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ABSTRACT

The goal of this paper is to learn or adapt statistical fea-
tures of gender specific speech signals. The adaptation is
performed by finding basis functions that encode the speech
signal such that the resulting coefficients are statistically in-
dependent and the information redundancy is minimized.
We use a flexible independent component analysis (ICA)
algorithm to adapt the basis functions as well as the source
coefficients for male and female speakers respectively. The
learned features show significant differences in frequency
and time span. Our results suggest that the male speech fea-
tures can be described by Gabor-like wavelet filters whereas
the female speech signal has a much longer time span. We
present a detailed time-frequency analysis strongly suggest-
ing that those features can be used to qualify and quantify
gender-specific speech signal differences.

1. INTRODUCTION

The efficient encoding of speech signals is a crucial step in
the most speech recognition systems. Most commonly used
features are based on statistics of 2nd order such as the stan-
dard Fourier transformation that leads to the cepstral repre-
sentation of the speech signal. Although this representation
may be computationally simple and its model appealing it
would be more interesting to adapt or learn features that are
natural and represented in the structure of the speech sig-
nals.

Recently, independent component analysis (ICA) [1, 2,
3] has been shown highly effective in encoding patterns, in-
cluding images and speech signals [4, 5]. ICA assumes that
the speech signal can be decomposed into basis functions
and coefficients. The basis functions can be adapted by a
standard ICA learning rule. This technique was employed
in [6] to learn the basis of speech signals in general and
to show that the ICA features (basis functions) of speech
signals are localized in both time and frequency, while the

conventional Fourier bases are localized only in frequency.
The learned features can be used in standard pattern recog-
nition systems to achieve speech recognition performance
that are comparable to current MFCC features-based recog-
nition systems. The ICA source coefficients are usually as-
sumed to have a sparse distribution [4] resulting then in sta-
tistically efficient codes. In many ICA algorithms, this prior
density model is assumed fixed [4, 5]. Here, we use a more
flexible prior allowing the source coefficient statistics to be
inferred from the data.

In this paper, we focus on the difference of the statistical
structures of male and female speakers. Although the ICA
features behave like short-time Fourier bases; similar to Ga-
bor features. They are however different in the fact that they
are asymmetric in time. Encoding and comparing both the
spectral and temporal properties of male and female speak-
ers present a statistical explanation and understanding of
their difference. We used a subset of the TIMIT database
to obtain the basis functions of male and female speech sig-
nals using the generalized Gaussian densities [7] to model
the distribution of the source coefficients. We compare the
statistical structures of male and female speech signals in
terms of their time and frequency span. Furthermore, we
analyze their coding efficiency in terms of the sparseness
and the independence assumption of the source coefficients.

2. THE ICA ALGORITHM

We assume an unknown source vector � with statistically
independent components ��� . The observed data � is repre-
sented as a linear combination of ��� such that
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is a scalar square matrix and the column vector

�
� ’s of
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are the basis functions.

�
represents the basis



functions generating the observed segments of the speech
signal in the real world whereas

� � ��� � refers to the
ICA filters that transform the segments into activations or
source coefficients � � � � . The objective of ICA is to
infer both the unknown sources � � and the unknown basis
functions

�
from the data signal, and it is formulated as

one of density estimation of the sources [1, 2]. In our exper-
iments, we use the infomax learning rule for updating the
basis functions:
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where the vector
��� ��� is a function of the prior defined by��� ��� � 
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will converge to zero matrix when
the basis functions are completely adapted. We use a gen-
eralized Gaussian % � � � � �'&)(+*,�-
/. � � . 021 � , and derive each
component of
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where
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the learning rule are given in [7]. Varying the parameters6 � by updating them periodically during the adaptation pro-
cess enables % � � � � to match the distribution of the estimated
sources exactly. Note that

� � � � � � was fixed in previous works
[4, 5].

3. ADAPTING BASIS FUNCTIONS FOR SPEECH
SIGNALS

To learn the basis functions of male and female speeches, 7
male speakers and 7 female speakers were randomly chosen
from the 462 speakers of the TIMIT database. 4 sentences
were selected from the SX (phonetically-compact) set for
each speaker, and the average duration of one sentence is
about 3 seconds. We down-sampled the originally 16kHz-
sampled data to 8kHz and applied pre-emphasis with

GO

P � Q@RTS � � , to complement the energy decrease in the high
bands of human speech. Those processes reduce the re-
dundancy and prevent low-frequency component from dom-
inating the gradient. The training data � were constructed
from the speech data segmented in 64 samples (8ms) start-
ing from every samples. The adaptation started from theUWVYX�UTV

PCA basis functions
�

, and the gradient of basis
functions was computed on a block of 1000 waveform seg-
ments. The parameter 6 � for each % � � � � was updated every
10 gradient steps.

We obtained two different set of basis functions from the
separated male and female data. Subsets of 32 learned basis
functions are shown in figure 1. They look like short-time
Fourier bases, but are different in that they are asymmetric
in time. They often show Gabor-like filter characteristics,
having a peak rising and decaying slowly. The basis func-
tions of male speakers usually have one Gabor peak, but

(a)

(b)

Fig. 1. Learned ICA basis functions of (a) male and (b) fe-
male speakers. Both are obtained by the generalized Gaus-
sian ICA learning algorithm from speech segments of 64
samples, and 32 basis functions are selected out of the 64.
Each basis function is up-sampled by 5 to remove artifacts
from sample aliasing.

those of female speakers have a few peaks, generally two,
or cover all time span like Fourier basis.

4. COMPARISON OF MALE AND FEMALE BASIS
FUNCTIONS

To compare the structures of different sets of basis for time-
varying signals we analyzed the ways the basis functions tile
the time-frequency space. In figure 1, almost all of the male
basis are highly localized in time, i.e. some basis functions
are active only over a brief time period. In contrast, the
female basis functions are much less localized in time, but
they tend to cover a broader frequency span.

