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ABSTRACT

Theestimationof thescatteringfunction in time-frequency
selectivefadingmobileenvironmentisconsidered.Thescat-
tering function explicitly revealsthe time-frequency selec-
tive behavior of the fadingchannelunderthe well-known
WSSUSassumption.We proposetwo classesof estimators
basedon a time-frequency framework that generalizethe
existingestimatorswhile giving anextrafreedomaccording
to differentcriteriawantedto beachievedin theestimation
of thescatteringfunction. Insteadof usingWoodwardam-
biguity function or symmetricambiguity function, we use
the generalizedambiguity function which comesfrom the
generalclassof quadratictime-frequency distributions.

1. INTRODUCTION

Oneof themajoreffectsto widebandtransmissionin mobile
radio communicationsdueto multipathpropagationis the
time andfrequency dispersionastheresultsof time-delays
overthemultipathsandDoppler-shiftsfrom randommotion
of scatterers.This effect is known astime-frequency selec-
tive fading[1, 2].

In practice,this type of channelsis oftenmodeledasa
randomlinear time-varyingfilters. Its secondorderstatis-
tics is completelycharacterizedby its scatteringfunction
underthewide-sensestationaryGaussianprocesswith un-
correlatedscattering(WSSUS)assumption[3]. The scat-
tering function explicitly revealsthe time-frequency selec-
tive behavior of the fadingchannel.The importanceof the
scatteringfunctionis emphasizedby theextensiveliterature
[4, 5, 6, 7, 8, 9, 10, 11] (andreferencestherein).

Theestimationof thescatteringfunctionof therandom
linear time-varying is considered.A commonapproachis
to relatethe scatteringfunction with the symmetricambi-
guity function[4] or Woodwardambiguityambiguityfunc-
tion [8, 9] of theinputsignal.However, a classicalproblem
facedin this approachis the division of zero. In order to
solve it, thresholdingmethodandits derivativeshave been
approached(review of this canbefoundin [8]).

We proposetwo classesof estimatorsbasedon a time-
frequency framework thatgeneralizetheexistingestimators
while giving an extra freedomaccordingto differentcrite-
ria wantedto beachievedin theestimationof thescattering
function. Insteadof using Woodward ambiguity function
or symmetricambiguity function, we usethe generalized
ambiguity function which comesfrom a generalclassof
quadratictime-frequency distributions[12].

2. WSSUS CHANNEL

A complex basebandreceivedsignal, ������� , througha wire-
lessmobilecommunicationchannelcanbemodeled1 asfol-
lows [3]�	��
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where ? ���A@�BC� is thechannelimpulseresponserepresenting
the linear time-varyingbehavior; D �E��� is thecomplex base-
bandtransmittedsignal; F is the symbolduration; G ����� is
theadditivewhite Gaussiannoisewith zeromeanandvari-
ance H�IJ ; B and K denotethe time-delayandDopplershift
variables;and L � K @�BC� , the Fourier transformof ? �E�A@�BC�
from � to K , is calledDelay-DopplerSpreadfunctionof the
LTV channel.By applyingtheFouriertransformamongthe
variables� , M , B and K , we candefineseveralsystemfunc-
tions[2, 3] with their relationshipshown on Fig. 1.

TheDelay-DopplerSpreadfunctionis oftenmodeledas
a wide-sensestationaryGaussianprocesswith uncorrelated
scattering(WSSUS)[2, 3] whosesecond-orderstatisticscan
berepresentedby2NPO 1 ��3��
&��$Q 1=R ��3	S��
&	S��UT.�VCW ��3�SE�9&XSY��Q%Z	��3[*\3	SY�]Z��^&�*\&	S�� (3)

