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ABSTRACT

Bussgang algorithms are a class of simple stochastic gradient type
solutions for blind channel equalization. In this contribution we in-
vestigate the degradation of performance in the source estimation
resulting from the stochastic jitter around the stationary points of
Bussgang algorithms (which correspond to the equalizers of the
channel). More precisely, we derive a closed form approximation
of the Excess Mean Square Error (EMSE) defined as the variance
of the jitter which depends on the effects of the channel charac-
teristics, the source distribution and the non-linearity used in the
update equation. The analysis is performed in a context of spatio-
temporal channel diversity involving a single-input/multiple out-
puts data model.

1. INTRODUCTION

The increasing demand for wireless digital communications ser-
vices over propagation channels with delay spread much greater
than the symbol period places strict performance requirments on
today’s receivers. Adaptive equalizers usually operate in a blind
mode (or non-data aided) and must simultaneously mitigate se-
vere multipath and track time variations. As a result the adaptation
process is usually not halted in a stochastic gradient descent imple-
mentation and a residual error component known as Excess Mean
Square Error (EMSE) is introduced due to stochastic jitter. For
long equalizer structures with a large number of adaptive coeffi-
cients, the EMSE can be prohibitive.

Our contribution studies the EMSE associated with Bussgang
algorithms in the context of equalization with spatio-temporal di-
versity. The class of Bussgang algorithms includes, for example,
Godard’s algorithm (or the constant modulus algorithm (CMA))
[7] and Sato’s aglorithm [13]. Spatio-temporal diversity is char-
acterized either by multiple receivers and/or an over-sampling of
the received analog data at a rate greater than the symbol rate
[9]. Spatio-temporal diversity with additional assumptions, such
as sufficient equalizer length and no channel noise, allows perfect
source symbol recovery. We use this property to derive a closed-
form expression of the EMSE for Bussgang algorithms. Our result
is a generalization of the EMSE for LMS derived by Macchi [11]
and the EMSE characterization for CMA given more recently by
Fijalkow [5].

The paper is organized as follows. Section 2 describes our
system model for the digital communications link, Section 3 the
MSE at steady state associated with the adaptation process, and
Section 4 provides a closed form estimation for the EMSE of the
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Bussgang class. Section 5 provides some computer examples for
CMA and Sato type algorithm, and Section 6 contains concluding
remarks.

2. SYSTEM MODEL

2.1. Data model

We consider the data model that follows,

x(n) = [h1(z) � � �hp(z)]
t
s(n) (1)

= Hs(n)

where x(n) is a length-N vector of observations of a linear single-
input, p-output data model (where p > 1), s(n) is a length-M
vector of source symbols. The degree of the sub-channels hk(z) is
finite. We assume that the coefficients of hk(z) can be stacked in
a matrix H of dimensions N �M (where N > M ). The matrix
H and the source s(n) are unknown and real-valued. The source
fs(n)g is an i.i.d. sequence of symbols belonging to a known
alphabet.

2.2. Bussgang algorithms

The equalizer used is a linear, multichannel, adaptive FIR filter
which produces estimates of the delayed symbols s(n�m) given
by the output

y(n) = f(n)tx(n): (2)

The equalizer vector follows the update rule,

f(n+ 1) = f(n)� � (y(n)�  (y(n)) )x(n): (3)

Here, � is a small positive constant known as the stepsize of the
algorithm, and  (:) is a non-linear, differentiable, odd function
[1] which, roughly speaking, can be seen as a soft-decision func-
tion of the estimated symbol. The vector f� denotes the point of
convergence of the stochastic adaptive Bussgang algorithm.

