
MINIMUM CLASSIFICATION ERROR TRAINING OF HIDDEN MARKOV MODELS FOR
HANDWRITING RECOGNITION

Alain E. Biem

IBM T. J. Watson Research Center
P. O. Box 218, Yorktown Heights, NY 10598, USA

biem@us.ibm.com

ABSTRACT

This paper evaluates the application of the Minimum Classification
Error (MCE) training to online-handwritten text recognition based
on Hidden Markov Models. We describe an allograph-based, char-
acter level MCE training aimed at minimizing the character error
rate while enabling flexibility in writing style. Experiments on a
writer-independent discrete character recognition task covering all
alpha-numerical characters and keyboard symbols show that MCE
achieves more than 30% character error rate reduction compared
to the baseline Maximum Likelihood-based system.

1. INTRODUCTION

This paper evaluates the application of Minimum Classification
Error (MCE) training to Hidden Markov Models (HMM)-based
handwriting recognition. With the advent of wireless technolo-
gies, Personal Digital Assistants (PDA) and handheld computers,
as convenient replacements for standard keyboard-based input sys-
tems, pen-based man-machine communication has received a re-
newed interest in the research community, and accurate on-line
handwriting recognition has become a critical and urgent issue.
On-line handwriting recognition attempts to recognize characters
and treats the input as a time-series. Among the various known
techniques used to process the handwriting signal, Hidden Markov
Modeling has become the method of choice, inspired by its success
in speech recognition [1].

In handwriting recognition, the input signal is the pen trajec-
tory (”electronic ink”), recorded as a two-coordinate signal. Pre-
processing, denoising, and normalization transform the electronic
ink into a sequence of feature vectors X = x1; :::; xT of length T .
Decoding is based on the Bayes decision theory, which chooses
the character or word C that has the maximum a Posteriori proba-
bility. That is,

bC = argmax
C

P (XjC)P (C): (1)

In HMM-based handwriting recognition, the widespread ap-
proach to implementing Bayes decision theory is to model the
class conditional probability P (XjC) by an HMM, and estimate
the parameters of the model by the Maximum Likelihood (ML)
criterion. The ML criterion can be conveniently implemented by
the EM reestimation procedure, a hill-climbing process, leading at
least to a local optimum in parameter space. A theorem by Nadas
[2] has shown that if the family of distributions generated by the
model contains the true distribution, the ML criterion converges
asymptotically to the true distribution of the data, assuming that

a sufficient number of data are available. In general, the num-
ber of data is limited, the true distribution is unknown, and the
Markov assumption is a convenient but not an accurate one. Fur-
thermore, likelihood increase does not guarantee a decrease in er-
ror rate, which is the primary goal in the design of a recognition
system.

To alleviate some of the shortcomings of the ML criterion,
such as its sensitivity to the form of the model, and its only indirect
link to the error rate of the system, MCE has been proposed as a
discriminative training procedure that minimizes a smooth approx-
imation of the error rate [3]. Unlike ML, MCE does not attempt to
fit a distribution, but rather to discriminate against competing mod-
els [3]; a model is simply viewed as a method to generate a score
and is not required to be a probability. By minimizing a smoothed
error count measure, MCE training is more directly aimed at re-
ducing the recognizer’s mistakes than ML and has been quite suc-
cessful in increasing the performance of speech recognizers [4].
To our knowledge, MCE has received very limited application to
handwriting.

In this paper, we describe an application of MCE training to
HMM-based on-line handwriting recognition. We particularly ad-
dress the issue of writer variability by applying MCE to allograph-
based HMMs, using a character-based loss matrix to focus learn-
ing at the character level while enabling flexibility in writing style.
Experimental results show that the MCE-trained system discrim-
inates confusing characters in a more efficient manner than the
ML-based system and shows a significant reduction in error rate
compared to the baseline ML-based system.

