cluster This leavesout thefirst cluster
for eachdataset, which is assumedn the clusteringmodelto be
equivalentto thebulk delayof theline-of-sightpath. A histogram
of theresultingrelative clustertimeswasfit to anexponentialPDF
usingleastsquaregaswasdonefor all othercune fits presented
here). The estimatedparametewas1/A = 18.94 ns. Similarly,
A wasestimatedy measuringhe time of arrival for eacharrival
within a clusterwith respecto the previous arrival, andcurwe fit-
ting an exponentialPDF to a histogramof the aggrgatedresults
for 50 total transmit-receie location pairs. In this casethe esti-
matedparametewasl /X = 5.97 ns. Figures4 and5illustratethe
curwve fitting usedto estimate\ andA, respectrely. Thesecondf
theseatwo plotsactuallyshavs thecomplimentaryCDF ratherthan
the PDF (althoughthe cun fitting wasto the PDF) becausét is
lessnoisyandbetterillustratesthe quality of fit.

Finally, the parameter representinghe standarddeviation of
theangleof arrival with respecto the meananglefor eachcluster
was estimatedsimilarly, usinga histogramof all the aggrgated
clusters. This is illustratedin Figure6. As in the previous em-
pirical data,thefit to a Laplaciandistribution wasvery good. The
resultingstandardieviationwas23.4°. A comparisorof thestatis-
tical parametergstimatedrom theray-tracingdatawith the orig-
inal parameteestimategrom empiricalchannemeasuremenis
[1] is shavn in Tablel. The comparisonindicatessurprisingly
closeagreemenibetweertheresults.

With knowledgeof bothtransmitandreceve anglesaswell as
theindividual pathgains,a MIMO channelransfemmatrix canbe
synthesizedrom the ray-tracingdata. For the narravbandcase,
wherewe assumehatthe impulseresponseassociatedvith each
pathis a simple complex scalar the expressionfor the channel
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Fig. 4. Distribution of Time IntervalsBetweenRayArrivals.
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BetweenClusterArrivals.
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Fig. 6. Distribution of Relatve Anglesof Arrival for Simulated
Channelwith BestFit LaplacianDistribution.



matrix takesthefollowing form:

L
H=Y af@n) b an(r,) ©

=0

wherep; is theindividual complex pathgain,fr, andfg, arethe
transmitandreceve anglesrelative to somereferenceandar (9)
andar () aretherespectre steeringvectorsof the transmitand
receve arraysfor anarbitraryanglef. To studythe effectsof ar-
ray configurationandsignalto noiseratio (SNR) on capacity we
synthesizedhe channelfor uniformly spacedineartransmitand
receve arrayswith elementspacingof A/2 anduniformly random
phasefor eachray in the channel. Both the transmitandreceve
arrayswere assumedo have the samenumberof elements. It
wasobsenredthat,on averagethechannekapacitywasrelatively
insensitve to the orientationof thearrays sowe reducedheinflu-
enceof orientationasa parameteby randomizingthearrayangle
uniformly over 10trials at eachlocation.We alsonormalizedeach
of thesynthesized¢hannematricesto have unit Frobeniusorm.

The capacityof the channelwasthencalculatedover a range
of SNRvaluesusingthewaterfilling solutionoutlined,for exam-
ple, in [6]. For eachvalue of SNR and array size, we selected
the value of capacitythat was achieved or exceededby 90% of
the500simulatedchannefealizations This representthe capac-
ity that was achieved by the channelwith a 10% probability of
outageover all 50 transmit/receie locationswith randomarray
orientations.Figure7 shaws this outagecapacityasa function of
arraysizeandsystemSNR. The capacityof this simulatedndoor
channelis insensitve to increasesn the numberof elementsn a
linear array exceptwhen operatingat high SNR. This is mainly
dueto the fact that, in mostof the datasets,a single dominant
clusterof arrivalswaspresentThespatialdiversity of thetransmit
andreceve arrayswill yield capacitymprovementsonly whenthe
SNRis high enoughfor clustersarriving from otherdirectionsto
contritbute powver above the noisefloor. At low SNR, the capac-
ity of the channeldoesnot increasdinearly with the size of the
arrays. As SNRincreasesthe capacitygain from increasingthe
arraysizesis closerto linear

5. CONCLUSIONS

Our resultsindicatethat ray-tracingsimulationof indoor space-
time propagationaccuratelyreflects the general structure and
statisticsof datacollectedempirically Consequentlyray-tracing
canbe consideredeasonablyeliablefor generatinglatato char
acterizethe temporaland spatialcharacteristicef indoor multi-
pathchannelswithouttheneedfor costlyfield measurementdJs-
ing the WISE ray-tracingtool to simulatethe propagatiorcharac-
teristicsof a particularindoor ervironmenton the BYU campus,
we calculatedthe channelcapacitythatwould resultfor a variety
of arraysizes,orientationsand SNRs. We foundthat, dueto the
temporakndspatialclusteringof themultipatharrivals,increasing

Ray-Tracing | Empirical
o 23.4° 25.5°
1/A 18.94ns 16.8ns
1/\ 5.97ns 5.17ns

Table 1. Comparisonof estimatedparametergrom ray-tracing
simulationsandemipiricalmeasurements.
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arraysizedoesnotnecessarilyesultin alinearincreasén channel
capacity
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