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Abstract 
This paper presents a technique for animating a three-
dimensional face model through the application of 
Principal Component Analysis (PCA).  Using PCA has 
several advantages over traditional approaches to facial 
animation because it reduces the number of parameters 
needed to describe a face and confines the facial motion 
to a valid space to prevent unnatural contortions.  First 
real data is optically captured in real time from a human 
subject using infrared cameras and reflective trackers.  
This data is analyzed to find a mean face and a set of 
eigenvectors and eigenvalues that are used to perturb the 
mean face within the range described by the captured 
data.  The result is a set of vectors that can be linearly 
combined and interpolated to represent different facial 
expressions and animations.  We also show that it is 
possible to map the eigenvectors of one face onto another 
face or to change the eigenvectors to describe new 
motion. 
 

1. Introduction 
Animating a three-dimensional face is a difficult task due 
to the complexity of the human face.  From a biological 
standpoint, there are over 20 superficial muscles that 
control facial expression plus the deep facial muscles 
that perform mastication and speech.  Given such a real 
world representation, it has been demonstrated that a 
simplified muscle model can be applied to polygonal 
mesh models [1].  With this approach, several virtual 
muscles of the types linear, sphincter, and sheet are 
defined and assigned either a list of vertices to affect, a 
sphere of influence, or similar system of determining 
what vertices to influence. While this approach has the 
advantage of being intuitive, it is a tedious, manual 
process to create expressions and animate the model 
because the degree of contraction must be determined for 
each muscle by trial and error.  In addition, the properties 
of each muscle are completely dependent on the face 
model with the effect that controlling a different face 
requires starting from scratch.  Another disadvantage is 
that jaw movement does not easily integrate with the 
muscles.  As the jaw rotates open in Figure 1, the 
muscles must also be translated, rotated and their 
contraction characteristics changed to keep the motion 
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Figure 1 An Example of misaligned muscle

ate. Otherwise, visual artifacts and strange facial 
rtions can occur.  Lastly, the number of ways that 
ace can emote is limited to the number of 
ssions one is willing to implement.  Working from 
EC-Face [1,2,3,4] application of the Cambridge 
rch Labs, pictured in Figure 1, we experimented 
linear muscles with limited results.  It was time 
ming to place and calibrate the muscles and the 
 motion frequently did not appear realistic.  Our 
ience with the muscle-based approach led us to 
for a more systematic approach to facial animation. 
ated by image-processing work done for motion 

entation and estimation [5] and by previous work in 
zing and synthesizing facial expressions [6], we 
d to applying Principal Component Analysis [7,8] 
imation parameters collected from a human subject 
sing the results for face animation.  This paper 

fies our method for describing facial motion more 
ently to allow complex facial animation and subtle 
 expressions to be more easily and quickly 
ed.  In addition, we show that the collected 
tion parameters can be reused to animate new faces 

ered to describe new motion. 
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2. System Architecture 
The system this paper presents relies on optical motion 
tracking to provide the training data for analysis.  The 
principal components of data are found with PCA and 
then the face is interactively reconstructed based on the 
computed eigenvectors and eigenvalues.  The three basic 
components of our system are Optical Tracking, 
Principal Component Analysis and the Graphical User 
Interface (GUI). 
 

3. Optical Tracking 
Facial feature tracking is done using the Real-Time 
HiRES 3D Motion Capture System by Motion Analysis 
[9].  Seven CCD high speed FALCON Video Cameras, 
pictured in Figure 2, capture the feature points at 240Hz.  
The cameras are connected to a 500 MHz Pentium II PC, 
with 250MB RAM, for collecting the data.  Another PC 
installed with the MoCap Solver software to control the 
CCD cameras and analyzing the data.   
A total of 39 facial features are tracked.  A mapping has 
been created to show which points to link when 
visualizing the data so that the structure of the face is 
represented in a minimalist form as in Figure 3.  The 
feature points were chosen to cluster more points around 
the mouth area where there are more complex facial 
muscles and motion.  For example, around the mouth, 
there is the obicularis oris muscle that controls the lips 
and facilitates the complex lip motion for speech.  The 
center of the nose, the eyes and the forehead are tracked 
using a minimal number of trackers.  This number may 
be increased in the future to track facial expressions with 
greater precision. 
 

