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1. INTRODUCTION

This paper concerns cone-beam tomography from limited data.
Cone-beam tomography is a technique used to visualize the in-
terior of a three-dimensional (3-D) object in a non-invasive way.
This technique involves two steps. In the first step, measurements
called cone-beam projections are taken. In the second step, digital
signal processing techniques are used to process the measurements
to form a 3-D image.

The 3-D image represents a function f(x) which associates
each voxel z in the object with the value of aphysical quantity. In
X-ray imaging, this quantity is the x-ray attenuation factor which
roughly corresponds to the density of the object. In single photon
emission computed tomography (SPECT), the physical quantity
is the concentration of a radioactive tracer injected into the 3-D
object (the patient).

A cone-beam projection isa2-D set of integralsof f(z) mea
sured along lines which diverge from a given vertex point a. In x-
ray imaging, the vertex point is an x-ray source and the projection
is usually called aradiograph. The object lies between the x-ray
source and an area detector as shown in figure 1. Physicaly, the
x-rays travel along lines which diverge from a and undergo a net
attenuation depending on the densities encountered in the object.
The cone-beam projection is the set of intensity losses (integrals
of f(z)) observed along each line. These intensity losses are mea-
sured on the area detector; they form a 2-D image (radiograph) of
the 3-D object under study.

In SPECT, the area detector is replaced by a gamma camera
with a collimator. The gamma camera is used to count photons;
the sum of photons emitted in a given direction is proportional
to alineintegra of f(z). The collimator restricts the photons to
specific lines by an arrangement of cylindrical holes. To obtain a
cone-beam projection, the holes are oriented towards asingle focal
point in space. The vertex point a isthe collimator focal point.

With ideal (noiseless) projections, the imaging capabilities of
a cone-beam tomographic system are determined by the locations
of the verticesrelative to the object. Most works on cone-beam to-
mography are based on Tuy’s condition [1] which requires the ver-
tices to be finely sampled along certain kinds of curves in space.
This condition ensures accurate tomographic reconstructions but
requires many (typically hundreds of) projections. If data collec-
tion is dow however, it may not be possible to acquire enough
projections. Also, sampling the projections along an appropriate
vertex curve is not always possible due to physical constraints.
One example is imaging during interventional surgery. For such
an application, only a small number of projections can be consid-
ered to ensure fast image update. Also, the physical constraints of
a crowded operating room will preclude certain locations for tak-
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Fig. 1. Cone-beam projection for agiven vertex a. The cone-beam
projection is the 2-D set of integrals of f(x) measured aong the
lines which diverge from a.

ing measurements. Limited data cone-beam tomography refersto
the situation where ideal tomography is not possible due to insuf-
ficient or inappropriately placed cone-beam projections.

Given time and environment constraints, it isimportant for the
scanner manufacturer to know where the cone-beam projections
should be collected to best achieve a given imaging objective. By
avoiding the measurement of projections which have alow infor-
mation content for the recovery of the features of interest in f(z),
the scanner performance can be optimized.

In limited data cone-beam tomography the fundamental ques-
tionis: given aset of projections, what isthe inherent tomographic
capability of the system ? Another question immediately follows:
how should the projections be processed to achieve this resolution
capability ?

The literature on vertex sampling and inherent tomographic
capability for cone-beam tomography is very meagre. In 1994,
Barrett and Gifford published a work on vertex sampling for the
helical vertex path and used the concept of a Fourier cross-talk
matrix to compare different sampling strategies [2]. Their work
readily generalizes to other curves, and to non-uniform sampling
schemes but it treats the object in a uniform way and does not ac-
count for local variations in tomographic recoverability. A some-
what related work of Quinto [3] discusses information contained
in cone-beam projections using the rigorously-defined concepts of
visible and invisible singularities (e.g object boundaries). Some
of the ideas of our work are based on these concepts. However,



Quinto’swork makes no attempt to discuss the tomographic recov-
erability of f(z), and in the limit of a Tuy-complete curve with
fine vertex sampling, it would only predict that al singularities
of f(z) are visible. Looking further afield, there are established
methods [4, 5] to determine optimal sampling schemes in classi-
cal (parallel-beam and fan-beam) tomography, and Desbat [6] has
applied these methods to one particular cone-beam case. For cone-
beam tomography, these methods require vertex sampling along a
suitable (Tuy) path, and can only indicate optimal uniform sam-
pling. These requirements are far too restrictive for our purposes.

For the issue of image reconstruction, only the work of Noo et
al. [7] isrelevant to a geometry of unordered (not aong a curve)
vertex locations. Iterative methods might also be applied, but reg-
ularization and stopping criteriawould be hard to establish without
prior information of what features can be recovered in principle.

This paper addresses the prediction of tomographic capabil-
ities of limited-data cone-beam tomographic systems. We intro-
duce the notion of “local directional resolution” to predict these
capabilities and illustrate its usefulness in a simulation of SPECT
breast imaging.

2. RESOLUTION CAPABILITIES

2.1. Problem statement

The problem we are interested in is the characterization of the
“tomographic capability” of alimited set of cone-beam measure-
ments. Given N cone-beam projections measured at vertices a;,
i = 1,...,N, weam at characterizing what can be and what
cannot be recovered in the 3-D object using tomographic recon-
struction.

