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ABSTRACT

The estimationof the scatteringunctionin time-frequeng
selectvefadingmobileenvironmentis consideredThescat-
tering function explicitly revealsthe time-frequenyg selec-
tive behavior of the fading channelunderthe well-known
WSSUSassumptionWe proposeawo classe®f estimators
basedon a time-frequeng framework that generalizethe
existing estimatorsvhile giving anextrafreedomaccording
to differentcriteriawantedto be achievedin the estimation
of the scatteringfunction. Insteadof usingWoodward am-
biguity function or symmetricambiguity function, we use
the generalizedambiguity function which comesfrom the
generaklassof quadraticime-frequeny distributions.

1. INTRODUCTION

Oneof themajoreffectsto widebandransmissiorin mobile
radio communicationslue to multipath propagatioris the
time andfrequengy dispersionasthe resultsof time-delays
overthemultipathsandDopplershiftsfrom randommotion
of scatterersThis effectis known astime-frequenyg selec-
tivefading([1, 2].

In practice,this type of channelds often modeledasa
randomlinear time-varyingfilters. Its secondorder statis-
tics is completelycharacterizedy its scatteringfunction
underthe wide-sensestationaryGaussiarprocesswith un-
correlatedscattering(WSSUS)assumptior{3]. The scat-
tering function explicitly revealsthe time-frequenyg selec-
tive behavior of the fadingchannel. The importanceof the
scatteringunctionis emphasizethy theextensveliterature
[4,5,6,7,8,9, 10, 11] (andreferencesherein).

The estimationof the scatteringunction of therandom
linear time-varying is considered.A commonapproachs
to relatethe scatteringfunction with the symmetricambi-
guity function[4] or Woodward ambiguityambiguityfunc-
tion [8, 9] of theinputsignal. However, a classicalproblem
facedin this approachis the division of zero. In orderto
solve it, thresholdingmethodandits derivativeshave been
approachedreview of this canbefoundin [8]).

We proposetwo classef estimatordasedon a time-
frequeng frameawork thatgeneralizeheexisting estimators
while giving an extra freedomaccordingto differentcrite-
ria wantedto be achievzedin the estimationof the scattering
function. Insteadof using Woodward ambiguity function
or symmetricambiguity function, we usethe generalized
ambiguity function which comesfrom a generalclass of
quadraticime-frequeng distributions[12].

2. WSSUS CHANNEL

A complex basebandecevedsignal,r(t), througha wire-
lessmobilecommunicatiorchannetanbemodeled asfol-
lows[3]

r(t) = z(t) + (t),

- / h(t, 7)s(t — 7) dr + £(t) (1)

with0 <t < T

= / U, 7)s(t — 1) e?>™ dr dv + &(t) 2

whereh(t, 7) is the channelimpulseresponseepresenting
the lineartime-varying behaior; s(t) is the complex base-
bandtransmittedsignal; T is the symbolduration;e(t) is
the additive white Gaussiamoisewith zeromeanandvari-
anceo?; 7 andv denotethe time-delayand Doppler shift
variables;and (v, ), the Fourier transformof h(t,7)
from ¢ to v, is calledDelay-DopplerSpreadunctionof the
LTV channel By applyingthe Fouriertransformamongthe
variablest, f, T andv, we candefineseveral systemfunc-
tions[2, 3] with their relationshipshovn on Fig. 1.

TheDelay-DoppletSpreadunctionis oftenmodeledas
awide-sensetationaryGaussiarprocesswith uncorrelated
scatteringWSSUS) 2, 3] whosesecond-ordestatisticscan
berepresentetly?

E{U,r) U (', 1)} =
Py, 7Y d(w=1v)o(r—=7") (3)

1in practice,the doubleintegral is boundedby the rangesof delays
andDopplershifts, however, without lossof generality we the full range
(=00, 00) anddropthemfor shortnotation.

2& {-} denoteghe expectedvalueoperator
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Figure 1: RelationshimmongBello systenfunctions.7 (¢, f) and
H(v, f) arethe Time-VariantSystemand OutputDopplerSpread
functions,respectiely.

wherePy (v, ) is thedelay-Doppleispectrumandreferred
to asthe scattering function of the channel.It follows that
the WSSUSchannelmay be representeasa collection of

non-scintillatinguncorrelatedscatterersvhich causeboth
delaysand Doppler shifts. The statisticsof the WSSUS
channels shavn onFig. 2 [13].
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Figure 2: Secondrderstatisticsof frequeng-selectve fastfading
channelwith WSSUSassumption(7;, andvp arethemaximum
time-delayandDopplekshift for aparticularmobileervironment).

