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ABSTRACT

A statistical space-time model for indoor wireless propagation
based on empirical measurements is compared with results from
the deterministic ray-tracing simulation tool WiSE for the same
environment. Excellent agreement is found in terms of the dis-
tributions of arrival times and angular spread for both modeling
approaches. The WiSE package is also use to synthesize MIMO
channel matrices and determine the theoretical capacity available
in the tested environments. It is found that, for narrowband chan-
nels, the spatial clustering of the multipaths limits the capacity
gains associated with increased array size.

1. INTRODUCTION

Theparametersof any givenwirelesscommunicationssystemare
to a largeextentdeterminedby thepropagationcharacteristicsof
theenvironmentin which it is deployed.Numerouswirelesschan-
nel modelshave beendeveloped,primarily for propagationout-
doors,in aneffort to predicttheeffect of thechannelwithout the
expenseof directly measuringit. Most of thesemodelsdescribe
the temporalpropertiesof the channel,but recentinterestin the
useof multiple antennason bothendsof thecommunicationlink
haveledto thedevelopmentof modelsthatalsoaccountfor spatial
spreadingof thesignal.

In this paper, we comparetwo space-timepropagationmodel-
ing tools for indoorenvironments.Thefirst is a statisticalmodel
developedin [1] usingempiricalmeasurementstaken at 7 GHz.
This modelgeneralizedthetemporal-onlymodelof [2] to include
spatialmultipathpropagationstatistics.A key componentof both
[1] and [2] is the groupingof multipath arrivals into clustersin
bothspaceandtime. Thesecondmodelwe consideris onebased
on ray-tracingusingthe WiSE (for Wireless System Engineering)
simulationtool developedby LucentTechnologies[3]. We used
theWiSE packageto simulatethesameindoorpropagationenvi-
ronmentthatwasexperimentallyprobedin [1], andcomparedthe
resultswith thosepresentedin [1]. As describedin theremainder
of thepaper, we foundexcellentagreementbetweenthetwo mod-
els, from the heuristicclusteringstructureoriginally observed in
the channelmeasurementsto the measuredstatisticalparameters
in themodelof [1]. Ourobservationscomplementthosepresented
in [4], whereagreementwasfoundbetweenresultsfrom theWiSE
software and measurementstaken in an outdoorurbanenviron-
ment.

With confidencethat WiSE is accuratelymodeling our in-
doorchannel,we usedits outputto synthesizethe multiple-input
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Fig. 1. Distribution of Relative Anglesof Arrival for Measured
Channelwith BestFit LaplacianDistribution.

multiple-output(MIMO) channelmatrix that would result when
employing antennaarraysat both transmitterandreceiver. This
allows usto quickly simulatevarioustypesof arraysizes,geome-
tries,andlocations,andseetheireffectoncapacitywithoutatime-
consumingmeasurementcampaign.We have found that, for the
particularbuilding environmentstested,theeffectof themultipath
clusteringis to limit thecapacitygainsthatarepredictedwhenthe
sizeof thearrayis increased,at leastfor narrowbandchannels.

2. PROPAGATION MODELING

In developinga propagationmodel for the wirelessindoor chan-
nel, we mayapproachthe problemfrom eithera deterministicor
a statisticalviewpoint. A statisticalmodel can be basedon the
bulk propertiesof channelsoundingmeasurementswhichobserve
thechanneldirectly. Alternatively, we mayuseclassicalpropaga-
tion theoryanda knowledgeof the physicalindoor environment
to deterministicallypredict the behavior of the channel. Ideally,
thereshouldbea firm agreementbetweenconstructive, determin-
istic channelmodelsandthestatisticalbehavior observedin actual
channels.



