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ABSTRACT

The FIR 2-band wavel ets have found wide applicationsin practice.
One of their disadvantages, however, is that they cannot be made
both symmetric and orthogonal. There have been some works on
filters which are orthogonal and nearly symmetric. In this paper,
Grobner methods are used to design orthogonal filters with a sub-
set of exactly symmetric coefficients of various lengths, as opposed
to nearly symmetric coefficients.

1. INTRODUCTION

Conjugate quadrature filters (CQF) are filter banks leading to per-
fect reconstruction. They were first suggested in a paper by Smith
and Barnwell [8]. It is awell known fact that for 2-band FIR fil-
ters one cannot obtain both orthogonality and symmetry, except
for the trivial case of Haar wavelet. Symmetry is desirable in such
applications as image processing. One solution has been to drop
orthogonality and replace it with biorthogonality in favor of sym-
metry. But orthogonality is also desired, for example in noise re-
moval applications where noiseis not to be further correlated. One
alternative would be to make an orthogonal wavelet and accompa-
nying scaling function as symmetric as possible. The idea of 2-
band orthogonal filters made almost symmetric has been used in
[3,7,9,10]. Inthe more recent paper by Monzon and Beylkin [6],
nearly interpolating propertiesin Coifman-like filtersare sought in
addition to approximate symmetry. None of the coefficients of the
proposed filters are strictly symmetric. Rather, they are approxi-
mately so. Inthispaper, Singular [4] isused to find Grobner bases
[2] of filters with a subset of exactly symmetric coefficients. For
K varying from 2 to 5 it was possible to find filters that are very
nearly symmetric, with a subset of the coefficients being exactly
symmetric while maintaining orthogonality. In some instances
the non-symmetric coefficients are very small, possibly of negli-
gible value. The accompanying group delay is found to be nearly
flat or varying within afairly narrow range though in some cases
the variation is more pronounced. All filters are orthogonal, near
symmetric, with two channels. The resulting filters are compared
with generalized Coifman filters found in [9] by D. Wel and A.
C. Bovik. It is shown that the Grobner designed filters offer more
flexibility for a given K and more symmetry for a given support.
A smoothness coefficient v» discussed in [5] will be used to eval-
uate the differentiability of the scaling functions corresponding to
the various filters found.

2. PRELIMINARIES

Consider a 2-band scaling function ¢(.) defined as:

$(t) = V2 ho(k)p(2t — k)
k

where h is a lowpass filter having at least one zero at z = —1
and satisfying the condition 3~ ho(n) = /2. The accompanying
wavelet is defined as:

V(t) = V2) ha(k)$(2t — k)
k
with i1 (n) the corresponding highpass filter defined as:

hi(n) = (=1)"ho(N — 1 — n)

where N is the support of ho. Then, to generate an orthogonal
space spanned by ¢(.) and v(.), it is necessary that ho be orthog-
onal to itsown shiftsby 2k Vk € N, or

> ho(n)ho(n — 2k) = 5(k)

It can be shown that the above condition rules out symmetry except
for the Haar wavelet [3].

3. NEAR SYMMETRIC FILTERS

Theidea isto design lowpass filters with a given number of sym-
metric coefficients, K zeros at «, and the smallest possible sup-
port, N. The resulting filter will of course be only nearly symmet-
ric but, aswill be shown, it is possible to design 2-band filters with
symmetric subset of coefficients and very small non-symmetric
coefficients. The method of Grobner basis has the advantage of
allowing one to explicitly impose the desired properties of the co-
efficients such as orthogonality and (in our case) partial symmetry.
For instance, atypical filter of the partial symmetry sought is of
the form ho = [a b b a ¢ d] where [a b b a] is an exactly sym-
metric part of ko and [¢ d] are non-symmetric preferrably of small
value coefficients.

It was possible to find filters of both even and odd symmetric
lengths within the overall even length of the filter.



3.1. Minimum Support

For a near symmetric lowpass filter with K zerosat z = —1, an
overall length of N coefficients, and a subset of L symmetric co-
efficients, we consider the minimum length of a filter satisfying
orthogonality as well as near symmetry. Then we need 5 coeffi-
cientsto satisfy orthogonality condition for the 2-band case and K
coefficients for the regularity condition [1]. Additionally, L sym-
metric coefficients require L /2 degrees of freedom for L even, and
(L —1)/2for L odd. In either case, this leavesus with N/2 + K
degrees of freedom for both orthogonality and regularity, or for
L € 2N we have

N-L/2=N/2+K

and we have

N=2K+L, Le2N (@)
Similarly, for L € 2N + 1 we have,

N—(L-1)/2=N/2+K

or
N=2K+L-1, Le2N+1

Therefore the support of ho depends directly on the regularity K
and L, thelength of the symmetric part. However, one exception to
the above equations stands out for the case of K = 2, N = 8, and
L = 6 where equation (1) becomes merely an upper bound. Now,
if afilter is of overal length NV with L symmetric coefficients of
even length and regularity K then there exist K + 1 distinct near
symmetric filters of length L for L even. Similarly, we have K
distinct filters with an odd number of symmetric coefficients L. It
isto be noted that the above results have been confirmed for filter
supports up to supp(ho) = 14.

3.2. Measureof Symmetry

As a measure of symmetry criterion, group delay of ho is com-
puted. In the case of symmetry, or L = N, the group delay issim-
ply a constant. Various definitions of phase distortion have been
used in published papers, see[3, 9, 10]. In this paper wewill define
group delay error as follows:

e= /077/2 |7(w) — 70| dw 2

where 7(w) is the group delay of the lowpass filter, defined as
T(w) = =2 with §(w) the phase of Ho(w), the discrete time
Fourier transform of ho. Also, 1o isthe average group delay over
theinterval [0, Z]. Theintegral isevaluated only over the passband
interval as the group delay behavior over the stop band is of little
relevance. Equation (2) can be approximated as a summation,

> Ir(5p) = ol ©)

wherewe have ! points equally distributed over [0, 5] and 70 isthe
mean value defined as + >°, 7(Z%) Obviously, given anumber of
coefficients, the more symmetric coefficients we have, the closer e
isto zero.

