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ABSTRACT

Designing a neural network (NN) for processing complex signals
is achallenging task due to the lack of bounded and differentiable
nonlinear activation functions in the entire complex domain C.
To avoid this difficulty, 'splitting’, i.e, using uncoupled real
sigmoidal functions for the real and imaginary components has
been the traditional approach, and a number of fully complex
activation functions introduced can only correct for magnitude
distortion but can not handle phase distortion. We have recently
introduced a fully complex NN that uses a hyperbolic tangent
function defined in the entire complex domain and showed that
for most practical signal processing problems, it is sufficient to
have an activation function that is bounded and differentiable
almost everywhere in the complex domain. In this paper, the fully
complex NN design is extended to employ other complex
activation functions of the hyperbolic, circular, and their inverse
function family. They are shown to successfully restore nonlinear
amplitude and phase distortions of non-constant modulus
modulated signals.

1. INTRODUCTION

The main reason for the difficulty in finding a nonlinear
complex activation function in NN design is the conflict between
the boundedness and the differentiability of complex functions in
the entire complex plane, as stated in Louiville's theorem [1]. It
states that a bounded entire function must be a constant in C,
where an entire function is defined as analytic, i.e., differentiable
at every point in C [1]. To combat this unbounded nature of
analytic functions in C, two fully complex activation functions,
proposed by Georgiou and Koutsougeras [2], and Hirose [3] have
normalized or scaled the amplitude of complex signals. However,
these functions preserve the phase, thus are incapable of learning
the phase variations between the input and the target in static
pattern matching applications where the input layer does not
include time delay elements. Even in time-delayed NN structure,
they perform poorly in restoring nonlinear amplitude and phase
distortion of non-constant modulus signals due to their radia
mapping characteristics as shown in the numerical examples in
Section 4.

In contrast, another approach to process complex signals by
NNs is to use ‘split’ complex activation with two real-valued
activation functions for the in-phase (I) and quadrature (Q)
components [4]-[7]. While this approach could avoid the
unboundedness of fully complex activation functions in view of
Louiville's theorem, the split complex activation function could
never be analytic.

The split approach typically employs a pair of tanh x, X(J R,
functions as the complex activation function in a feed-forward
NN (FNN) structure [4]-[6]. We have recently shown that
complex hyperbolic tangent function tanh z can be successfully
used as a fully complex activation function. Even though tanh z
is periodic and has periodic singularities, it still outperforms
conventional split complex backpropagation and least mean
squares (LMS) algorithms in nonlinear channel equalization of
quadrature phase shift keying (QPSK) modulated signals when
the domain is bounded in the neighborhood of the unit circle.
Thisis possible because the bounded and well-defined derivatives
meet the Cauchy-Riemann equations almost everywhere in C
while not limited by the Louiville's theorem in the unit circle
neighborhood.

In this paper, the fully complex NN is extended to employ
eight other elementary transcendental functions. It is shown that
Cauchy-Riemann equations can be used to simplify the fully
complex backpropagation agorithm derived in [2]. They aso
help to relax the properties a fully complex activation function is
‘desired’ to possess as defined in [2] and [7]. The performance of
the complex backpropagation agorithm using these complex
activation functions is compared with split complex
backpropagation and complex LMS (CLMS) schemes in
numerical examples. The Volterra series nonlinear satellite
Traveling Wave Tube Amplifier (TWTA) model exhibiting
amplitude-to-amplitude (AM/AM) and amplitude-to-phase
(AM/PM) distortion is used as the nonlinear channel model.
Using this model, since several backpropagation algorithms
showed similar performances, not only unsaturated but also
saturated amplification condition was tested for the severe
nonlinear distortion of non-constant modulus signal being used as
input to the supervised learning process.



2. COMPLEX BACKPROPAGATION

Cauchy-Riemann equations can be used to simplify the fully
complex backpropagation algorithm derived in [2] as shown next.
Cauchy-Riemann equations are the necessary condition for a
complex function to be analytic at a point zOC and can be written
by noting that the partial derivatives of f(2) = u(xy) + iv(xy),
where z=x+iy, should be equal along the real and imaginary axes:

f'(2) =uy +ivy =vy —iuy Q)

Equating the rea and imaginary parts in (1), we obtain the

Cauchy-Riemann equations: U, =Vy,V, = -U,. Also note that
this enables equation (1) to be expressed more concisely as
f'(2) = fy =-ify. (2

For the fully complex activation function f(z), the squared error at
the output layer iswritten as
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where d, is the n-th desired symbol and o, is the output of the n-th
output neuron and the subscripts R and | indicate the real and
imaginary components, respectively. The backpropagation weight
adaptation rule requires the computation of the gradient
0E/0W,, . The gradient of the error function with respect to the

real and imaginary components of W, can be written as
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and using the chain rule,
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Definingd,, = —0E/du,, —i0E/dv, ,0,r =—0E/du,
and 8, =-0E/dv,, , and using the following partial derivatives
identifiable from (4),
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(6) and (7) can be simplified as
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Combining (8) and (9), the gradient of the error function becomes
- O
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Note that (10) is in the same form given in [2], but further
applying the Cauchy-Riemann equations, a more compact
representation for the gradient of error function is obtained using
the simple derivative form givenin (2)
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It is worth noting that except the conjugate on each term, it is
identical to the gradient of the error function in the real version of
the backpropagation algorithm as would be expected.