3. ABRIEF ON TIME-FREQUENCY

Time-frequenyg signalprocessings a naturalextensionof
both the time domain and frequeng domain processing,
that involvesrepresentingsignalsin 2-D spacewhich re-
vealsmoreinformationof the signal. Sucharepresentation
is intendedo provide a distribution of signalenegy versus
bothtime andfrequeny simultaneouslyFor thisreasonthe
representatiois commonlycalleda time-frequeng distri-
bution (TFD) [12].
A generaklassof quadraticTFDsis definedas[12]

pett. 1) 2 [[[ 0 g1

x z(u + g)z*(u - %)e_ﬂ”ﬁ dvdudr (4)

whereg(v, 7) is atwo dimensionafunctionin the ambigu-
ity domain, (v, 7), andis calledthe kernel. The kernelde-
terminesthe distribution andits properties.We canobtain

and study the distributions with certaindesiredproperties
by properlyconstraininghekernel.

Knowing the WignerVille distribution [12] of an ana-
lytic signalz(t)

Wt f) = /K,(t,r)e—fz"ﬁ dr
whereK.(t,7) = z(t + Z)z*(t — Z), onecanarrive to the

Fourier relationshipshavn in Fig. 3 where A, (v, 7) is the
symmetricambiguityfunction.
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Figure 3: Quadraticrepresentationsorrespondingo WVD [12].
(Notethesimilarity comparedo Fig. 1).

Moreover, with theuseof generalquadratidime-frequeng
classin (4), wehaveanotherelationshigllustratedin Fig. 4
wherethe A, (v, 7) is the generalized ambiguityfunction.

pz(t, f) =(t, f) xt xf Wi (¢, f)
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Az (v,7) =g(v,7)- Az (v, 7)
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Figure 4. Dual domainsof signalquadratiarepresentationfl 2].

4. CHANNEL SECOND ORDER STATISTICS

GiventheWSSUSassumptiorio thechannelijt isimportant
to examinethe relationshipof the transmittedandreceved
signalsthroughtheir secondorder statistics. In this paper
we considerthe noise-freecaseof the channel. The cor
relationfunction of the receved signalgivenin (1) canbe
definedas

Roo(t,AH) 2 € {w(t w8 2t~ %)}

TakingFouriertransformfrom ¢ to A f onbothsidesof the
above, we thenhave (seeAppendix)

E{Az(Af,At)} = As(Af,At) - RT(Af,At)  (9)



whereR7(Af, At) is the doubleFouriertransforn? of the
scatteringfunction Py, (v, 7'). Equation(5) representshe
second-ordestatisticrelationshipin the ambiguitydomain
basedon WSSUSassumptionBy applyinginversedouble
Fouriertransformon bothsidesof (5), we have anotherep-
resentatiorof the second-ordestatisticrelationshipin the
time-frequeng domain(WW is theWignerVille distribution,
seeFig. 3)

£ {Wx(VI,T’)} =Ws(',7") %y xp Py(V', 7") (6)

Oneoftenrenameghevariableg A f, At, v' and7’) by (v,
T, t and f), respectiely [4]. We adoptthis for the easeof
visualizationin thetime-frequeng contet, asaresult,(5)
and(6) canberewrittenas

E{A,(v,T)} = As(v,7) - RT(v,7) @)
E{Ww(taf)}:WS(t:f) *t *fPu(t,f) (8)

By multiplying both sidesof (7) with anarbitrary ker-
nelg(v, 7), andtakingtheinversedoubleFouriertransform
of theresult,we derive to two generalequationgepresent-
ing the second-orderelationshipin termsof the general-
ized ambiguityfunction 4 andthe generalquadratictime-
frequeng distribution p (seeFig. 4), as

E{A:(v,7)} = As(v,7) - RT(v,7) 9)
g{pw(taf)}:ps(t7f) *t *fPu(taf) (10)

It shouldbe notedthattheresultgivenin [6, 7] arethespe-
cial casegexpressedn termsof spectrogranand Wigner
Ville distribution) of the generakasepresentedn (10).

5. SCATTERING FUNCTION ESTIMATORS

Sincethekernelg(v, 7), implicitly includedin (9) and(10),
is arbitrary two generalclassesf estimatorsor the scat-
tering functions are proposed: deconvolution and direct-
implementation.

5.1. Class of deconvolution estimators

The classof decomwolution estimatorss definedbasedon
thedivision of (9) by the generalizecambiguityfunction of
theinputsignal

Similarto theapproachn [8], zero-dvisionproblemin (11)
is encounteredA classicabkolutionis to thresholdthe sym-
metricambiguityfunction A, (v, 7), or theWoodwardambi-
guity function (whenmatchediltering is pre-appliedat the

3Definition of doubleFouriertransform:
_ —1
(0, ) = Foora { 7, 5 {8(2,9)} |

= // ®(z,y) exp{—j2nrax + j27 Py} dx dy

outputsignal),at the pointsequalto zero. Mathematically
it replacesd; (v, 7) by Ay (v, 7) = As(v, 7) + AC (v, 7).