1In practice,the double integral is boundedby the rangesof delays
andDoppler-shifts, however, without lossof generality, we the full range_E`0a>b9adc

anddropthemfor shortnotation.
2 egfih j denotestheexpectedvalueoperator.
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Figure 1: RelationshipamongBellosystemfunctions. { ��
%��|�� and} ��3	��|�� aretheTime-VariantSystemandOutputDopplerSpread
functions,respectively.

where ~�� � K @�BC� is thedelay-Dopplerspectrumandreferred
to asthe scattering function of the channel.It follows that
the WSSUSchannelmaybe representedasa collectionof
non-scintillatinguncorrelatedscattererswhich causeboth
delaysand Doppler shifts. The statisticsof the WSSUS
channelis shown onFig. 2 [13].
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Figure 2: Secondorderstatisticsof frequency-selective fastfading
channelwith WSSUSassumption.( �C� and 3 � arethemaximum
time-delayandDoppler-shift for aparticularmobileenvironment).

3. A BRIEF ON TIME-FREQUENCY

Time-frequency signalprocessingis a naturalextensionof
both the time domain and frequency domain processing,
that involves representingsignalsin 2-D spacewhich re-
vealsmoreinformationof thesignal.Sucha representation
is intendedto providea distributionof signalenergy versus
bothtimeandfrequency simultaneously. For thisreason,the
representationis commonlycalleda time-frequency distri-
bution (TFD) [12].

A generalclassof quadraticTFDsis definedas[12]���)��
%��|�����  � z 5�6%798�:i�u�-��;^������3	�]&����� �^��� & � � � R �^��* & � ��5 �/6�798)�A� ,/3 ,-�g,-& (4)

where¡ � K @�BC� is a two dimensionalfunctionin theambigu-
ity domain, � K @�BC� , andis calledthe kernel. Thekernelde-
terminesthe distribution andits properties.We canobtain

and study the distributionswith certaindesiredproperties
by properlyconstrainingthekernel.

Knowing the Wigner-Ville distribution [12] of an ana-
lytic signal ¢ �E���£ ��
%�
|����  #¤ �-��
%�9&��/5 �-6%798��¥� ,-&
where ¤ � ��
%�
&'�[� � ��
�� � 7 � � R ��
¦* � 7 � , onecanarrive to the
Fourier relationshipshown in Fig. 3 where §.¨ � K @�BC� is the
symmetricambiguityfunction.
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Figure 3: Quadraticrepresentationscorrespondingto WVD [12].
(Notethesimilarity comparedto Fig. 1).

Moreover, with theuseof generalquadratictime-frequency
classin (4), wehaveanotherrelationshipillustratedin Fig.4
wherethe °±¨ � K @�BC� is thegeneralized ambiguityfunction.²�ª �u;x«x�¥�/³[´)�u;E«x�i�iµ n µ q ¬ ª �u;x«��i�
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Figure 4: Dualdomainsof signalquadraticrepresentations[12].

4. CHANNEL SECOND ORDER STATISTICS

GiventheWSSUSassumptionto thechannel,it is important
to examinetherelationshipof thetransmittedandreceived
signalsthroughtheir secondorderstatistics. In this paper,
we considerthe noise-freecaseof the channel. The cor-
relationfunction of the receivedsignalgiven in (1) canbe
definedas»½¼A¼ ��
���¾.

� �� N±¿ ����
C� ¾.
� ��QA� R ��
�* ¾.
� �AÀ
TakingFouriertransformfrom � to ÁÂM onbothsidesof the
above,we thenhave(seeAppendix)N.Ã¥Ä ¼ �E¾�|X��¾=
���Å½� Ä½Æ �E¾�|X��¾.