Most popular blind adaptive equalization algorithms based on
a gradient descent optimization technique can be described by the
update rule (3). For example, the Constant Modulus Algorithm
(CMA) [7], [14] is a special case of a Bussgang algorithm for
which

 (y(n)) =
IEfs

2
g

IEfs4g
y
3(n) (4)

where IEf:g is the mathematical symbol for statistical expectation.
Another example is given by the maximum likelihood (ML)

estimation of a signal s(n) = �1;�3; � � � ; �(P � 1) (PAM-P
modulation) for which,

 (y(n)) '

P
P�1
k=1

(2k � 1) e
� (2k�1)2

2� sinh( (2k�1)
�

y(n))P
P�1
k=1

e
� (2k�1)2

2� cosh( (2k�1)
�

y(n))

(5)



where � is defined by � =
p
SRI

�
and SRI = Efs2g

�2
denotes

the signal to residual Inter-Symbol Interference (ISI) ratio (�2 is
the variance of the ISI generated by the signal subspace minus
the dominant tap). For an ML estimation of a PAM-2 source, the
expression (5) can be simplified to  (y(n)) = Efs

2
g=Efjsjg�

tanh(� y(n)). In particular when � ! +1, i.e., when the ISI
goes to zero, we have  (y(n))! sign(y(n))� IEfs

2
g=IEfjsjg

which is precisely the non-linear function introduced by Sato in
[13]. Other examples of Bussgang type algorithms, of a non-
exhaustive list, are given in [12], [8].

Finally, the choice  (y(n))=s(n�m) can be seen as a bor-
derline case where roughly speaking the soft decision  (:) is sub-
stituted by a known transmitted symbol. In this case (3) is the LMS
algorithm which is the stochastic gradient descent optimization of
the Mean Square Error (MSE) criterion IEf(y(n)� s(n�m))2g.

3. MEAN SQUARE ERROR AT STEADY STATE

We investigate the performance of the estimator (3) with the Mean
Square Error (MSE) measure defined as follows,

�E( ) = IE

n�
f(n)tx(n)� s(n�m)

�2o
(6)

where we assume that f(n) evolves around the stationary point f�.
This measure characterizes the behavior of the Bussgang algorithm
at steady state .

More precisely we are interested in the estimation of the con-
tribution�E of �E( ) that measures the jitter of f(n). We rewrite
(6) as,

�E( ) = IE

��
f
t

�x(n)� s(n�m)
�2�

| {z }
�E0

+ (7)

IE

��
f(n)� f�

�
t

x(n)x(n)t
�
f(n)� f�

��
| {z }

�E

where �E0 denotes the (static) MSE associated with the solution
f� and where �E is defined as the Excess MSE (EMSE) resulting
from stochastic jitter.

Note that,

�E0(f�) � MMSE = �E0(f
mmse

) (8)

where f
mmse

= IEfx(n)x(n)tg�1 IE fx(n)s(n�m)g is the
equalizer minimizing the MSE criterion defined as the Minimum
MSE (MMSE) equalizer. Calculation of the error �E0(f�) has
been analyzed by several authors, mainly for the MSE and CM
criteria under different channel and noise conditions (see [6], [16]
and [15] for instance).

The second contribution of (7) �E measures the perturbation
of the solution f� resulting from the non-vanishing update error
term �(y(n)�  (y(n)))x(n) of (3). The stepsize is usually non-
zero to facilitate tracking of time varying channels. The EMSE
term can be approximated, for small �, as (see [11])

�E = traceIE

��
f(n)� f�

��
f(n)� f�

�
t

x(n)x(n)t
�

' IE

n
kf(n)� f�k

2
o
traceIE

�
x(n)x(n)t

	
(9)

Reference [2] shows that the set of vectors f(n) given by (3)
are asymptotically unbiased estimators of f� with variance,

IE

n
kf(n)� f�k

2
o
= � trace(��) (10)

where �� is defined as the unique positive solution of the Lya-
punov equation defined by,

G(f
�
)�� +��G(f

�
)t +R(f

�
) = 0 (11)

whereG(f�) = rf�IEf(y(n)�  (y(n)))g is the gradient of the
update error term of (3) with respect to f(n) taken at the point f�.
The matrix R(f�) is the covariance of the update error term, also
taken at f�.

The next section introduces further assumptions on the data
model to give an explicit expression for the EMSE.

4. CLOSED FORM EXPRESSION OF EMSE

In this section we give a closed-form expression for the EMSE,
�E , of Bussgang algorithms as a function of the channels hk(z)
and the non-linearity  (:).

Our result relies on the main assumption of left-invertibility of
the matrix H in the data model (1). Since the matrix H is taller
than it is wide (N > M ), the condition of left-invertibility is guar-
anteed if the subchannels hk(z) do not share common roots and if
the equalizer provides sufficient length.