2.1. Statistical Channel Modeling

As anexampleof a statisticalmodel,Spencer, et al. [1] have ob-
servedthattheindoorwirelesschannelfollows thestatisticalclus-
teringmodelproposedby SalehandValenzuela[2] andextended
thismodelto includeangleof arrival informationin additionto the
time domainimpulseresponse.The time/angleimpulseresponse
is describedin [1] by:
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(1)

whichgroupsarrivalsintoclusters(indicatedby theindex , ) whose
arrival is dictatedby aPoissonprocesswith rateparameter- . Ray
arrivalswithin clusters(denotedby theindex . ) alsoarriveaccord-
ing to anindependentPoissonprocesswith rateparameter/ . As a
result,we expectthattherelative timesof arrival for bothclusters
andindividual rayswill bedistributedexponentially.

Theadditionalangulardependenceof themodeldescribesclus-
tersthatarespatiallylocalizedarounda meanclusterangleof ar-
rival,

( �
. The parameter

* ���
, which representsthe deviation of

eachray’sangleof arrival fromthemeanclusterangle,isdescribed
by an independentLaplacianrandomprocessin which thedistri-
butionof

* ���
is givenby:021 ��� �3*4	"� 56 798 �
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By simultaneouslymeasuringthe channelimpulse responsein
both time andarrival angle,it wasobserved in [1] that the mul-
tipath arrivals accuratelyfit into the proposedclusteringmodel.
Most significantly, the distribution of relative anglesof individ-
ual arrivals closely followed the Laplaciandistribution from the
model,asseenin Figure1. Thisplot wasgeneratedusingdatacol-
lectedat 7 GHz by taking the histogramof the relative anglesof
arrival overall of themeasurementsusing100equallyspacedbins
between

! 5CBEDEF and 5GBEDEF . Thesolid line representstheLaplacian
distribution thatminimizesthesquarederror from samplesof the
dataintegratedover identicalbin widths.

2.2. Deterministic Channel Modeling

As a complementaryapproach,ray-tracingandcomputationalge-
ometrycanbeusedto predictthe impulseresponseof the indoor
wirelesschannelbasedon transmitterandreceiver characteristics
andthephysicalreflection/transmissionenvironmentof thebuild-
ing. LucentTechnologieshasdevelopeda 3-D predictive simula-
tor for wirelesschannelpropagationreferredto asWiSE for Wire-
less System Engineering. It makesuseof computationalgeome-
try, building environmentdescriptions,andacomplex propagation
modelto predictthehigheststrengthpropagationpathsfrom arbi-
trarytransmitterandreceiver locationswithin astaticenvironment
[3]. Threedimensionalray-tracingis usedto includethe effects
of frequency, polarization,thedielectricpropertiesof encountered
materials,diffractionaroundcorners,andantennadirectivity. To
speedupthecomputationallyintensivetaskof predictingall possi-
ble illumination pathsfrom transmitterto receiver, only rayswith
power above a fixedthresholdareperpetuatedthroughthemodel.
Also, rayswhichareoutsideof thethreedimensionalconeillumi-
natedby reflectionsoff of aparticularwall interfacearediscarded.
Thissimulationtool allowsdeterministicpredictionof theimpulse
responseof wirelesschannelsfor bothtimeandangleof arrival.

By comparingthechannelimpulseresponseswhichresultfrom
bothstatisticalobservationanddeterministicsimulation,we hope
to show consistency betweenthetwo modelingapproachesandto

Fig. 2. Typical Resultsof Ray Tracing Simulationfor a single
transmitter/receiver locationpair.

validatethe major featuresof the results. Also, the ray-tracing
simulationprovidesfull definitionof eachpropagationpath.This
allows someexplanationof theunderlyingcausesof theobserved
clusteringstructurein the channel. In particular, it is possibleto
measurethe statisticsof the anglesof departurefrom the trans-
mitter andto observe their possiblecorrelationwith theanglesof
arrival at thereceiverwithoutacomplex systemcapableof directly
measuringthis information.Thiswould provide abridgebetween
thesetwo channelmodelingparadigmsandtheir contribution to
thedesignof highercapacityindoorwirelessnetworksandMIMO
systems.