��Q »½Ç �E¾�|'��¾=
�� (5)



where È�É � ÁÂM @ Á ��� is thedoubleFourier transform3 of the
scatteringfunction ~ � � K �]@�B��^� . Equation(5) representsthe
second-orderstatisticrelationshipin theambiguitydomain
basedon WSSUSassumption.By applyinginversedouble
Fouriertransformonbothsidesof (5), wehaveanotherrep-
resentationof the second-orderstatisticrelationshipin the
time-frequency domain( Ê is theWigner-Ville distribution,
seeFig. 3)N O £ ¼ ��3	S��
&XSY� T � £ Æ ��3�SE�
&	S��<Ë :%Ì Ë �AÌ VCW ��3	S��
&XSY� (6)

Oneoftenrenamesthevariables( ÁÂM , Á � , K � and B�� ) by ( K ,B , � and M ), respectively [4]. We adoptthis for the easeof
visualizationin the time-frequency context, asa result,(5)
and(6) canberewrittenasN.ÃiÄ ¼ ��3	�9&'��Å½� Ä½Æ ��3��9&���Q »gÇ ��3	�]&�� (7)N.Ã £ ¼ ��
���|���ÅÍ� £ Æ ��
���|���Ë ; Ë � V W ��
���|�� (8)

By multiplying bothsidesof (7) with anarbitrary ker-
nel ¡ � K @�BC� , andtakingtheinversedoubleFouriertransform
of theresult,we derive to two generalequationsrepresent-
ing the second-orderrelationshipin termsof the general-
ized ambiguityfunction ° andthe generalquadratictime-
frequency distribution Î (seeFig. 4), asN.ÃAÏ ¼ ��3	�9&'��Å½� Ï[Æ ��3	�9&'��Q »½Ç ��3��9&�� (9)N.Ã � ¼ ��
���|���ÅÍ�Ð� Æ ��
%��|���Ë ; Ë � V W ��
%��|�� (10)

It shouldbenotedthattheresultgivenin [6, 7] arethespe-
cial cases(expressedin termsof spectrogramandWigner-
Ville distribution)of thegeneralcasepresentedin (10).

5. SCATTERING FUNCTION ESTIMATORS

Sincethekernel ¡ � K @�BC� , implicitly includedin (9) and(10),
is arbitrary, two generalclassesof estimatorsfor the scat-
tering functions are proposed: deconvolution and direct-
implementation.

5.1. Class of deconvolution estimators

The classof deconvolution estimatorsis definedbasedon
thedivisionof (9) by thegeneralizedambiguityfunctionof
theinput signalÑV �o¹i« Òx�W ��
%��|�� ��ÐÓ �$Ò:UÔÕ; ¿ Ó �¥Ô=� ¿ N.ÃAÏ

¼ ��3��9&���ÅÏ Æ ��3	�]&�� ÀgÀ (11)

Similarto theapproachin [8], zero-divisionproblemin (11)
is encountered.A classicalsolutionis to thresholdthesym-
metricambiguityfunction §[Ö � K @�BC� , or theWoodwardambi-
guity function(whenmatchedfiltering is pre-appliedat the

3Definitionof doubleFouriertransform:× _�Ø$bxÙ�cCÚ4Û ¼ ÔÍÜ[Ý Û �$ÒÞ ÔÍß f¥à _âá'bEã)c j)äÚ>åCå à _Yá'bEã�c)æ�á¥ç f `mèêéUëXØ'á�ìPèêéUëXÙ	ã j�í á í ã

outputsignal),at thepointsequalto zero. Mathematically,
it replaces§ Ö � K @�BC� by § Ö Ì � K @�BC�gî § Ö � K @�BC��ïñðmòÂ� K @�BC� .

This replacementcreatesa problemin which thesignalD �9����� may not exist. One could also usean interrogating
signal (as in the caseof imageprocessing[8]) with some
well-behavedcharacteristicsin orderto achieve betteresti-
mationof ~z� ���A@ M � . However, in communications,interro-
gating(pilot) signalsarenot encouragedsincethecommu-
nication becomesmore expensive with extra maneuver of
thepilot signals.