Some assumptions are made to simplify the problem. We con-
sider that the area detector has infinite resolution and the projec-
tions are non-truncated. Figure 1 gives the illustration of such a
projection. Non-truncation means that the area detector is large
enough to intercept any line which diverges from the vertex and
goes through the object. This condition is unfortunately rarely
met in practice and constitutes therefore a strong limitation in our
study. On the other hand, infinite detector resolution, although not
physically realizable, isaweak assumption because many areade-
tectors currently have submillimeter resolution.

2.2. Local directional resolution

In this work, the tomographic capability of a set of cone-beam
measurements is characterized in terms of resolution. For cone-
beam systems, resol ution depends on position 2 and orientation 4.
This statement can be understood from figure 2 where we show
the differences occuring in the cone-beam projection of a simple
object when changing its orientation and position.

To evaluate the resolution capability at point z in direction 6,
we introduce the “local directional resolution” function R(z,8) ;
R(z,0) isthe smallest resolvable distance at location  in direc-
tion . By definition, R(z, 6) can vary from 0 to +oc. When the
projections are known for all vertices on a curve satisfying Tuy’s
condition, exact reconstruction is possible and R(z,6) = 0. At
the other extreme, we have R(z,6) = +oco when N = 1 and
6 is paralel to the line connecting z to the unique vertex. This
situation wasiillustrated in figure 2 (right).

For a cone-beam configuration of IV vertices, we suggest

R(z,0) = congtantx min{tan¢y} _ (1)
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Fig. 2. Resolution and cone-beam projections. For cone-beam
systems, resolution depends on position & and orientation 6. The
figure illustrates the situation for one vertex. The object consists
of two paralel disks. Only the details which are visible in the
projection can be recovered. Left: the disk separation is clearly
visible. Middle: by changing the position of the object, the reso-
lution is degraded. Right: by changing the object orientation, the
disk separation becomes invisible.

where

sinopy = 1@ —2) 8 @
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Geometrically, +; isthe angle at = between g, and the plane with
normal 6.

3. EVALUATION

In this section, we use the local directional resolution function
R(z, #) of equation (1) to predict the tomographic capabilities of
a SPECT breast imaging system which would use a pinhole colli-
mator for data acquisition.

3.1. Cone-beam configuration

Figures 3 and 4 illustrate the SPECT breast imaging system un-
der investigation. We consider that cone-beam projections are col-
lected for vertex positions lying on three parallel semi-circles cen-
tered on the right breast. The number of vertices per semi-circle
is12. So, there are 36 projectionsin total. Figure 4 illustrates the
arrangement of the verticesin space.

3.2. Resolution capability

The local directional resolution of the cone-beam system is evalu-
ated using test-objects built from disks. Each object is obtained by
stacking up three disks one above the other (see figure 4). The di-
ameter and thickness of the disksare 7 mmand 1 mm, respectively.
The gap between two disksis 2 mm. To test the resolution at point
x in direction #, we place the test object at z with its symmetry
axisalong 6.

As shown in figure 4, five test-objects are placed in the breast,
both inside and outside the hemisphere. Conventional cone-beam
theory would predict reasonable tomography only for objects 1 and
5. Thevalueof R(z, §) waseval uated for each of these test-objects
using formula (1). The results are reported in table 1. According



Fig. 3. SPECT breast imaging system using a pinhole collimator.
The pinhole position corresponds to the vertex location. Magnifi-
cation around the right breast shown on figure 4.

test-object | 1 2 3 4 5
R(z,0) | O 85 75 40 6.8

Table 1. Values of R(z,0) = 100 x min{tan ¢); }i—:
mula (1)) for the 5 test-objectsin figure 4.

.....

to thistable, object 1 should be easier to recover than the other ob-
jects, objects 2, 3 and 5 should be similarly recoverable, and object
4 should be much more difficult to recover. To verify these results,
we performed areconstruction of the breast phantom using the al-
gorithm described in [7]. The result, shown in figure 5, confirmed
our prediction.

4. DISCUSSION

In this work, we presented results concerning the prediction of
the tomographic capabilities of a limited data cone-beam system.
We introduced the notion of local directional resolution R(z,6)
to predict how well structures can be separated at a point z in a
given direction §. A simulation of a SPECT breast imaging sys-
tem was performed to verify the predictions of our formula for
R(z,0). The results were conclusive. Further work is needed to
relate R(z, ) to a measure of the image quality achievable at « in
the direction 6. Note that the reconstruction algorithm used in this
experiment was not designed to obtain optimal resolution results.
Further work is also needed to design an algorithm which would
achieve that goal.
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Fig. 4. Vertex locations and test-objects for tomographic imaging
of the right breast. Torso shown for illustration only. Uniform
breast activity was ssimulated, with 5 high intensity test objects
placed as shown.
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Fig. 5. Reconstruction results. Top row: sicey = —23. Middle row: slice z = 0. Bottom row: slice z = 10. The separation between the
disksiswell-recovered for the test-objects 1,2,3, and 5. The cone-beam configuration is not suitable for the reconstruction of object 4. The
contours of object 1 are better defined than those of objects 2,3 and 5 in the reconstruction.




