
IEEE International Conference on Acoustics Speech and Signal Processing 2001 ICASSP 2001; Salt Lake City, Utah; May 7-11, 2001

OPTIMAL ESTIMATION OF SUBBAND SPEECH FROM
NONUNIFORM NON-RECURRENT SIGNAL-DRIVEN SPARSE SAMPLES

Penio S. Penev
�

The Rockefeller University
1230 York Avenue, New York, NY 10021

PenevPS@IEEE.org
http://venezia.rockefeller.edu/

Liubomire G. Iordanov

Department of Computer Science
University at Albany

State University of New York
1400 Washington Avenue Albany, NY 12222

lou@cs.albany.edu

ABSTRACT

Speech signals are comprised of auditory objects that are local-
ized in time, but can appear anywhere in the record. We introduce
a strategy for non-recurrent irregular signal-driven sampling and
subsequent maximum likelihood interpolation of speech subbands
that achieves object constancy—the representation of an auditory
object is precisely locked to the timing of its features, but is other-
wise constant. Moreover, the reconstruction fidelity can be traded
flexibly for sampling rate, over a broad range of signal-to-noise
ratios and application requirements. In an experiment with wide-
band speech, we find a regime in the rate/distortion curve that has
almost perfect reconstruction at a rate substantially lower than the
respective Nyquist rate.

1. INTRODUCTION

In the filter bank approach, when band limited speech is filtered
by

�
linear time-invariant (LTI) systems it can be exactly re-

constructed from the uniformly spaced samples of their outputs
at ��� � -th of the Nyquist rate [13]. The block transform approach
is a special case in which the temporal support of the filters—the
block length— is small enough so that there is one sample per
block per filter. In both approaches, a given auditory object can
have very different representations, depending of its phase relative
to the start of the respective sampling period.

Here we consider nonuniform sampling that is locked to the
features of the signal; hence, it has the object constancy property—
the “what” and “when” parts of the infomation in the signal, which
are presumably independent, are decoupled as early as the sam-
pling stage.

Several extensions to the uniform sampling theorem are well
known [10]. Specifically, it is established that a band-limited sig-
nal can be recovered from its nonuniform samples, provided that
the average sampling rate exceeds the Nyquist rate [2]. Also,
an explicit reconstruction formula for the general case is avail-
able [20].

�
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Nevertheless, reconstruction from both generalized uniform [13],
and nonuniform [20], samples is computationally complex and
typically involves iterative algorithms [11, 4]. An efficient filter
bank implementation has recently become available for the spe-
cial case of nonuniform, but recurrent sampling [12]. Here we
provide a non-iterative reconstruction algorithm for a class of non-
recurrent nonuniform sampling strategies.

Another consideration taken into account is that the require-
ment for exact reconstruction is seldom enforced in practice. In-
deed, real physical signals are always embedded in noise, which
renders exact reconstruction meaningless. Also, the sampling pro-
cess itself introduces both amplitude quantization noise and tem-
poral jitter. Most importantly, sampling of speech is typically fol-
lowed by quantization schemes which deliberately loose fidelity
[e.g., 7, 9, 18]. Therefore, here we consider a practically useful
approach that provides a flexible tradeoff between sampling rate
and reconstruction quality, for which perfect reconstruction is but
one of the operating regimes.

In this paper, we construct the filter bank as follows: first we
define a probability model in terms of block-transform coefficients
to calculate the entropy of the signal within any given window,
and then we group sets of those coefficients in a finite number of
subbands; for each one, we use the block-transform bases in the
respective set to construct an analysis filter such that the subband
projector is given by the convolution with the autocorrelation func-
tion of the ensemble of filtered signals.

Further, for any signal, given any irregular set of samples from
the subband output, the respective projector is used to construct
maximum likelihood interpolators. The samples are selected with
a greedy projection pursuit algorithm, which locks them to the fea-
tures of the signal, and also ensures stability and locality.

This irregular sampling method is applied to an ensemble of
wide-band speech to build rate/distortion curves for a given sub-
band. In one regime, 99% of the information in the subband is
reconstructed at ����� -th of the respective Nyquist rate.