On the other hand,by using of the kernel ¡ � K @�BC� , in
turns,makinguseof the well-definedgeneralizedambigu-
ity function, the problemsof the nonexistenceof D � ����� and
usinginterrogatingsignalsareavoided.Also thekernelcan
be usedto smooth § Ö � K @�BC� in the sensethat it represents
theentireenergy within anelementarycell (seeFig. 2) to a
valueat thecenterof thecell andtheestimatesof thescat-
tering function needonly to be evaluatedat thesecenters
of the cells. This helpspartially minimize the zero divi-
sionproblem.Thresholding,not for zerodivision problem,
canbeappliedaftersmoothingin orderto discardthecells
thathave negligible energy. As a result,computationaleffi-
ciency of post-processingin eachcell for differentpurposes
(e.g.detection[13]) canbesignificantlyimproved.

5.2. Class of direct-implementation estimators

Onecanchoosethe kernel ¡ � K @�BC� so that the distributionÎ�Ö ���A@ M � in (10) is impulse-like (we would ideally wish to
haveadeltarepresentationin thetime-frequency plane,this,
however, doesnot exist dueto the constraintof minimum
time-frequency bandwidthaccordingto Heisenberg’suncer-
tainty principle), the left-handsideof (10), then,approxi-
matesto ~ � ���A@ M � . Thus,we defineanotherclass,namely
direct-implementation,of estimatorsÑV � ¹i« 7
�W ��
%��|��ó�� N.Ã � ¼ ��
%��|���Å (12)

An exampleof this classcanbeobtainedby choosingker-
nel suchthat thetime-frequency distribution Î Ö ���A@ M � is ap-
proximatedto thatof Hermitefunctionsknown for having
well-localizedtime-frequency representation[14].

6. CONCLUSION

We have proposedtwo classesof estimatorsfor thescatter-
ing functionof thetime-frequency dispersivefadingmobile
channelswith theuseof thegeneralizedambiguityfunction
familiarizedin thecontext of time-frequency signalprocess-
ing. Thedegreeof freedomintroducedby thearbitraryker-
nel ¡ � K @�BC� resultsin different estimators. This avoids or
overcomesthe problemsencounteredin the existing esti-
mators.Theselectionof optimumcriteriafor theestimators
and,in turns,theperformanceof theestimators,dependson
the selectionof the kernelwith specificproperty. Detailed
analysisof this is beyondthescopeof thepaper.



7. REFERENCES

[1] BernardSklar, “Rayleigh fading channelsin mobile digi-
tal communicationsystems,part I: Characterization,” IEEE
Communications Magazine, pp.90–100,July1997.

[2] RaymondSteeleandLajosHanzo,Eds.,Mobile Radio Com-
munications: Second and Third Generation Cellular and
WATM Systems, JohnWiley & Sons,England,2ndedition,
1999.

[3] P.A. Bello, “Characterizationof randomlytime-variantlinear
channels,” IEEE Transactions on Communication Systems,
vol. COM-11,pp.360–393,Dec.1963.

[4] N. ThomasGaarder, “Scatteringfunctionestimation,” IEEE
Transactions on Information Theory, vol. IT-14, no. 5, pp.
684–693,Sept.1968.

[5] H. L. VanTrees,Detection, Estimation, and Modulation The-
ory. Radar-Sonar Signal Processing and Gaussian Signals in
Noise, KriegerPub. Co.,Malabar, Florida,1992.

[6] RichardA. Altes, “Detection,estimation,andclassification
with spectrograms,” The Journal of the Acoustical Society of
America, vol. 67,no.4, pp.1232–1246,Apr. 1980.

[7] PatrickFlandrin,“A time-frequency formulationof optimum
detection,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 36,no.9,pp.1377–1384,Sept.1988.

[8] Blane L. Johnson,DennisW. Ricker, and JohnR. Sacha,
“The useof iterative deconvolution for scatteringfunction
identification,” The Journal of the Acoustical Society of
America, vol. 91,no.5, pp.2790–2798,May 1992.