This replacementreatesa problemin which the signal
s'(t) may not exist. One could also use an interrogating
signal (asin the caseof imageprocessind8]) with some
well-behared characteristicin orderto achieve betteresti-
mationof Py (t, f). However, in communicationsinterro-
gating(pilot) signalsarenot encouragedincethe commu-
nication becomeamore expensvie with extra maneuer of
thepilot signals.

On the other hand, by using of the kernel g(v, 7), in
turns, makinguseof the well-definedgeneralizecambigu-
ity function, the problemsof the nonexistenceof s'(¢) and
usinginterrogatingsignalsareavoided. Also thekernelcan
be usedto smooth A, (v, 7) in the sensethatit represents
the entireenegy within anelementarycell (seeFig. 2) to a
valueat the centerof the cell andthe estimate®f the scat-
tering function needonly to be evaluatedat thesecenters
of the cells. This helps partially minimize the zero divi-
sion problem. Thresholdingnot for zerodivision problem,
canbe appliedafter smoothingin orderto discardthe cells
thathave nggligible enegy. As aresult,computationakffi-
cieng of post-processinm eachcell for differentpurposes
(e.g.detection13]) canbe significantlyimproved.

5.2. Class of direct-implementation estimators

One canchoosethe kernel g(v, 7) so that the distribution
ps(t, f) in (10) is impulse-like (we would ideally wish to
have adeltarepresentatiom thetime-frequeng plane this,
however, doesnot exist dueto the constraintof minimum
time-frequeng bandwidthaccordingo Heisenbeg'suncer
tainty principle), the left-handside of (10), then, approxi-
matesto Py(t, f). Thus,we defineanotherclass,namely
direct-implementationpf estimators

BE (¢, £) £ € {pa(t, 1)} (12)

An exampleof this classcanbe obtainedby choosingker-

nel suchthatthetime-frequeng distribution p,(t, f) is ap-
proximatedto that of Hermite functionsknown for having
well-localizedtime-frequenyg representatiofiL4].

6. CONCLUSION

We have proposedwo classe®f estimatordor the scatter
ing function of thetime-frequenyg dispersve fadingmobile
channelsvith theuseof thegeneralizecdmbiguityfunction
familiarizedin thecontext of time-frequeng signalprocess-
ing. Thedegreeof freedomintroducedby the arbitraryker
nel g(v,7) resultsin differentestimators. This avoids or
overcomesthe problemsencounteredn the existing esti-
mators.Theselectiorof optimumcriteriafor theestimators
and,in turns,theperformancef theestimatorsdepend®n
the selectionof the kernelwith specificproperty Detailed
analysisof thisis beyondthe scopeof the paper
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Appendix
Proof of equation (5)

The correlationfunction of the receved signalgivenin (1) is
expressedis

Raa(t, At) 2 € {x(t—i— %) 2 (t— %)}

= g{ ( / U, T)s(t + % _ 1) el EtAY) g du)
(ffurwra-so
eI A= AY2) gt d;/) }
- / [[[ € wwmw @y ste+ 5=

s (t— % 7). MO = AYD) g g, gt !

Using(3), andintegratingover v andr, onecanobtains

Ry (t, At) / Pu(u 7')

( + 2y ) (t _ =2y )6j2‘rru’At dT’ dVI

Taking Fouriertransformfrom ¢ to Af on bothsidesof theabove
wethenhave®

£ {A:(Af,A)} =
At At
// Pul/r +2 ) (t_T_T,)
x ej27ru’At e—j?thf dr' dv dt
= Jffre

= //Pu(u’,r’) (/ K,(t—1',At)e I2mAf dt)

2wy’ At I
e St dr dv

VK (t — ', At)e?>™ A2 qrl qy)' at

- / Pu(v', ') - Ag(Af, At)e ™27 8 I 8 ot gy

—»At{Pu v, 7)}}

where A, (-) and K;(-) aredefinedin Fig. 3 for differentsignals
(xz(t) ands(t) insteadof z(t)) anddifferentvariables.Note that,
the notationst, f, v andr usedin FouriertransformsseeFig. 3,
areonly for familiar corventionin signalprocessingoint of view,
one canuseary othersaslong asthey satisfy the definition of
Fourier transform). It shouldbe notedthatthe result(5) appears
alsoin [4] without proof.

= A(Af,AY) - Frag {F)

“4Fourier transform operatorand expected value operatorare inter
changeablendersomespecificconditions.

ft—)Af {Rmz(ta At)} =

e{Fiar {at+ 5 -are- SHY = tanaran)



