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ABSTRACT

The FIR 2-band wavelets have found wide applications in practice.
One of their disadvantages, however, is that they cannot be made
both symmetric and orthogonal. There have been some works on
filters which are orthogonal and nearly symmetric. In this paper,
Gröbner methods are used to design orthogonal filters with a sub-
set of exactly symmetric coefficients of various lengths, as opposed
to nearly symmetric coefficients.

1. INTRODUCTION

Conjugate quadrature filters (CQF) are filter banks leading to per-
fect reconstruction. They were first suggested in a paper by Smith
and Barnwell [8]. It is a well known fact that for 2-band FIR fil-
ters one cannot obtain both orthogonality and symmetry, except
for the trivial case of Haar wavelet. Symmetry is desirable in such
applications as image processing. One solution has been to drop
orthogonality and replace it with biorthogonality in favor of sym-
metry. But orthogonality is also desired, for example in noise re-
moval applications where noise is not to be further correlated. One
alternative would be to make an orthogonal wavelet and accompa-
nying scaling function as symmetric as possible. The idea of 2-
band orthogonal filters made almost symmetric has been used in
[3, 7, 9, 10]. In the more recent paper by Monzón and Beylkin [6],
nearly interpolating properties in Coifman-like filters are sought in
addition to approximate symmetry. None of the coefficients of the
proposed filters are strictly symmetric. Rather, they are approxi-
mately so. In this paper, Singular [4] is used to find Gröbner bases
[2] of filters with a subset of exactly symmetric coefficients. For
K varying from 2 to 5 it was possible to find filters that are very
nearly symmetric, with a subset of the coefficients being exactly
symmetric while maintaining orthogonality. In some instances
the non-symmetric coefficients are very small, possibly of negli-
gible value. The accompanying group delay is found to be nearly
flat or varying within a fairly narrow range though in some cases
the variation is more pronounced. All filters are orthogonal, near
symmetric, with two channels. The resulting filters are compared
with generalized Coifman filters found in [9] by D. Wei and A.
C. Bovik. It is shown that the Gröbner designed filters offer more
flexibility for a given K and more symmetry for a given support.
A smoothness coefficient �2 discussed in [5] will be used to eval-
uate the differentiability of the scaling functions corresponding to
the various filters found.

2. PRELIMINARIES

Consider a 2-band scaling function �(:) defined as:
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p
2
X
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h0(k)�(2t� k)

where h0 is a lowpass filter having at least one zero at z = �1
and satisfying the condition

P
n h0(n) =

p
2. The accompanying

wavelet is defined as:
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p
2
X
k

h1(k)�(2t� k)

with h1(n) the corresponding highpass filter defined as:

h1(n) = (�1)nh0(N � 1 � n)

where N is the support of h0. Then, to generate an orthogonal
space spanned by �(:) and  (:), it is necessary that h0 be orthog-
onal to its own shifts by 2k 8k 2 N, or

X
n

h0(n)h0(n� 2k) = Æ(k)

It can be shown that the above condition rules out symmetry except
for the Haar wavelet [3].

3. NEAR SYMMETRIC FILTERS

The idea is to design lowpass filters with a given number of sym-
metric coefficients, K zeros at �, and the smallest possible sup-
port, N . The resulting filter will of course be only nearly symmet-
ric but, as will be shown, it is possible to design 2-band filters with
symmetric subset of coefficients and very small non-symmetric
coefficients. The method of Gröbner basis has the advantage of
allowing one to explicitly impose the desired properties of the co-
efficients such as orthogonality and (in our case) partial symmetry.
For instance, a typical filter of the partial symmetry sought is of
the form h0 = [a b b a c d] where [a b b a] is an exactly sym-
metric part of h0 and [c d] are non-symmetric preferrably of small
value coefficients.

It was possible to find filters of both even and odd symmetric
lengths within the overall even length of the filter.