Complex weight update AW, is proportional to the negative
gradient:
AWy =Xy F'(2)3 (12)

where o is a rea positive learning rate. When the complex

weight belongs to an output neuron:
5r|= €= dn_on (13)

and when W, belongs to the mrth hidden layer, the net input z,,
to neuron misthe same asin equation (4):
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where the index k belongs to every neuron that feeds into the
neuron m. Using the chain rule,
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Similarly,
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Using the same partial derivatives that helped to establish (7)
and (8), and combining (14) and (15), the following expression is
obtained similarly for the weight update function (12) using (11):
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Compared to the fully complex activation representation as
f(2=u(x,y)+iv(x,y), the split complex activation function is a
specia case and can be represented as f(2=u(X)+iv(y). This
indicates that u~w=0 for the split complex backpropagation
algorithm. Removing these zero terms from (10), we obtain the
following (complex) weight updates:
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As before, for output layer neuron, &, = e,= d, —0,. For the
input and hidden layer,
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Even though complex multiplication and addition are used
throughout the weight update process in equations (17) and (18),
the marginal nature of real-to-real and imaginary-to-imaginary
interactions that limit the full use of information from the real and
imaginary components of the signd is clearly observed from these
equations.

3. ELEMENTARY TRANSCENDENTAL FUNCTIONS

The following elementary transcendental functions including tanh
z are identified to provide adequate nonlinear discriminant as an
activation function to restore AM/AM and AM/PM TWTA
distortions described in the next section.

Circular: tanz, Sinz
Inverse Circular: atanz, asinz, acosz
Hyperboalic: tanhz, sinhz

Inverse Hyperbolic:  atanhz, asinhz

Figure 1 shows a time-delayed FNN structure that employs
these fully complex activation functions. In practice, we note that
the existence of singularities that cause these functions to be
bounded and anadytic almost everywhere in C hardly poses
problems in training and adaptation processes. For example, as
shown in Figure 2, tanh z is periodic and aso has periodic
singularities at every +nri/2, nON, which makes it difficult for

large domain applications. However, when the domain of interest
is a bounded neighborhood of the unit circle, as is the case in
many practical signal processing and communication applications,
these singular points hardly pose a problem. From Figure 1, it can

be observed that, it is very difficult for the complex weighted sum
of time delayed input data to fall exactly on the singular points,
and in case it does, a step to handle this case can be included in
the implementation.

Time Delay

Layer of

xX®

k-9

k-2

Figure 1. Time-delayed FNN Structure

The characteristics of each transcendental function for
suitable applications require further study. For example, as the
domain grows, network size and learning rate modification will be
needed due to the decreasing dynamic range at the outer region of
some functions including asinh z as shown in Figure 3.
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Figure 2. Magnitude of tanh z  Figure 3. Magnitude of asinh z
4. NUMERICAL EXAMPLES

The following discrete-input and discrete-output relationship
describes the TWTA AM/AM and AM/PM models using
Volterraseries[9]:
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where v, is a complex Gaussian random noise representing the
down-link noise, and a, represents the information symbols, and
Hr(11)’Hr(1i)n2,n3 ’
that describe the effect of the nonlinear channel on symbols a,.
The reduced set of Volterra coefficients is obtained by assuming
constant modulus modulation asin [9]. But, they are used here for
the equalization of non-constant modulus quadrature amplitude
modulated (QAM) signals transmitted through TWTA AM/AM
and AM/PM channels to demonstrate the capability of fully
complex backpropagation using the elementary transcendental

+Vn

- are a set of complex Volterra series coefficients



functions described in the previous section. Figure 4 shows a 16-
QAM constellation with 21 dB signal-to-noise ratio (Eb/No) that
reaches the saturation level of unit amplitude at the outer most
corner points. Figure 5 shows the AM/AM and AM/PM impact
on 16-QAM symbols transmitted through TWTA.

Before

Original lion + AWGN Noise
4 2
1 . »
e ~ 1 -
o 0. ,’*"\ £ "‘ ”‘
g ol I‘" L 28 “) g 0 [ @ . %
i, sese 3 ‘*q L
. ; . e
A b"'/' *,
4.5 2
1 2 4 0 2

Oin-phase ! - .,,_F,,,sl

Figure 5. Received 16-QAM
constellation after TWTA

Figure 4. Input 16-QAM
constellation

Figures 6 and 7 show Eb/No versus symbol error rate (SER)
performances of thirteen schemes discussed in this paper. They
include the fully complex activation functions of Georgiou and
Koutsougeras. [2] and Hirose [3], along with the nine
transcendental functions we introduced in Section 3, the split
complex hyperbolic tangent, and the CLMS. Figure 6 shows
relatively poor performers that could not achieve SER below
0.001 at 14 dB Eb/No while Figure 7 includes better performers.
Former group includes the activation functions of [3] and [2],
tanh z, sin z, sinh z, atanh z, and acos z, while the latter group
includes the split-tanh x, tan z, atan z, asin z, CLMS, and asinh z,
respectively, in the order of worse to better SER performance.

Note that the split-tanh x scheme did not perform well
compared to the four fully complex activation functions and aso
with respect to the CLMS. Both figures show that all equalizers
failed to approach the performance of the pure additive white
Gaussian noise (AWGN) channel. This is because of the difficulty
of estimating independent Gaussian amplitude and uniform phase
noise distributions that tends to spread out the constellation after
the equalization. It is also worth noting that CLMS performed
well under this non-saturated and almost linear channel distortion
environment as it uses the information from the real and complex
components effectively.
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Figure 6. Eb/No vs. SER of relatively poor performers
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Figure 7. Eb/No vs. SER of better performers

The advantage of asinh z activation function over
CLMSisdemonstrated in Figure 8 under a highly nonlinear
saturated TWTA channel environment shown in Figure 9.
Note that the SER curves for this case cannot significantly
improve the performance at high Eb/No’s as the nonlinear
distortionisvery high.
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