2. HMM-BASED LEXEME MODELING

In order to cope with the variety in style of writing, it is advan-
tageous to model character’s allographs, known as lexemes, in-
stead of characters [5]. Lexemes represent qualitatively different
ways of writing a character, and differ in various features such as
shape, pen lifts, and direction of the pen movements. By cluster-
ing instances of a character that are similar in writing style, writer
variability can be efficiently managed. Lexeme can be generated
manually or through clustering techniques on the feature space.
Figure 1 shows examples of lexemes of a selected set of charac-
ters, written in isolation.

Each lexeme is modeled by an HMM. The topology of the
HMM, defined as the number of states in the model, the number
of mixtures per state and the allowed connections between states,
is designed on a lexeme-by-lexeme basis. This non-uniform topol-
ogy helps in dealing with the discrepancy between characters due

t0 t1a1a0

z0 z1 k0 k1

Fig. 1. Examples of lexemes for ”a”, ”t’”, ”z”, and ”k”.

to character’s lengths or the number of strokes. For each HMM,
the number of states in the model is the mode of the histogram
of the number of frames of the corresponding lexeme, computed
from training data. We used a Gaussian continuous-density, left-
to-right HMM, with a two-state transition, for handling examples
of characters that have a number of frames shorter than number of
states in the model.

3. LEXEME-BASED MCE TRAINING

3.1. Lexeme-based MCE loss

We are given a finite number M of characters or words C =
fC1; :::; CMg, where each Ci is modeled by a set of parameters
�i = f�ilg for l = 1; :::; Li. Li is the number of lexemes of char-
acter Ci. �il represents the HMM parameters of the l-th lexeme
of character Ci. We also define � = f�ig for i = 1; :::;M , as
the parameter space of the overall recognizer. Given a sequence of
feature vectors X = fx1; :::; xT g of length T , the lexeme-based
MCE training procedure is implemented as follows.

First, to account for multiple instances of a character in the
lexeme space, we define the discriminant function of character Ci
as

gi(X; �i) =

"
LiX
l=1

gil(X; �il)
�

1

�

(2)

where
gil(X; �il) = log(P (XjCi; �il))

is the score of l-th lexeme’s model of character Ci. � is a positive
constant. By choosing a large �, the discrimination function term
is dominated by the lexeme of maximum score. By varying �, the
contribution of each lexeme’s score to the character discrimination
function can be controlled.

The score of a lexeme gil(X; �il) is the log of the class-
conditional probability of the corresponding HMM, given the input
sequence X , and is typically computed by the Forward algorithm.
However, in this paper, as in most HMM-based decoding schemes,
the score was computed along the best path through the HMM
states as found by the Viterbi algorithm. This has the advantage to
simplify the computational load of the MCE algorithm. Decoding
is done by choosing the character that has highest discrimination
measure. That is,

choose Ci if i = argmax
j
gj(X; �j): (3)

Second, assuming that X belongs to Ci, and to better cope
with the non-uniform HMM topology across lexemes as well as

the variety of character’s lengths, we define the frame-length nor-
malized misclassification measure of character Ci as

di(X; �) =

264�gi(X; �i) + log

24 1
M�1

X
j;j 6=i

egj(X;�j)�

35 1

�

375
T

(4)
with a large positive � to focus learning on the most competing
categories. The sign of the misclassification measure indicates a
correct or a wrong decision made by the classifier. A negative
sign signifies a correct classification and a positive sign is an er-
ror. By choosing a large � ! +1, the misclassification measure
is reduced to a difference in score between the best but incorrect
category and the true category; learning becomes similar to a two-
class classification at each iteration. Using a large � also reduces
the computational load and makes the sign of the misclassification
measure to better match the classification decision.