Under these assumptions the EMSE in (7) can be written as,

�E = IEfs
2
g IE

�
kq(n)� e

m+1k
2
	

(12)

where q(n) denotes the combined impulse response of the channel
and equalizer defined as q(n) = H

t
f(n) and where e

m+1 denotes
a single spike-vector where the unity value is located at the (m+
1)-th position (i.e., f t�Hs(n) = e

t

m+1s(n) = s(n �m)). Since
�E0 goes to zero in this case, the EMSE equals the variance of the
source estimation (i.e. the MSE),

�E = IE
�
(ŝ(n)� s(n�m))2

	
(13)

where ŝ(n) = q(n)ts(n). The EMSE expression in (13) is found
by solving the equation (11), which for the Bussgang class can be
written as,

HG(e
m+1)H

t�� +��HG(e
m+1)

t
H
t
�HR(e

m+1)H
t = 0

(14)
where the matrices G(e

m+1) and R(e
m+1) are respectively given

by,

G(e
m+1) = IE

n
 
0

(et
m+1s(n))s(n)s(n)

t

o
� IEfs

2
g IM (15)

and,

R(e
m+1) =

+1X
n=�1

IE
��
e
t

m+1s(n)�  (et
m+1s(n))

�
s(n)

s(0)t
�
e
t

m+1s(0)�  (et
m+1s(0))

�	
: (16)

where IM is the M �M identity matrix.

The expression of the EMSE term is summarized in the propo-
sition that follows. The proof is given in the Appendix.



Proposition 1. Under the assumptions: i) the matrix H is left-
invertible, and ii) the stepsize � is small enough, a closed form
expression of the EMSE for Bussgang algorithms in (3) is given
by,

�EBuss '
IE
�
(s�  (s))2

	
IE f 

0(s)g � 1
�ELMS (17)

where,

�ELMS = �
N

2
IEfs

2
g

pX
k=1

Z +�

��
jhk(e

i!)j2 d! (18)

is the EMSE of the LMS algorithm [11].

Note that the EMSE of the LMS algorithm �ELMS is defined
as the product of three terms: the step size �, the length of the
equalizer N and the power of the received signal expressed as a
function of the channels hk(z). Notice that the EMSE increases
linearly with the length of the equalizer and the step-size. The
effect of the non-linearity  (:) in (17) is contained in the ratio
IE
�
(s�  (s))2

	
=(IEf 

0

(s)g � 1). The gain induced by this
ratio depends on the non-linearity and the source distribution. The
numerator stems directly from the contribution of the non vanish-
ing error (y(n)� (y(n)) of the algorithm (3). The contribution of
the denominator depends on the derivative of the non-linear func-
tion  (:) (recall that it is assumed that  (:) is differentiable).

5. EXAMPLES

Next, we use the result of Proposition 1 to calculate the EMSE
for two important Bussgang algorithms: the CMA and a Sato-type
algorithm. We first study the specific form of (17) for each of these
algorithms. A numerical validation of the EMSE formula (17) is
then given.

CM criterion [7]:  (s) = IEfs2g
IEfs4g s

3.

IE
�
(s�  (s))2

	
IE f 

0 (s)g � 1
=
IEfs

2
g

IEfs4g

�
IEfs6g
IEfs2g3 � �

2
s

�
3� �s

IEfs
2
g
2 (19)

where �s = IEfs4g
IEfs2g2 denotes the kurtosis of the source. The con-

tribution of the EMSE in formula (19) above matches the EMSE
result for CMA in [5]. According to the update equation (3), the
relation between the step size �cm used in [5] and �, is �cm =

�
IEfs4g
IEfs2g . As mentioned in [5] the EMSE increases (goes toward

infinity) when the source is close to a Gaussian distribution (i.e.,
when �s ! 3). Note that 3 � �s > 0 for a sub-gaussian source.
The sub-gaussianity of the source is indeed a necessary condition
to guarantee a stable equalizer setting for CMA [4].

SATO type criterion [13]:  (s) = IEfs2g
IEfjsjg tanh(�s).