3.1. Minimum Support

For a near symmetric lowpass filter with K zeros at z = �1, an
overall length of N coefficients, and a subset of L symmetric co-
efficients, we consider the minimum length of a filter satisfying
orthogonality as well as near symmetry. Then we need N

2
coeffi-

cients to satisfy orthogonality condition for the 2-band case and K
coefficients for the regularity condition [1]. Additionally, L sym-
metric coefficients require L=2 degrees of freedom for L even, and
(L� 1)=2 for L odd. In either case, this leaves us with N=2 +K
degrees of freedom for both orthogonality and regularity, or for
L 2 2N we have

N � L=2 = N=2 +K

and we have

N = 2K + L; L 2 2N (1)

Similarly, for L 2 2N + 1 we have,

N � (L� 1)=2 = N=2 +K

or
N = 2K + L� 1; L 2 2N + 1

Therefore the support of h0 depends directly on the regularity K
and L, the length of the symmetric part. However, one exception to
the above equations stands out for the case of K = 2, N = 8, and
L = 6 where equation (1) becomes merely an upper bound. Now,
if a filter is of overall length N with L symmetric coefficients of
even length and regularity K then there exist K + 1 distinct near
symmetric filters of length L for L even. Similarly, we have K
distinct filters with an odd number of symmetric coefficients L. It
is to be noted that the above results have been confirmed for filter
supports up to supp(h0) = 14.

3.2. Measure of Symmetry

As a measure of symmetry criterion, group delay of h0 is com-
puted. In the case of symmetry, or L = N , the group delay is sim-
ply a constant. Various definitions of phase distortion have been
used in published papers, see [3, 9, 10]. In this paper we will define
group delay error as follows:

e =

Z �=2

0

j�(!)� �0j d! (2)

where �(!) is the group delay of the lowpass filter, defined as
�(!) = �d�(!)

d!
, with �(!) the phase of H0(!), the discrete time

Fourier transform of h0. Also, �0 is the average group delay over
the interval [0; �

2
]. The integral is evaluated only over the passband

interval as the group delay behavior over the stop band is of little
relevance. Equation (2) can be approximated as a summation,

e '
1

l

l�1X
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j�(
�n

2l
)� �0j (3)

where we have l points equally distributed over [0; �
2
] and �0 is the

mean value defined as 1
l

P
n � (

�n
2l
) Obviously, given a number of

coefficients, the more symmetric coefficients we have, the closer e
is to zero.

3.3. Examples

The use of Gröbner methods made it possible to find filters with
symmetric part of different lengths and various centers of symme-
try. Several filters have been found with various values of L and
K. It was noted that the increase in K requires a proportional in-
crease in L before any symmetric behavior can be observed. As
can be seen from table (1), the smoothness coefficient, �2, for even
L is higher for a given K than the filters with odd L and compara-
ble length N , as shown in table (2). Next, table (3) reflects various
degrees of symmetry for different values ofK and L. We note that
fairly small errors of symmetry have been achieved.

Table 1: �2, smoothness coefficient for various values of K and L
even, N = 2K + L

K

2 3 4 5

2 1:1181 1:4970 1:9663 2:3670

4 1:5094 1:5231 2:0350 2:3030

L 6 1:5094 1:5006 2:2745

8 1:4649 1:4711

Table 2: �2, smoothness coefficient for K varying from 2 to 4 and
L odd, N = 2K + L � 1

K

2 3 4

3 1:0171 1:6643 1:7882

L 5 1:0307 1:7561 2:0212

7 1:0970 1:8429

9 1:1247 2:0807

Table 3: Error coefficients for various values of K and L.