 
Figure 2 Infrared Motion Capture Cameras 

 
4. Principle Component Analysis 

PCA [7,8] is a statistical tool that decomposes data of 
high dimensionality to a set of orthogonal lower 
dimensionality vectors.  The advantage of this technique 
is that if high dimensional data can be represented in a 
lower dimension then it can be more easily visualized, 
characterized or further analyzed.  In the two-

Figure 3 Opening the Jaw by 
combining principal components 



dimensional case, a basic example of PCA would be a 
cloud of uniformly distributed points in the elongated 
shape of a football.  The mean of the cloud would reside 
in the center of the football.  The first principle 
component would be a vector originating at the mean and 
pointing along the long axis of the cloud; the axis with 
the greatest variance and the largest eigenvalue.  The 
second principle component would also originate from 
the mean but would be orthogonal to the first component 
and have a lower eigenvalue.  By linearly combining 
these two principle components and the mean, it is 
possible to represent any point within the cloud.  For our 
captured data, this cloud has 39*3, or 117 dimensions.  
 
For a given MxN  matrix A, PCA will decompose the 
matrix TAA  into a set of M  eigenvectors of M  
dimensions and M  eigenvalues as follows: 
 
First, all of the frames in the sequence are averaged to 
compute the mean face vector f.  Next, for frame i of the 
length N sequence, the a 117x1 vector of the 39 feature 
points is constructed in the form:  

vi = [x1, y1, z1, … , x39, y39, z39]T 
This set of vectors is translated to the origin by subtracting 
f from each vector: 

vi’ = vi – f 
The set of all N vectors form the columns of the matrix 
A: 

A = [v1’, v2’, … , vN’] 
PCA requires a square matrix to perform eigenanalysis: 

B = AAT 
The result of eigenanalysis is a set of 117 eigenvectors, E, 
and eigenvalues v: 

E = [e1, e2, … , e117] 
v = [v1, v2, …, v117] 

The eigenvectors in E can be linearly combined and 
weighted by a set of coefficients c to reproduce any of 
the frames of the original captured data and trivially 
create arbitrary new frames as follows: 

c = {c1, c2, … , c117} 
V = f + c1v1e1 +… ckvkek 

where k is an arbitrary number less than or equal to 117. 
 

5. Mapping Eigenvectors 
One of the goals of this research is to find a means for 
applying motion-captured data of one subject to another 
arbitrary subject.  The two subjects need not appear 
similar geometrically.  They would, however, need the 
number of control points and what they represent to 
correlate.   A small step in this direction, displayed in 
Figure 6, is to allow a user to modify the mean face and 
the computed eigenvectors to create a new face that is 

controlled by an appropriately modified set of 
eigenvectors.  More specifically: 
Given c, V, v, f, E, e as above such that 
 V = f + c1v1e1 +… ckvkek 
The user can interactively edit the mean face f and its set 
of eigenvectors E to produce E’ and f’ whose elements 
can be combined to produce V’ 
 V’ = f’ + c1v1e’1 +…ckvke’k 
 

6. PCA Face Application (GUI) 
This GUI, shown in Figure 4, is implemented on the 
Windows platform as an MFC application rendering an 
OpenGL scene.  A given input data set is read from a text 
file and analyzed. Its mean, eigenvectors and eigenvalues 
are stored and the mean face is displayed.  The user can 
view an animation of the original captured data or vary 
the weighting of the principle components to create 
various facial expressions.  Two versions of the face are 
displayed.  The face on the left shows the mean face 
directly resulting from PCA analysis and is controlled by 
the corresponding set of principal components.  The face 
on the right can be edited in two ways.  The mean can be 
edited to create a new face and the principal components 
can be individually edited to provide more appealing 
control of the new face.  The original PCA data provides 
a useful starting point for controlling new face models. 
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Figure 4 OpenGL Application
7. Results 
est data varies from 300 to 2000 frames at 
 second of a man speaking normally.  By 
on, the motion with the largest variance in 
s the opening and closing of the jaw.  From 
ected that the first principle component 
d close the mouth and deform the cheeks 

the first few components affected the jaw 
igure 5.  The first component caused the 
e and the mouth to open and also widen 
 second component moved the jaw in a 
 as the speaker frequently moved his jaw 
 speaking.  The third component also 



opene
exhib
first t
mout
 

8
This 
Comp
data 
user t
manip
feel t
facial
and 
Curre
proce
motio
perso
of a p

 

We would like to develop a mapping routine to use the 
captured data to manipulate an arbitrary face. Currently, 
the user can manually describe a mapping by altering the 
mean face and its eigenvectors.  In light of recent 
research on the subject of retargeting motion captured 
data[10,11], we feel that with PCA, much of the process 
can be automated. 
 
We have been exploring more intuitive ways for a user to 
interact with the face model. One interesting avenue of 
control is puppetry[12].  Providing the user with some 
physical input device, the user could interactively 
animate the face and ideally, effectively emote through 
the face.  One interesting application is adding new 
frames to existing animations via interpolation or 
creating entirely new frames.  As Figure 6 demonstrates, 
modifying the data set in the eigenvalue space to create 
smooth in-between or arbitrary new frames is simple. 
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