Finally, the MCE loss assigned to X is defined as `(X;�) =
`(di(X;�) where `(�) is a smooth approximation of the step-wise
0 � 1 loss function, which is equal to one for positive values and
zero otherwise. By choosing a large � and a monotonic function as
a loss, the MCE loss function varies monotonically with the error
rate of the system on a training data set. Among several available
choices for the loss, we used the truncated sigmoid defined as

`(d) =

�
1

1+exp(��d)
if d > � (� � 0)

0 otherwise
(5)

with a positive �. This loss enables learning to occur for con-
fusable categories whose misclassification measures are above the
threshold value �. By varying �, one can control the tolerable de-
gree of discrimination during MCE training. A judicious choice of
� and � helps generalization. The MCE loss is an attempt to have
an objective function that reflects the variations of the error rate
and is smooth enough to allow minimization by standard gradient
descent techniques.

3.2. Second-order optimization

Having defined the MCE loss, the next step is to minimize the ex-
pected loss L(�), defined as a functional of the overall parameter
set:

L(�) =
MX
i=1

Z
X2Ci

`(X; �)P (X)dX (6)

The minimization of this loss can be done using a stochastic gradi-
ent descent technique such as GPD [6], which updates the param-
eters of the system in a token-by-token basis. The GPD theorem
guarantees convergence for an infinite run of the GPD adjustment;
it has an asymptotic efficiency. In practice, MCE training focuses
on the minimization of the MCE average loss defined over a body
of training data of size N as

LN (�) =
1

N

MX
i=1

`(X; �): (7)

LN (�) has its values close to the empirical error rate, given a body
of training data; it is a convenient method to monitor the MCE
learning process and the performance of the system as learning
proceeds. A version of GPD adapted to the use of a finite number
of data is usually the preferred method of optimization.

Although GPD is a well-defined theoretical algorithm, it is ex-
tremely sensitive to accurate tuning of learning parameters such as
the learning rate. Given a body of data and a smooth and differen-
tiable empirical loss, one can use an optimization scheme less sen-
sitive to the learning parameter issue. Gradient-based second order
methods, such as the Newton algorithm, are an attractive choice,
but they require the computation of the Hessian matrix. We used
the quick-prop algorithm, which combines a gradient descent tech-
nique and the Newton algorithm, and uses an approximation of the
Hessian matrix that does not require any extra computation [7].
The parameter set is updated as follows:

��+1 = �� � [r2
L(��) + �I]�1rL(��) (8)

where � is a learning rate. The Hessian matrix is assumed to be
diagonal. For a parameter � of the system, the Hessian is approxi-
mated by

@2L(��)

@2�
�

@L(��)
@�

�
@L(���1)

@�

�� � ���1
: (9)

The true Hessian is positive definite, which is not strictly true for
its approximation. The quickprop algorithm replaces the approxi-
mated Hessian by zero whenever its sign does not change at learn-
ing time � and � � 1. This indicates that the Hessian is not suffi-
ciently positive definite and the approximation cannot be trusted.
Instead, a simple gradient descent update is used in this case. Com-
pared to the GPD update, this algorithm, although heuristic, ap-
pears less sensitive to the learning parameters issue as it makes
use of the Hessian. The parameters set is typically updated after
an epoch, where an epoch is defined as one run over the entire data
set.

4. EXPERIMENTS

We performed a set of experiments to compare Maximum Likeli-
hood estimation to MCE training. The task consisted in classifying
a 92-character set, which includes letters from the English alpha-
bet, digits and keyboard symbols. The front-end of the system
under consideration uses a digitizer that captures the successive
pen-tip positions. After resampling, local position and curvature
information are calculated and Principal Component Analysis is
used to generate a sequence of nine-dimensional feature vectors.

The data consisted of 106,396 examples of discretely-written
characters, written by 174 writers. The data were divided into two
sets: 96,563 examples, written by 157 writers were used as training
tokens and the remaining 9,832, written by 17 writers, were used
as testing tokens. The writers in the training data and testing data
are mutually exclusive. The set of 92 characters were manually
clustered into 404 lexemes; the number of lexemes per character is
not uniform. 8 Gaussian mixtures with diagonal covariance matrix
was assigned to each HMM state with the topology of the HMM
matched to the individual lexeme. The Maximum Likelihood cri-
terion was implemented by the Segmental K-means algorithm [8],
which considers only the most likely path in the re-estimation pro-
cedure.