K
2 3 4 5

2 0:116700 0:172300 0:086000 0:096400

3 0:019800 0:078900 0:213200

4 0:019100 0:017200 0:078400 0:057100

5 0:001600 0:043100 0:029800

L 6 0:019100 0:002700 0:018300

7 0:000117 0:014000

8 0:001100 0:000840

9 0:000005 0:005200

3.4. Symmetric part of even length

Consider the case of a filter h0 withK = 2 and L = 6 and overall
support of supp(h0) = 8. This filter in particular is the only
one not to obey equation (1), with 2K + L = 10 > 8. The
corresponding coefficients are as follows:
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with A =
p
2=16, B =

p
30=16. Notice the symmetry in the

first six coefficients. The filter smoothness coefficient is given by
�2 = 1:5094 and symmetry error is given by e = 0:0191. We note
that the value of �2 is influenced by a zero located at z = �0:9004,
in addition to the two zeros located at z = �1. As another example
of a filter with even-length symmetric part, consider a filter with
K = 3, L = 8, and overall support 2K + L = 14. Then we have
the error e = 8:4�10�4 , a highly symmetric filter in this case. The
corresponding smoothness coefficient is �2 = 1:4711. Figure (1)
shows the filter’s impulse response as well as the corresponding
scaling function.

3.5. Symmetric part of odd length

As an example of a filter with a subset of coefficients with odd-
length symmetry, we consider a filter with K = 2, L = 9, and
overall length 2K + L � 1 = 12. Then, the symmetry error is
e = 5:3910 � 10�6 . The corresponding smoothness coefficient
is then �2 = 1:0374. See figure (3) for the impulse response and
scaling function.

3.6. comparison with published results

The filters designed in [9] are compared with filters found using
Gröbner methods. As an example, consider the case of a filter
with even near-symmetry and supp(h0) = 12, the Gröbner offers
a symmetry-improved design over the one published in [9]. The
error coefficient in Wai and Bovik filters was found to be e =

0:1142 and �2 = 1:8210. Compare with Gröbner designed filter
of same support but with four symmetric coefficients and error e =
0:0784 and �2 = 2:0351, an improvement in both parameters. See
figure (2) for the resulting filters. Now consider supp(h0) = 12

with odd number of symmetric coefficients. In this case the Wei
and Bovik filter the error of symmetry coefficient is e = 0:0259
and degree of smoothness �2 = 1:8327. Compare with the case of
a Gröbner designed filter of the same support and seven symmetric
coefficients. In this case we have e = 0:0140 and �2 = 1:8429, an
improvement in symmetry and slight improvement in smoothness.
See figure (4).

4. CONCLUSION

The degrees of freedom in the filters designed in [9] are used to
satisfy orthogonality, near symmetry, and the coiflet condition of
vanishing moments on both the scaling function and the wavelet.
Using Gröbner methods it was possible to design orthogonal fil-
ters with nearly symmetric properties and a subset of exactly sym-
metric filters. Those filters offer improved symmetry for a given
support and in some instances improved smoothness as well.

Table 4: Coefficients of various filters

K = 3; L = 8 K = 2; L = 9 K = 4; L = 4 K = 3; L = 7

0:000522 0:000042 �0:005941 0:015864

0:004477 0:000776 0:026294 �0:050704

0:006199 �0:009253 0:034885 �0:072207

�0:086052 �0:073222 �0:085213 0:401755

0:085824 0:362766 0:111204 0:812841

0:696542 0:852001 0:688258 0:401755

0:696542 0:362766 0:688258 �0:072207

0:085824 �0:073222 0:111204 �0:050704

�0:086052 �0:009253 �0:131445 0:024837

0:006199 0:000776 �0:035729 0:005638

0:004232 �0:000039 0:010145 �0:002021

0:000096 �0:000002 0:002292 �0:000632

�0:000162 0 0 0

0:000019 0 0 0
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Figure 1: L = 8 andK = 3. Filter impulse response and resulting
scaling function.
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Figure 2: K = 4, scaling functions of support 12. Gröbner design,
top; Wei and Bovik design, above.
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Figure 3: L = 9 and K = 2. Filter impulse response and resulting
scaling function.
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Figure 4: K = 4, scaling functions of support 12. Gröbner design,
top; Wei and Bovik design, above.


