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ABSTRACT

In [1] the Makhoul Conjecture Challenge was published. To
answer was the question whether or not the location of the peak
of adigital stable al-pass filter liesin [0, 2p-1], where p is the
order of the all-pass filter. In this paper we construct numerous
counter-examples, prove a new theorem stating that there is at
least an upper bound on the order of p¥2 for the location of the
peak, and discuss the algebraic structure of al-pass filters and
their impulse responses. The paper is heavily based on an
experimental approach.

1. INTRODUCTION

Let X(z) be a digita all-pass filter of order p with rea
coefficients.
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The zeros of the polynomial A(z) are strictly inside the unit
circle, i.e. X(2) is a stable digitd filter. Let m be a value for the
index n for which the impulse response x[n] of X(z) has its
maximum amplitude. In [1, 2, 3] Makhoul conjectured that
O<m<2p-1.
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which results in m=p. This equation can be generalized. To
understand this, it can be shown that
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for any all-pass filter (1), where h[n] is the filter's impulse
response. Furthermore,
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Based on (3) and (4) Makhoul and Steinhardt [2] proved that
(A) The minimal absolute value h, of the peak of a stable
al-pass filter of order p satisfies the inequality
h,<1/{2p+1.
(B) The maximum possible location of the signal pesk is
on the order of p(p+3)/2.

The proofs deal with the more general case of causal signals
with given average delay but the results are in particular valid for

the impulse responses of stable all-pass filters. It was very
unlikely that impulse responses of stable all-pass filters can even
come close to these bounds (A) and (B) because these numbers
are valid for amuch broader class of signals. This gaveriseto the
mentioned conjecture that the maximum possible location of the
impulse response peak of a stable all-pass filter liesin [0, 2p-1]
where p is the order. The IEEE Signal Processing Magazine
published this “Makhoul Conjecture Challenge”’ in the May 2000
issue. Either a proof or a counter-example was regarded as a
complete solution. The conjecture itself was aso based on
numerical experiments, where orders less than 6 were
investigated extensively. It was highly unlikely that a counter-
example could be found in this region.

Our approach is as follows. We start with some known
results regarding the phase behavior of stable all-pass filters (1)
and derive a new upper bound for the magnitude of impulse
response signals. Based on this, we show that (B) can be replaced
with a better upper bound, namely:

(B’) The maximum possible location of the impulse response
peak of astable all-passfilter ison the order of p,/2p+1.

We present some observations resulting from computer
experiments. Among them we demonstrate that Makhoul’s
conjecture for p>5 is false. We also present construction schemes
for stable all-pass filters that produce peak locations far beyond
the origina 2p bound. All experiments are based on the graphical
language LabVIEW.

There are also interesting algebraic and group theoretical
properties of al-pass filters. These could, at least in principle, be
used to construct new al-pass filters based on given structures.
We finish the paper with open questions and suggestions. The
field of all-pass filters offers many challenges for both
computational and theoretical approaches.

2. PROPERTIESOF ALL-PASSSYSTEMS

A stable system function of the form (see for this and the
following formulas [4])
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where a is a complex number with magnitude less than 1 and
a* the complex conjugate of a, has a frequency response
magnitude that is independent of the underlying frequency.
Figure 1 depicts the phase response, distribution of zeros, and
group delay of afilter composed of 15 such systems. Depending
on the a-value, the peaks of the phase response are more or less
pronounced. The phase response of (5) is
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where a=ré®. The phase response of a second order real al-pass

system with poles at z=re® and z=re!® is
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The group delay of afirst order complex al-pass filter with pole
a z=rd®is:
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The group delay of a p™ order stable all-pass filter is simply the
sum of components presented in (8). In particular, (8) is a
positive function, i.e. the phase response is always negative and
monotone decreasing.
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Figure 1: Group delay , phase response, and distribution of zeros
of atypical rea all-passfilter.

3. A NEW UPPER BOUND FOR THE MAXIMUM
LOCATION OF COMPLEX ALL-PASSFILTERS

In this section we develop a new upper bound for the maximum
location of complex all-pass filters.

Lemma 1: Let f: [0, 2r] -> [0, 21 be a continuous real function
with f(0)=0 and f(2m=2rt Let f furthermore be monotone. The
complex coefficients

Fln] = [cexp(jf ) exp( )

satisfy the inequalities
\h[n]\ < Ltorn=12 ...
n
Proof: All proofs are omitted due to space constraints. Please

contact authors for proofs. A. El-Jaroudi [5] provided us with a
simplified version of our origina proof.