Starting from the models generated by ML, we ran MCE train-
ing, monitoring learning using the MCE average loss. A typical
MCE learning curve is displayed in Figure 2. The solid line shows
the evolution of the error rate over the training set. The dashed line
shows the average MCE loss. The x-axis displays the number of
epochs. As can be seen from the figure, the MCE loss function and
the error rate over the training data display similar variations. As

Training strategies MLE MCE

character-level/character-model 83.9% 88%
lexeme-level/lexeme-model 87.9% 90.9%

character-level/lexeme-model N/A 91.7%

Table 1. Character recognition rate of the ML- and MCE-trained
systems in the writer-independent, 92-character classification task.

learning proceeds, the number of mis-classified examples dimin-
ishes, and an increasing number of examples have a loss value of
zero, resulting into a convergence of the two curves.

0 5 10 15 20 25
4

6

8

10

12

14

16

18

NUMBER OF EPOCHS

E
R

R
O

R
 R

A
T

E
 (

%
)

MCE average loss
Error rate

Fig. 2. MCE average loss and error rate as function of the number
of epochs in training data.

We ran MCE within three schemes of training: a) character-
level/character-model training where each character is modeled by
a single HMM model and no lexeme clustering is performed. b)
lexeme-level/lexeme-model training, where each character is mod-
eled by a set of lexeme-based HMMs; each lexeme is an individ-
ual category and the focus is on minimizing the lexeme error rate.
c) character-level/lexeme-model training, where each character is
modeled by a set of lexeme-based HMMs but training focuses on
minimizing the character error rate as described in the previous
section. In all experiments, we set � ! 1 and � ! 1, which
means considering the most representative lexeme of a character
and the closest competing category at each MCE iteration.

Table 1 shows the overall performance of ML and MCE train-
ing in terms of character recognition rate. It is clear from these re-
sults that MCE out-performs ML in all strategies of training. Using
character models, MCE improves the performance of the baseline
ML system from 83.9% to 88%, resulting into a 25.4% error rate
reduction. Using lexeme models, MCE improves the recognition
rate from 87.9% to 90.9%, when trained at the lexeme level, and to
91.7%, when trained at the character level. This is equivalent to an
error rate reduction of 24.8% for the lexeme-level/lexeme-model
training strategy, and 31.4% for the character-level/lexeme-model
training strategy.

Note that minimizing the lexeme error rate did improve char-
acter recognition. This result is explained by the observation that
during lexeme-level MCE training, the competing lexemes usually

Character Accuracy Confusable character
0 43.08% O (32%)
f 52.34% F (11%)
, 60.71% ’ (21%)
. 61.67% : (33%)
e 62.94% E (28%)
= 70.49% - (23%)
” 70.59% ’ (12%)
70.73% t (12%)
+ 70.83% t (14%)
K 72.12% k (25%)

Table 2. 10 worst-recognized characters by ML.

belong to different characters and there is little within-character
competition. As can be expected, minimizing the character error
rate directly with the use of lexeme-based models shows the best
performance: an 8.8% improvement in character error rate over
lexeme-level training.

Another conclusion that is drawn from these results is that
making use of a set of lexemes to model a character is more ef-
ficient than character-based modeling. This is particularly true in
the case of ML, where the use of lexeme models has improved the
performance of ML from 83.9% to 87.9%, meaning a 24.8% error
rate reduction compared to the single character-based modeling
system. In the case of MCE training, using lexeme-based models,
instead of single character-based models, means a 24.1% character
error rate reduction when training is done at the lexeme level and
30.8% error rate reduction when training is done at the character
level.

Also note that MCE training of single character-based models
is similar in performance to ML training of lexeme-based models
(88% compared to 87.9%). ML accuracy depends on better mod-
eling of characters’ variability, which may require a higher num-
ber of parameters in the system, leading to a higher computational
load and the need for more data. MCE seems to alleviate these
requirements as it makes better use of available resources in order
to reduce the error rate at the specified level of training.