3.3. Examples

The use of Grobner methods made it possible to find filters with
symmetric part of different lengths and various centers of symme-
try. Severd filters have been found with various values of L and
K. It was noted that the increase in K requires a proportional in-
crease in L before any symmetric behavior can be observed. As
can be seen from table (1), the smoothness coefficient, v, for even
L ishigher for agiven K than the filterswith odd L and compara-
blelength NV, as shown in table (2). Next, table (3) reflects various
degrees of symmetry for different values of K and L. We note that
fairly small errors of symmetry have been achieved.

Table 1: v», smoothness coefficient for various values of K and L
even, N =2K + L

K
2 3 4 5
1.1181 1.4970 1.9663 2.3670
1.5094 1.5231 2.0350 2.3030
1.5094 1.5006 2.2745
1.4649 1.4711

o O = N

Table 2: v», smoothness coefficient for K varying from 2 to 4 and
Lodd N=2K+L -1

K
2 3 4
3 1.0171 1.6643 1.7882
L 5 1.0307 1.7561 2.0212
7 1.0970 1.8429
9 1.1247  2.0807

Table 3: Error coefficients for various values of K and L.

2 3 4 5
0.116700 0.172300 0.086000 0.096400
0.019800 0.078900 0.213200
0.019100 0.017200 0.078400
0.001600 0.043100 0.029800
0.019100 0.002700 0.018300
0.000117  0.014000
0.001100 0.000840
0.000005 0.005200

0.057100

~
© 00 N O Ut W N

3.4. Symmetric part of even length

Consider the case of afilter ho with K = 2 and L = 6 and overall
support of supp(ho) = 8. This filter in particular is the only
one not to obey equation (1), with 2K + L = 10 > 8. The
corresponding coefficients are as follows:
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ho =

with A = +/2/16, B = +/30/16. Notice the symmetry in the
first six coefficients. The filter smoothness coefficient is given by
vy = 1.5094 and symmetry error isgiven by e = 0.0191. Wenote
that thevalue of v, isinfluenced by azerolocated at = = —0.9004,
in addition to thetwo zeroslocated at z = —1. Asanother example
of afilter with even-length symmetric part, consider a filter with
K =3, L = 8, and overdl support 2K + L = 14. Then we have
theerrore = 8.4x10~ %, ahighly symmetric filter inthiscase. The
corresponding smoothness coefficient isv» = 1.4711. Figure (1)
shows the filter's impulse response as well as the corresponding
scaling function.

3.5. Symmetric part of odd length

As an example of a filter with a subset of coefficients with odd-
length symmetry, we consider afilter with K = 2, L = 9, and
overal length 2K + L — 1 = 12. Then, the symmetry error is
e = 5.3910 x 10~%. The corresponding smoothness coefficient
isthen v, = 1.0374. See figure (3) for the impulse response and
scaling function.

3.6. comparison with published results

The filters designed in [9] are compared with filters found using
Grobner methods. As an example, consider the case of a filter
with even near-symmetry and supp(ho) = 12, the Grobner offers
a symmetry-improved design over the one published in [9]. The
error coefficient in Wai and Bovik filters was found to be e =
0.1142 and v» = 1.8210. Compare with Grobner designed filter
of same support but with four symmetric coefficientsand error e =
0.0784 and v» = 2.0351, animprovement in both parameters. See
figure (2) for the resulting filters. Now consider supp(ho) = 12
with odd number of symmetric coefficients. In this case the Wei
and Bovik filter the error of symmetry coefficient ise = 0.0259
and degree of smoothness»» = 1.8327. Compare with the case of
aGrobner designed filter of the same support and seven symmetric
coefficients. Inthiscasewe havee = 0.0140 and v, = 1.8429, an
improvement in symmetry and slight improvement in smoothness.
Seefigure (4).

4. CONCLUSION

The degrees of freedom in the filters designed in [9] are used to
satisfy orthogonality, near symmetry, and the coiflet condition of
vanishing moments on both the scaling function and the wavelet.
Using Grobner methods it was possible to design orthogonal fil-
ters with nearly symmetric properties and a subset of exactly sym-
metric filters. Those filters offer improved symmetry for a given
support and in some instances improved smoothness as well.

Table 4: Coefficients of various filters

K=3L=8 K=2L=9 K=4L=4 K=3L=1
0.000522 0.000042 —0.005941 0.015864
0.004477 0.000776 0.026294 —0.050704
0.006199 —0.009253 0.034885 —0.072207

—0.086052 —0.073222 —0.085213 0.401755
0.085824 0.362766 0.111204 0.812841
0.696542 0.852001 0.688258 0.401755
0.696542 0.362766 0.688258 —0.072207
0.085824 —0.073222 0.111204 —0.050704

—0.086052 —0.009253 —0.131445 0.024837
0.006199 0.000776 —0.035729 0.005638
0.004232 —0.000039 0.010145 ~0.002021
0.000096 —0.000002 0.002292 —0.000632

—0.000162 0 0 0
0.000019 0 0 0
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Figurel: L = 8 and K = 3. Filter impulse response and resulting Figure3: L = 9 and K = 2. Filter impulse response and resulting
scaling function. scaling function.

Figure2: K = 4, scaling functions of support 12. Grobner design, Figure4: K = 4, scaling functions of support 12. Grobner design,
top; Wei and Bovik design, above. top; Wei and Bovik design, above.