3. METHODOLOGY

WeusedtheWiSESimulationPackage[3] to duplicatethe7 GHz
channelsoundingexperimentsperformedby Spencer[5] in the
W.W. ClydeEngineeringBuilding locatedon theBrighamYoung
UniversityCampusin Provo, Utah. TheClydeEngineeringbuild-
ing is representative of steel-reinforced,cementblock construc-
tion. The parametersof the simulationwereset to mostclosely
matchtheoperationof theoriginal measurementsystem.An ex-
ampleof theray-tracingresultsfrom thesesimulationsis shown in
Figure2. Theapparentsystempowerwasnormalizedby adjusting
the simulationray power thresholdto generatethe samenumber
of arrivalstakenoverall of thedatacumulatively asweredetected
in themeasurements.In groupingthe impulseresponsedatainto
clustersfor analysis,we usedthesamealgorithmthatwasapplied
to theearlierresults.

The building geometrydatabaseneededfor simulationswas
taken from original architecturalCAD files. To reducethe com-
plexity of the geometry, it wasassumedthat the dominantpaths
in thechannelimpulseresponseremainedin thesamehorizontal
planeasthetransmitterandreceiver. Initially, thebuilding model
of a singlefloor consistedof over 2500wall entitieswith uniform
dielectric composition. Using this as a startingpoint, we con-
densedthemodelto focusonthelocationandpropertiesof scatter-
ersin thebuilding. Thisresultedin afinal modelwith muchlower
wall entitydensityandcorrespondinglylowersimulationtimewith
improvedstatisticalresults.
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Fig. 3. Typical Arrival Angle vs. Time ScatterPlot for Simulated
IndoorChannel.

4. RESULTS

Theclusteringstructurein bothtimeandangleof arrival observed
in [1] wasimmediatelyevident in the simulationresults,asseen
in Figure3. Using the samemethodsasbefore,the ray-tracing
datawereusedto estimatetheprocessparametersof theextended
clusteringmodelof (1). To derivetheclusterarrival rateparameter- , the first arrival in eachclusterwastaken asthe clusterarrival
time,andtherelativedelaysweremeasuredwith respectto thear-
rival time of thepreviouscluster. This leavesout thefirst cluster
for eachdataset,which is assumedin theclusteringmodelto be
equivalentto thebulk delayof theline-of-sightpath.A histogram
of theresultingrelativeclustertimeswasfit to anexponentialPDF
usingleastsquares(aswasdonefor all othercurve fits presented
here). Theestimatedparameterwas 5CH - � 5CB�I J9K ns. Similarly,/ wasestimatedby measuringthe time of arrival for eacharrival
within a clusterwith respectto thepreviousarrival, andcurve fit-
ting an exponentialPDF to a histogramof theaggregatedresults
for 50 total transmit-receive locationpairs. In this casethe esti-
matedparameterwas 5LH / �NM I JEO ns.Figures4 and5 illustratethe
curvefitting usedto estimate/ and - , respectively. Thesecondof
thesetwo plotsactuallyshowsthecomplimentaryCDFratherthan
thePDF(althoughthecurve fitting wasto thePDF)becauseit is
lessnoisyandbetterillustratesthequalityof fit.

Finally, theparameter
8

representingthestandarddeviation of
theangleof arrival with respectto themeananglefor eachcluster
wasestimatedsimilarly, usinga histogramof all the aggregated
clusters. This is illustratedin Figure6. As in the previous em-
pirical data,thefit to a Laplaciandistributionwasvery good.The
resultingstandarddeviationwas

7�P I KQF . A comparisonof thestatis-
tical parametersestimatedfrom theray-tracingdatawith theorig-
inal parameterestimatesfrom empiricalchannelmeasurementsin
[1] is shown in Table1. The comparisonindicatessurprisingly
closeagreementbetweentheresults.