2. BLOCK-TRANSFORM CODES: A GAUSSIAN MODEL

A long record of monaural sound of duration �	 will be denoted
by 
���
�� .1 The part of the record that falls in the window of dura-

1For this study, a news broadcast was recorded trough a cable box by a
monaural VCR on VHS tape; the audio channel was later digitized without
clippings to 16 bits/sample at 16 kSa/sec on a SGI Indy workstation with



tion
�

which starts at time ��� 
�� 	��� �	
	��
, will be denoted

by ��
 ��� � �� 
 ��
���� � , ��� �
.2

For a given dimensionality � , the analysis phase of block-
transform coding utilizes a set of global bases ����� ��� ������ �"! ; global
here means that they are non-vanishing throughout the entire win-
dow. For an arbitrary � 
 ��� � , the � transform coefficients are cal-
culated by the linear projections# 
� ��%$'& !� ��)(+* �'� ��� �,� 
 ��� � (1)

where � $ ��� are chosen so that � # ��� have unit variance. When the
filters are orthonormal, they are also used in the synthesis phase;
then the respective reconstruction is

�.-0/21� ��� � �� �( � �3! # � $ �4�'� ��� �65 (2)

When there is no overlap between adjacent windows,
� � � must

hold for perfect reconstruction [19].
An important special case is the Karhunen-Loève transform

(KLT) [see e.g., 3, 14] , which utilizes the spectral decomposition
of the covariance matrix of the ensemble

7 ���98,�;:�� �� �	 ( 
 � 
 ��� �,� 
 ���<: � �>=( � �"! �'� ��� � $@?� �'� ���;:��65 (3)

KLT is optimal in the sense that the transform coefficients (1) are
decorrelated.3 Then, under the standard multidimensional Gaus-
sian model for the probability density A�B �DC , the entropy of the re-
construction (2), which is also the optimal code length [17], is

	�EGFIH A�B � -�/J1� CLK �( � �"!3M # � M ? 5 (4)

Notably, because of the normalization by $ � in (1), often called
whitening, the model (4) is spherically symmetric. With an ap-
propriate model of the noise, such whitening has been found to
account for the psychophysically-measured contrast sensitivity of
human vision in all signal-to-noise regimes [1]. In speech applica-
tions, $ � is often heuristically chosen as the basis for the respective
quantizer step [19].

the Iris Audio Processor: version A2, revision 4.1.0. The record was seg-
mented manually and the 24 segments with the voice of the anchor woman
were reassembled, for a total duration of NO
P%Q RTS,UVUVWTSXWVYVW

Sa Z Q U
min.

With a single affine transformation, the DC component was eliminated, and
the samples were converted to IEEE floats in the [ \ QVS Q^]

range. No attempt
was made to apply additional analog pre-filters, or correct for the (colored)
noise of the equipment and the occasional fade-ins of background music.

2It is well known that processing of a band-limited signal with a
continuous-time filter bank is equivalent to first sampling at the Nyquist
rate, and then processing with a suitable discrete-time bank [see e.g., 12];
hence, without loss of generality, _ can be considered to be a discrete-time
index. In practical implementations however, it might be advantageous to
do some or most of the pre-filtering in the analog domain.

3Notably, for time-invariant ensembles, `ba2c S c :0d is a Toeplitz matrix
whose diagonals are given by the autocorrelation function of the ensemble,`ba2c S c :�d�egf aJch\ic :0d ; thus, sines are asymptotically close to its eigen-
vectors [6], and the DFT and DCT are both asymptotically optimal [3].
Since DFT and DCT are far from optimal for small windows sizes, j , the
calculations here were carried out by KLT. Nevertheless, in the limit of in-
finitely large windows, j%kml , the presented results are invariant under
the choice of any asymptotically optimal block-transform basis.

3. LOCAL ENTROPY DENSITY WITHIN SUBBANDS

Two serious problems with the block-based coding are the global
processing, which leads to large latency and complexity, and the
edge effects—the transform coefficients (1) of a localized speech
object will change in a non-trivial, but purely artifactual, manner
as a function of the distance to the block boundary. In order to
cope with essentially the same problem in the context of object vi-
sion, the method of Local Feature Analysis (LFA) has been devel-
oped [16, 14]. LFA utilizes a set of local analysis filters, n ���;8�� : � ,
whose outputs are indexed with � (cf. eq. 1) and are optimally
decorrelated o 
 ��� � �� ���( *Vp n ���98^�<: �,� 
 ���;:��65 (5)

When the set of indices �Vqr� is broken up into non-overlapping
bands,4 sutwvxszy �|{ for }m~��� , maximal decorrelation can be
achieved in any given band s with n ���98�� : � � n�� !��� ���;8,� : � from
the following family of filters [16]

n ��� �� ���98^�<: � �� (��� � �'� ��� � $ & �� �'� ���<: �65 (6)

Then, the synthesis filters, n � & !��� ���;8�� : � , provide reconstructions

�.-�/J1� ��� � � (��� � # � $ ���'� ��� � � �� ( *Vp n � & !��� ���98^�<: � o � ���<: � (7)

that are exactly equal to the respective global ones (2).
Evidently in Fig. 1, the filters from the family (6) are local—

their support is substantially non-vanishing only in a small neigh-
borhood around their centers.5