Lemma 1 can be generalized. The proof must be changed only
dlightly.

Lemma 2: Let f: [0, 2r] -> [0, 2mp] be a continuous real function
with f(0)=0 and f(2mp)=2rp where p is a given natura number.
Let f furthermore be monotone. The complex coefficients

2n
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hin] = [ dtexp(jf (1)) exp(jnt)
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satisfy the inequalities |h[n]| < Pron=12 ..
n

3.1 Complex All-pass Filters

The group delay of a first order complex al-pass filter with a
zero at re”" can be computed by gd () = (1- rz)/‘l— reife iof. It

follows that the group delay of a generic complex al-pass filter
of order p is continuous and strictly positive. The phase function
f(w) is a continuous and monotone decreasing function with the
additional properties f(0) = 0 and f(2rp) = 2.

Let h[n] be the impul se response of a complex al-pass filter
of order p. Then:
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According to Lemma 2 it follows that the magnitude of h[n] is
bounded by p/n for all natural numbers n.
The maximal magnitude of the peak of asignal with average

delay p is bounded by the lower limit 1/,/2p+1 (John Makhoul,

Allan O. Steinhardt, 1991, [2]). Let n. dencte this position. We
have
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Theorem 1: The impulse response h[n] of a complex al-pass
filter has its maximum location in theinterval [0, p /2p+1].

4. THE MAKHOUL CONJECTURE

Based on modern programming systems, such as LabVIEW [6],
a systematic investigation of the behavior of real and complex
al-pass filters is possible. It can be verified that Makhoul’s
conjecture regarding the maximum location of real all-passfilters
seemsto betruefor p =1, 2, 3, 4, and 5. We don’t know whether
or not aformal proof of the conjecture for the numbers p = 3, 4,
and 5 is known. The first counter-example we found during
systematic investigations of al stable real all-pass filters had an
order p = 8 and produced a peak at the position 16. Thisvalueis
beyond the conjectured upper bound of 2p-1. Further test runs
showed that even in the case of p = 6 a counter-example can be
generated.

Table 1 gives an overview of observed locations of peaks of
impulse responses. It is not known whether these vaues
represent the maximum peak position of a given order (except



p=1,2). In al cases, test runs on the order of some millions each
were performed.

order | location order location order location
p p p

1 1 8 17 15 33

2 3 9 19 16 36

3 5 10 21 17 39

4 7 11 23 18 43

5 9 12 26 19 45

6 12 13 28

7 14 14 30

Table 1: Observed locations of peaks of real and stable all-pass
filters.

As Figure 2 demonstrates, the distributions of poles of at
least near optimal real and stable all-pass filters seem to prefer
certain patterns. By optimality we imply a filter that tries to
maximize the peak location. The next section further elaborates
this observation.
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Figure 2: Observed peaks for p = 18 and p = 19. The
distributions of the underlying poles suggest the investigation of
certain patterns. See section 5 for more details.

5. MORE SOPHISTICATED COUNTER-
EXAMPLES

The structure of the group delay function according to formula
(8) in combination with (9) and numerical experiments suggest
that more pronounced peak delays can be expected when the
filter-poles are:

)] Always in the immediate neighborhood of the border
of the unit circle (but not too close)
(1) Distributed in a chirp-like pattern

(1 Approaching the border of the unit circle, i.e. at least
some poles are extremely close to the border

The second condition can be understood based on formula
(9). This expression can be regarded as the Fourier transform of
certain functions with a very specific structure. The goa for
successfully generating a quasi-optimal filter isto avoid arapidly
vanishing set of Fourier coefficients. On the other hand,
according to (9) the functions under consideration are smooth.

All these arguments suggest the use of chirp-like distributions,
implying a clustering scheme of the poles according to Figure 3.
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Figure 3: Distribution scheme according to (1)-(111).

Experimental results ([7]) confirm thisidea. Figure 4 gives
an example of a stable and real-valued all-pass filter of order p =
4000, where the location of the peak is far beyond 2p. For this
specific example it is even beyond 5p. In this case, the impulse
responseis clearly divided into arelatively early slowly decaying
answer and a very late second peak followed by some smaller
peaks. The signal decays rapidly after passing the peak. Figure 4
aso magnifiesthe critical region beyond alocation of 20,000 and
depicts the distribution of poles near the point (-1,0). The solid
line represents the unit circle and the dotted lines stand for poles.
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Figure 4: This example breaks the 5p limit ([7]). It is based on
the scheme (1)-(111). The parameters controlling (1)-(111) must be
chosen with care.