A standard Fourier basis represents signals by a super-
position of exclusive sinusoids. The basis functions are lo-
calized uniformly in frequency, but not in time. In figure 2-
(a), each rectangle corresponds a Fourier basis, and carries
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(a) (b)

Fig. 2. Plot of the time and frequency spans of conventional
bases. (a) The basis functions in a Fourier basis are local-
ized only in time. (b) Wavelet basis functions are localized
in both time and frequency. Both sets of basis functions
have no intersection, with carrying equal amount of area for
each basis.

the same amount of information on the all time span, with
no intersection on the frequency. In figure 2-(b), a wavelet
basis is shown to be composed of basis functions that are lo-
calized in both time and frequency. The two basis sets con-
tain the same number of functions, so while a wavelet basis
provides improved resolution in time, it necessarily sacri-
fices some resolution in frequency. For purpose of coding,
which tiling is best depends on the structure of the signals
being analyzed.

4.1. Time Frequency Analysis

Because the majority of learned basis functions are local-
ized in both time and frequency, it is possible to plot how
they cover the time-frequency space. Figure 3 shows that
the learned features for male and female speech signals cover
time and frequency space in a manner similar to a wavelet
representation. For PCA, the basis functions are almost
identical, therefore only the male basis functions are pre-
sented. Each ellipse refers to one basis function with the
extent of its coverage in time-frequency space. We define
the time span and the frequency span as follows: the time
span —the horizontal width of the ellipse— is the temporal
extent required to cover 95% of the signal power, and the
frequency span —the vertical height of the ellipse— is the
width of the largest spectral peak at 5% maximum. Both
represent the extent that the basis covers in time and fre-
quency. This conveys accurately the extent of each basis in
time-frequency space, although with a considerable degree
of overlap. In figure 3 (a), PCA basis, the frequency band-
width is relatively constant across frequency. In (b) and (c),
it gradually decreases in temporal bandwidth and increases
in frequency with increasing frequency, and the male basis
functions have a higher tendency towards smaller tempo-
ral bandwidth. Note that they gradually change like criti-
cal band frequencies, rather than having discrete octave in-
creases in bandwidth, which is common for many types of
wavelets.
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Fig. 3. Time-frequency analysis of male and female ba-
sis. (a) PCA basis of male speakers. (b) ICA basis of male
speakers. (c) ICA basis of female speakers. Because the two
PCA basis of male and female speakers are almost identical,
only male basis are shown. Each ellipse indicates the range
to cover 95% of the signal power in time and the width at
5% of maximum in frequency.

4.2. Statistical Analysis

The locality of a basis function is closely related to the res-
olution in each domain of time and frequency — the time



Table 1. Localities and sparseness for Fourier, PCA male
and female, ICA male and female bases.

Time span Freq. span kurtosis

Fourier 8.0 ms 62.5 Hz 21.5
PCA-male 7.1 ms 100.3 Hz 19.4

PCA-female 7.2 ms 107.2 Hz 26.2
ICA-male 3.4 ms 175.5 Hz 28.8

ICA-female 5.6 ms 167.0 Hz 36.6

span is inversely proportional to the time resolution, and the
frequency span to the frequency resolution. Table 1 shows
the spans of 5 bases: Fourier, PCA male and female, and
ICA male and female. Both PCA and ICA bases are ob-
tained from the same speech data. Fourier basis have a full
range of the time resolution in its analysis length, but their
frequency span is fixed. In ICA bases, the spans vary in
male and female. Although the frequency spans are almost
the same, the male basis have comparatively shorter time
span. Note from the table 1 that the time span of male and
female are quite similar in case of the PCA bases.

Another crucial property is the amount of information
conveyed by the source coefficients of the basis, which are
proportional to the sparseness of the sources. We approx-
imately measured the source sparseness with the standard
kurtosis measure, defined by

� � � � � N A � � 
��� ��� F 9 �� H 
 D
.

Kurtosis is a measure of peakness, or super-Gaussianity. In
the peaked, super-Gaussian distribution, almost all the dat-
apoints are close to zero and the only few non-zero coeffi-
cients are scattered sparsely. Coding efficiency and statisti-
cal independency increase as the source coefficients become
more sparse. The last column of the table 1 shows the av-
eraged kurtosis of each basis calculated by the geometric
mean. All the values are computed by the male and female
data used for training the basis. For Fourier basis, all the
male and female data are used. The obtained values indi-
cate that the PCA basis for male and female speech are very
similar whereas in case of the ICA bases, there are signif-
icant differences in male and female time-frequency plots
of the data. This is mostly due to the exploitation of the
higher-order structure in the speech signal using ICA.

5. CONCLUSION

We analyzed a set of basis functions obtained for male and
female speech signals. The basis functions as well as the
source coefficient statistics are key factors that capture the
statistical structure of speech signals. The appropriate learn-
ing rule for this task was ICA with a flexible prior. Our
results suggest that the learned coefficients are extremely
sparse, making them useful as statistically efficient codes

for many applications. Again, we note that this sparseness
was not enforced by the algorithm but was a mere result of
the independence assumption that was required to reduce
the redundancy in the data. The basis functions for male
and female speech signals were quite different. The time-
frequency analysis indicate their difference clearly suggest-
ing that the Fourier transformation is more likely to capture
the statistics of the female speech than the male speech sig-
nal. Male speech features are more reminiscent of Gabor-
like wavelet features. We have extended our results in an-
alyzing speaker specific basis functions for speaker coding
and recognition. Our initial results suggest a simple and
maybe natural framework for speaker recognition.
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