Notably, the subband outputs

o � ��� � (5) are essentially an or-
thogonal embedding of the transform coefficient (1) in the time
domain, and provide the local entropy density in the respective
subband (cf. eq. 4)	�E�FIH A�B �.-�/21� CLK�(��� � M # � M ?u� ��)( * M

o � ��� � M ? 5 (8)

4. A FILTER-BANK IMPLEMENTATION

The filters (6), shown in Fig. 1, although operating within a win-
dow, have one desirable property—their support is essentially lo-
cal, and they don’t feel the window boundaries. Moreover, ev-
idently in Fig. 2, the filters centered over different places within

4The typical reason for the breaking up of speech in subbands is that
they have different properties, and judicious coding can take advantage of
this fact [e.g., 19]. Also, the, tonotopically organized [5], human cochlea
analyzes the signal in bands of neighboring frequencies. For the experi-
ments here, we build the subbands by energy—we group together indices
with similar �r� (3). Part of the motivation is that the dropping of the
weaker half of the the bands does not produce any noticeable distortion
for the wide-band speech signals considered here; another

RVW
% can be

dropped, which results in just noticeable distortion [8]. Such global di-
mensionality reduction is not a subject of this paper; what we study in
Section 5 is local dimensionality reduction—within a subband that needs
to be preserved.

5Notably, � � & ? � aJc S c : d�e ` � a2c S c : d , the projection of the covariance

matrix to the subband. � � ? � a2c S c :0d.e ` � & !��� a2c S c :0d , used as the predictor
in Differential PCM (DPCM) [7], is conspicuously absent; for reasons that
will become apparent in Section 5, � ��� � a2c S c : dxe�� � aJc S c : d (9), the
projector to the subband, is used as the predictor there.
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Fig. 1. The filters (6) in the band with the most energy (3) are
shown for a window size of

� � � � ms and dimensionality rate� � � ��� �T�I� Nyquist coefficients/sec; the center, � , is in the
middle of the window; � : runs horizontally throughout the full
window. (top) analysis filter, n ���;8,� : � ; (middle) autocorrelation,� ���98^� : � (9); (bottom) synthesis filter, n � & !�� ���;8,� : � . �

is in its
natural scale. n and n � & !�� convert from energy to entropy and
back, respectively, and have some physical units; hence, they are
normalized by their central values. Notably, n is a derivative,n � & !�� is an integration, and

�
is a projection operator.

the window are, essentially, translated versions of each other—� ���98^� : ����� ��� 	 � : � . Hence, the output due to some localized
structure will be independent of its placement within the window.

Although the time invariance of the filters is only approximate—
especially evident close to the boundaries, shown in Fig. 2(top)—
when the window size,

�
, is increased at a fixed dimensionality

rate, � � � , evidently from Fig. 2(bottom), the structure of the fil-
ters persists in the center, and their support gets more localized.
Hence, the fraction of the filters that feel boundary effects de-
creases with increasing window size.

In the limit
�	��


, (5) is equivalent to the subband process-
ing in a filter bank, whereby the analysis and synthesis are carried
out by convolutions with the respective limits of the filters (6), with� taken at the center of the window.6

5. SPARSIFICATION OF SUBBAND SPEECH

Within any subband s , with dimensionality � � M s M , the subband
entropy density

o � ��� � is optimal in the sense that its residual co-
variance (cf. eq. 3), shown in Fig. 1(middle)

� � ���;8^�;:�� �� �	 ( 

o 
� ��� � o 
� ���<: � � n ��� �� ���;8,�<: � (9)

is as close to � ���;8^� : � as possible [16]. Nevertheless, when � � �
,

the subband outputs can not be completely decorrelated.
Moreover, since there are only � degrees of freedom in (6),

any � � � variables are linearly dependent. Hence,

o
��� � can

6In practice, there is a finite signal-to-noise ratio; also, the outputs are
typically quantized for subsequent transmission and/or storage. Hence, a
true limit is not required, as long as the error due to the finite window size
does not dominate the other errors. A measure of the information leakage
from the subband is

Q \ a�
 S 
 � 
 d���� 
 � ? , where 
 � 
 is the convolution
of the projector with itself. For all filters here, this leakage was � W�� �
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Fig. 2. Projectors
� ���98^� : � for the band in Fig. 1 for two values

of � that are placed asymetrically in the window (top, middle).
The central

� � ms are shown of the projector at the center of the
window for a band with

� � � � � ms and the same dimensionality
rate (bottom); cf. Fig. 1(middle).

be subsampled over a limited set of points within the window,����� �	��� , and subsequently linearly reconstructed from its