[9] DennisW. Ricker andMichael J. Gustafson, “A low side-
lobetechniquefor thedirectmeasurementof scatteringfunc-
tions,” IEEE Journal of Oceanic Engineering, vol. 21,no.1,
pp.14–23,Jan.1996.

[10] TaoWang,Vimal K. Dubey, andJinTeongOng,“Generation
of scatteringfunctionsfor mobilecommunicationchannel:a
computersimulationapproach,” Wireless Information Net-
works, vol. 4, no.3, pp.187–204,1997.

[11] JohnS. Sadowsky andVenceslav Kafedziski, “On the cor-
relationandscatteringfunction of the WSSUSchannelfor
mobile communications,” IEEE Transactions on Vehicular
Technology, vol. 47,no.1, pp.270–282,Feb. 1998.

[12] BoualemBoashash,Ed., Time-Frequency Signal Analysis:
Methods and Applications, LongmanCheshire,Melbourne,
Australia,1992.

[13] Akbar M. Sayeed, Andrew Sendonaris, and Behnaam
Aazhang,“Multiuser detectionin fast-fadingmultipathenvi-
ronments,” IEEE Journal on Selected Areas in Communica-
tions, vol. 16,no.9, pp.1691–1701,Dec.1998.

[14] Ralf HaasandJean-ClaudeBelfiore, “A time-frquency well-
localizedpulsefor multiple carrier transmission,” Wireless
Personal Communications, vol. 5, pp.1–18,1997.

Appendix

Proof of equation (5)
Thecorrelationfunctionof thereceivedsignalgiven in (1) is

expressedas»½¼A¼ ��
%��¾.
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Using(3), andintegratingover 3 and & , onecanobtains» ¼A¼ ��
%��¾.
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TakingFouriertransformfrom 
 to ¾�| on bothsidesof theabove
we thenhave4N.ÃiÄ ¼ �E¾�|X��¾.

��Å½��ú � z V W ��3	S��
&XSY�
()��
C� ¾=
� *\&	SY�
( R ��
�* ¾.
� *4&XSY�� 5 6%798): Ì � ; 5 �/6%798ê; � � ,-&	SU,/3	SA,)
�ú � z V W ��3	S��
&XSY� ¤ Æ ��
�*4&XS^��¾.

�95 6�798): Ì � ; 5 �-6%798�; � � ,-&XS%,/3	SA,)
�  � VCW ��3	S��
&XSY� õ  #¤ Æ ��
�*4&	SE��¾.
��95 �/6�798�; � � ,)
9ø5 6%798): Ì � ; ,-&XSU,/3�S�  � VCW ��3	S��
&XSY��Q Ä½Æ �E¾�|X��¾.

�95 �-6%798ê� Ì � � 5 6%798�: Ì � ; ,-&	SU,/3	S� ÄgÆ �E¾�|X��¾=
���Q%Ó �AÌ�Ô � � O Ó �mÒ:%Ì�Ô � ; O VCW ��3	S��
&XSâ�UT�T
where

Ä ¼ �9Q � and ¤ Æ �9Q � aredefinedin Fig. 3 for differentsignals
( ����

� and ()��
�� insteadof � ��
�� ) anddifferentvariables.Note that,
thenotations
 , | , 3 and & usedin Fourier transforms,seeFig. 3,
areonly for familiarconventionin signalprocessingpointof view,
one can useany othersas long as they satisfy the definition of
Fourier transform). It shouldbe notedthat the result(5) appears
alsoin [4] withoutproof.

4Fourier transform operatorand expectedvalue operatorare inter-
changeableundersomespecificconditions.Û ;�Ô � � fUû ¼A¼ _Yü9b]ý½üEc j Úe.þ Û ;^Ô � � þ á'_YüXì ý½üé c h á R _âü�` ýgüé c�ÿ0ÿ Ú egf � ¼ _�ý��-b]ý½üEc j