IE
�
(s�  (s))2

	
IE f 

0(s)g � 1
=

IE

n
(s� IEfs2g

IEfjsjg tanh(�s))
2
o

�
IEfs2g
IEfjsjg(1� IEftanh(�s)2g)� 1

:

(20)
When � is big enough we have jIEf 

0

(s)g� 1j ! 1. For the
Sato algorithm the Gaussianity of the source is not a determining
factor in the enhancement of the EMSE as it is for the CMA.

Next we compare the EMSE furnished in (17) and the ex-

perimental EMSE �̂EBuss = 1
T

P
T

n=1 (ŝ(n)�s(n�m))2, with
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Fig. 1. EMSE of CMA ( (s) = IEfs2g
IEfs4g s

3) and Sato-type al-

gorithm ( (s) = IEfs2g
IEfjsjg tanh(�s) with � = 5) versus source

kurtosis.

T = 5 � 105 , computed at the steady-state solution of the CMA
and Sato type algorithm. Both simulations use the same (arbi-
trary) channel defined by h1(z) = 1+0:3z�1�0:2z�2+0:6z�3 ,
h2(z)=�0:2+0:7z

�1+0:7z�2+0:1z�3 . Figure 1 plots the EMSE
for different source kurtoses �s corresponding to a PAM-P modu-
lation where P goes from 4 to 16. The theoretical EMSE �EBuss

is plotted with o’s and the experimental EMSE �̂EBuss is plotted
with ?’s. We can see that for a small stepsize (here � = 1e�6) the
theoretical and experimental results match well.

6. CONCLUSION

In this contribution we provide a closed form expression for
the Excess Mean Square Error (EMSE) of Bussgang algorithms
under a channel invertibility condition. Under the assumption of
perfect channel inversion and no noise, we show that the EMSE
for Bussgang type algorithms is proportional to the EMSE of the
LMS algorithm and generalizes results in the open literature. Our
result can be used to provide a better approximation of the MSE
for blind equalization algorithms and can therefore be used to de-
rive practical design guidelines. For example, for a given source
and class of channels, our EMSE expression can be used to better
select the equalizer length and stepsize. Our analysis can also be
applied to quantized versions of Bussgang algorithms, for exam-
ple like [3] which aims to reduce complexity for implementation.
An extended analysis in the case of noisy and/or non invertible
channel conditions is in preparation.

APPENDIX

Next we prove result (17) in Proposition 1. To solve the Lya-
punov equation (14) we need to compute the matrices G(e

m+1)
and R(e

m+1).

Estimation of G(e
m+1):

The Hessian G(e
m+1) is a diagonal matrix for which the diagonal



entries are given by,

�
G(e

m+1)
�
i;i

=

(
IEf 

0

(s)s2g � IEfs
2
g for i = m

IEf 
0

(s)gIEfs2g � IEfs
2
g elsewhere

(21)
for 1 � i � N . A compact expression is,

G(e
m+1) = (IEf 

0

(s)gIEfs2g � IEfs
2
g) IN + �1 em+1e

t

m+1

(22)
where �1 = IEf 

0

(s)s2g � IEf 
0

(s)gIEfs2g.

Estimation of R(e
m+1):

We evaluate first the contributions of the (i; j)-th entries of the
expectation of the formula (16). We get,�
IE
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e
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= IEfs
2
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4
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Summation of the terms above leads to the expression that follows
for the expression of the entries (i; j)-th of the covariance matrix
R(e

m+1),
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for which the only non-zero contributions are given at n = 0. The
matrix R(e

m+1) is therefore a diagonal matrix of the form,

�
R(e

m+1)
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A compact expression, is given by,
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Solution of Lyapunov equation:

The Lyapunov equation (14) is given by,
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G(e
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� +��G(e

m+1)
t
H
t
H �HR(e

m+1)H
t = 0:

(27)
Under the assumption j�1j < � and j�2j < � where � is small
enough, we get,
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which admits an obvious (unique) solution given by,
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2
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Finally, to conclude the proof, we notice that trace(HHt) can be
expressed as a function of the sub-channels hk(z) as follows,

trace(HHt) = NIEfs
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