With knowledgeof bothtransmitandreceive anglesaswell as
theindividual pathgains,a MIMO channeltransfermatrix canbe
synthesizedfrom the ray-tracingdata. For the narrowbandcase,
wherewe assumethat the impulseresponseassociatedwith each
path is a simple complex scalar, the expressionfor the channel
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Fig. 4. Distributionof Time IntervalsBetweenRayArrivals.
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Fig. 5. ComplementaryCumulativeDistributionof TimeIntervals
BetweenClusterArrivals.
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Fig. 6. Distribution of Relative Anglesof Arrival for Simulated
Channelwith BestFit LaplacianDistribution.



matrix takesthefollowing form:

R �TS� � ���"U VV � � V � 	 �
�
UXW � � W

� 	
(3)

where�
�

is theindividual complex pathgain,
� V � and

� W
�

arethe
transmitandreceive anglesrelative to somereference,and U V � �E	
and U'W � �E	

aretherespective steeringvectorsof thetransmitand
receive arraysfor anarbitraryangle

�
. To studytheeffectsof ar-

ray configurationandsignalto noiseratio (SNR)on capacity, we
synthesizedthe channelfor uniformly spacedlinear transmitand
receivearrayswith elementspacingof / H 7 anduniformly random
phasefor eachray in the channel.Both the transmitandreceive
arrayswere assumedto have the samenumberof elements. It
wasobservedthat,onaverage,thechannelcapacitywasrelatively
insensitiveto theorientationof thearrays,sowereducedtheinflu-
enceof orientationasaparameterby randomizingthearrayangle
uniformly over10trialsateachlocation.Wealsonormalizedeach
of thesynthesizedchannelmatricesto haveunit Frobeniusnorm.

The capacityof the channelwas thencalculatedover a range
of SNRvaluesusingthewaterfilling solutionoutlined,for exam-
ple, in [6]. For eachvalue of SNR and array size, we selected
the value of capacitythat was achieved or exceededby 90% of
the500simulatedchannelrealizations.This representsthecapac-
ity that was achieved by the channelwith a 10% probability of
outageover all 50 transmit/receive locationswith randomarray
orientations.Figure7 shows this outagecapacityasa functionof
arraysizeandsystemSNR.Thecapacityof this simulatedindoor
channelis insensitive to increasesin thenumberof elementsin a
linear arrayexceptwhenoperatingat high SNR. This is mainly
due to the fact that, in most of the datasets,a singledominant
clusterof arrivalswaspresent.Thespatialdiversityof thetransmit
andreceivearrayswill yield capacityimprovementsonlywhenthe
SNRis high enoughfor clustersarriving from otherdirectionsto
contribute power above the noisefloor. At low SNR, the capac-
ity of the channeldoesnot increaselinearly with the sizeof the
arrays. As SNR increases,the capacitygain from increasingthe
arraysizesis closerto linear.

5. CONCLUSIONS

Our resultsindicatethat ray-tracingsimulationof indoor space-
time propagationaccuratelyreflects the general structureand
statisticsof datacollectedempirically. Consequently, ray-tracing
canbeconsideredreasonablyreliablefor generatingdatato char-
acterizethe temporalandspatialcharacteristicsof indoor multi-
pathchannels,withouttheneedfor costlyfield measurements.Us-
ing theWiSE ray-tracingtool to simulatethepropagationcharac-
teristicsof a particularindoor environmenton the BYU campus,
we calculatedthechannelcapacitythatwould resultfor a variety
of arraysizes,orientations,andSNRs.We foundthat,dueto the
temporalandspatialclusteringof themultipatharrivals,increasing

Ray-Tracing Empirical8 7�P I K
F 7 M I M F5LH - 18.94ns 16.8ns5LH / 5.97ns 5.17ns

Table 1. Comparisonof estimatedparametersfrom ray-tracing
simulationsandemipiricalmeasurements.

Fig. 7. ChannelCapacityfor 10%Outageasa functionof Array
SizeandSNR.

arraysizedoesnotnecessarilyresultin a linearincreasein channel
capacity.
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