We don’'t know whether better strategies can be found. The
same is true for the more general case of complex-valued stable
al-passfilters.

The computation of the power spectrum of the impulse
response according to Figure 4 reveals that the different active
zones (i.e. absolute response values beyond a small number)
represent different spectral regions. This might be a clue on how
to construct even more impressive peak delays.

The behavior of these counter-examples is interesting. A
stable real all-pass filter of order p delays exp-functions no more
than 2p time steps. To a certain extent, an impulse response,
though alinear combination of these exp-functions, behaves very
differently. The nonlinear character of the phase response leads
to distortions and can help in moving the peak farther away.



6. ADDITIONAL ALGEBRAIC AND GROUP
THEORETICAL PROPERTIES

We discuss further results that could be useful to gain a
better understanding of extreme locations of real or complex
stable all-passfilters. (For proofs please contact the authors).

Theorem 2: Let h[0Q], h[1], h[2], ... be the impulse response of a
real stable all-pass filter of order p. Then the following equations
hold true for all natural numbersk= 0, 1, 2, ...

(10) 2h[n]h[n +K] =5,

o

(11) Z nh[n]h[n] = p

where O, =1 if and only if k = 0 and 5, =0 inal the other

Cases.

A similar theorem can be formulated for complex stable al-
pass filters. Makhoul’s and Steinhardt’s results in [2] are based
on Theorem 2 where only k=0 was used, cf. aso (3) and (4). It
might be an advantage to consider the use of Theorem 2 for all
k. See also (c) and (h) in section 7.

A systematic search for extreme peak location behavior of
stable all-pass filters could be based on appropriate combinations
of given all-passfilters. To demonstrate thisidea, let
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be the algebraic representation of two all-pass filters of order 1
each according to (5) where the magnitudes of a and b are less
than 1 and z! is replaced with z It turns out that the
concatenation G4(Gy(2)) has a specific form, namely,

G.(Gy(2) =
—b* +7 a* +b*
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Ignoring the leading phase shift of +a*b the
0L+ ab* [
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group theoretical formula g O b = can be derived, i.e.
l+ab*

G,(G,)=G,, - For all-pass filter orders beyond 1 the

situation is more complicated and the pure group theoretical
background cannot be maintained. It can be shown that the
following theorem holds true.

Theorem 3: Let be given two stable complex all-pass filters
H.(2) and Hx(2) of order p and g, respectively. Then Hy(H,(2) is
a stable complex all-pass filter of order pqg.

There is another more obvious algebraic operation that
produces stable all-pass filters as long as the operands are stable
al-passfilters.

Theorem 4: Let be given two stable complex all-pass filters
H1(2) and Hx(2) of order p and q, respectively. Then Hy(2H,(2) is
a stable complex all-pass filter of order p+q.

It remains to be seen whether the resulting algebraic
structures can be used to construct specific all-pass filters with
large peak delays based on given all-pass filters with the same
behavior.

7. REMARKSAND OPEN QUESTIONS

We simply list here some remarks and open questions that could

be of interest for further investigations.

a Which of the numbers in Table 1 represent the real upper
bounds?

b) Is the situation different when complex filters are
considered? Surprisingly, the new degrees of freedom
offered by complex coefficients in (1) don't seem to
produce much better maximum location values.

¢) The results in [2] are based on some specific algebraic
properties mentioned in section 6. Can one find sharper
bounds when the whole set of agebraic relationships
according to Theorem 2 is used?

d) Are there rea stable all-pass filters generating maximum
peak locations beyond c*p where c is an arbitrary but fixed
natural number? According to the results in section 5 one
can at least choose ¢ = 5. Furthermore, is an expression on
the order of log(p)*p a (sharp) upper bound for this
location?

e) Can one use the spectral decomposition mentioned in
section 5 to generate even more impressive examples?

f)  Are there potential applications for stable implementations
of these extremereal all-pass filters?

g) Rdating to (f), is it possible to use such filters for
information storage purposes?

h) Do the agebraic formulas (10) and (11) characterize the
impul se responses of stable all-pass filters completely?

i) IsMakhoul’s conjecture trueif the peak value of the all-pass
filter is also being minimized ([2])?

Again, the field of all-pass filters offers many challenges for both

computational and theoretical approaches.
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