M � M � � samples � o ���
o
����� ��� * � ��� byo -0/21 ��� � � � � �(
� �"!

o
� # � ��� � (10)

where � # � ��� ��� depend on the choice of � [16]. When they sat-
isfy # � ��� � �!�"� � � , they are interpolating reconstructors. In this
case, with the probability model (8), it has been shown [14, Sec-
tion 4.4] that the maximum likelihood estimate is

# � ��� � � � � �( � �3! # & ! � � � � ��� � (11)

where
� � ��� �!� � ����� 8�� � , and

# �	$ M � is the restriction of $
on the set of sampling points, with

# � � � � � ��� � � . In the rep-
resentation (10–11), both the values of the set of M � M � � sam-
ples, � o ��� � ��� * � ��� , and their locations, � , code for

o -0/21 ��� �
and, through (7), for � -0/21 ��� � .

For the special case when the subband is comprised of all fre-
quencies within a range symmetric around the origin, the projector
� ��� 	 � : � is the familiar %'&)()* function. Additionally, when the
sampling � is determined by decimation,

# �+� and the recon-
structors are all identical, again to the %'&,(-* function. In general,
the selection of � should be driven by the signal itself. We call
this process sparsification.

The optimal sparsification of sound, as well as images, is an
open question [14]. Here, we apply to sound a strategy from
object vision that was found to be extremely efficient—window-
based greedy sparsification [16]. Iteratively within any given win-
dow, we start with the empty set � ��� � ��{ and, at step .i� � ,
add to � ��� � one sampling point, � ��/ ! , until a termination cri-
terion is met. To decide where to sample, given the current set
� � � ��� � , we calculate the current maximum-likelihood esti-
mate

o -0/21� ��� � (10–11) and erroro /�-�-� ��� � � o
��� � 	 o -0/21� ��� �65 (12)
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Fig. 3. For a given information fidelity (12), the ratio of
the number of Nyquist, global (2), samples and sparse, lo-
cal (10), samples necessary to achieve that fidelity—is shown for
bands of a fixed Nyquist rate of

� �T� Sa/sec and window sizes� � � � 8 � � 8 � �;8 � �98 � � �+8 � � � � ms.

We find the grid point � ��/ ! such that the value of M
o /0-�-� ��� ��/ ! � M ?is maximal and terminate the sparsification whenever it is below a

predetermined threshold. Otherwise, we define � ����/ !�� �"� ��� ���� ��/ ! and continue the iteration. This algorithm terminates—it
samples only at places where the entropy is not predicted well;
hence its samples are linearly independent, and when M � M � � ,
the interpolation (10) is exact.

The results of such sparsification of speech are shown in Fig. 3.7

Remarkably, the information fidelity of the reconstruction increases
rapidly with the number sparse samples in the subband: for �T� %
fidelity, only � � % of the Nyquist rate is needed; � � %, for ��� %.
Notably, what is captured here is the information, rather than the
energy of signal; although formal listening tests are needed to es-
tablish its relationship to perception, it has been shown in the con-
text of object vision that ��� � % of the information is needed at
the just-noticeable distortion threshold [14, 15].

6. DISCUSSION

We have shown here that, when the analysis filters in a filter bank
are specially designed to calculate, in a time-invariant fashion, the
local entropy density, and when its local structure is used to drive
the sub-sampling process, the resulting sparse-distributed repre-
sentation is of very low dimensionality. This is due to the sparse
structure of the signal itself.

There are a number of open questions that arise in this irregu-
lar sampling framework, both practical and theoretical, that merit
further investigation: the link between perception, and both the
number of local terms and their quantization; the influence of the
signal-to-noise ratio in the subband on both sparseness and per-
ception; the possible use of the unitary degree of freedom implicit
in the orthogonal embedding, for minimization of latency and/or
maximization of sparseness.

7Although the sparsification here was carried out within each window
independently, evidently from Fig. 3, the final result depends only weakly
on the window size j , as long as the dimensionality rate, � � j is kept con-
stant, and j is “large enough.” We expect this result to also hold for truly
windowless algorithms, such as successive sparsification [14, Section 5.5].

A very interesting possibility is to use an orthogonal embed-
ding that introduces residual correlations between adjacent sub-
bands [14, Section 5.4], which is a strategy, used by the human
cochlea [see, e.g., 8, 5, for reviews]. Although such spectral leak-
age has been postulated to be undesirable [19], the predictive step
of the sparsification (10) can work across subband boundaries and
suppress the leakage on the basis of the correlations (9). Then,
a large part of the information can be accounted for with a very
small number of in-band samples, say �T��� , with ��� % (Fig. 3) and
the rest will be accounted for by the adjacent subbands.
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