For illustration, the accuracies of the ten worst-recognized char-
acters by the ML-trained system and the character-level MCE-
trained one are shown in Tables 2 and 3, respectively. The first
column shows the characters, ordered by decreasing order of their
accuracies in the testing set (the accuracies are shown in the sec-
ond column). The last column shows the mostly detected character
among wrong characters; the percentage of misrecognized exam-
ples are in parenthesis. Thus, from Table 2, 43.08% of number ”0”
(zero) were correctly classified by the ML-trained system, while
32% of the misrecognized examples were recognized as the let-
ter ”O”. Clearly, as can be seen from the table, MCE training has
managed to increase discrimination in all cases, even between very
similar characters such as the letter ”O” and the number ”0” (zero)
or the comma and the apostrophe. How these results depend on the
choice of the lexeme clustering algorithm, the number of lexemes,
and the HMM topology, deserves further investigation.

5. CONCLUSION

We described an application of the Minimum Classification Er-
ror (MCE) algorithm to on-line handwritten character recognition.

Character Accuracy Confusable character
O 56.14% 0 (26%)
0 58.46% O (34%)
, 73.21% ’ (18%)
. 78.33% : (20%)
e 79.02% E (15%)
f 79.44% F (8%)
G 80.00% g (17%)
t 80.65% + (6%)
’ 80.95% , (11%)
; 82.50% j (10%)

Table 3. 10 worst-recognized characters by MCE.

Comparison of the MCE to MLE in the task of classifying a 92-
character set shows that MCE realizes more than 30% relative error
reduction from the ML baseline and discriminates characters in a
more efficient way than MLE does.

6. ACKNOWLEDGMENTS

The author would like to thank John Pitrelli, for revising the manuscript,
Michael Peronne, Jay Subrahmonia, Gene Ratzlaff of IBM T.J.
Watson Research Center.

7. REFERENCES

[1] K. S. Nathan, H. S. M. Beigi, J. Subramonia, G.J Clary, and
H. Maruyama, “Real-time on-line unconstrained handwriting
recognition using statistical methods,” ICASSP, vol. 4, pp.
2619–2623, 1995.

[2] A. Nadas, “A Decision Theoretic Formulation of a Training
Problem in Speech Recognition and a Comparison of Training
by Unconditional Versus Conditional Maximum Likelihood,”
IEEE Trans. on Acoustics, Speech, and Signal Processing, vol.
31, no. 4, pp. 814–817, 1983.

[3] B.-H. Juang and S. Katagiri, “Discriminative Learning for
Minimum Error Classification,” IEEE Trans. on Acoustics,
Speech, and Signal Processing, vol. 40, no. 12, pp. 3043–
3054, Dec. 1992.

[4] A. Biem, S. Katagiri, and B.-H. Juang, “Pattern Recognition
based on Discriminative Feature Extraction,” IEEE Transac-
tions on Signal Processing, vol. 45, no. 02, pp. 500–504, 1997.

[5] M. P. Perrone and S. D. Connell, “K-means clustering for Hid-
den Markov Models,” Proceedings of IWFHR VII, pp. 229–
238, Sep. 2000.

[6] S. Katagiri, C-H. Lee, and B.-H. Juang, “New Discrimina-
tive Training Algorithms Based on the Generalized Descent
Method,” in Proc. IEEE Worshop on Neural Networks for
Signal Processing, 1991, pp. 309–318.

[7] S. E. Fahlman, “An empirical study of learning speed in back-
propagation networks,” Technical Report CMU-CS-88-162,
Carnergie Mellon University, 1988.

[8] B.-H. Juang and L. Rabiner, “The Segmental k-means Algo-
rithm for Estimating Parameter of Hidden Markov Models,”
IEEE Trans. on Acoustics, Speech, and Signal Processing, vol.
38, no. 9, pp. 1639–1641, 1991.

