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ABSTRACT 

 
In [1] the Makhoul Conjecture Challenge was published. To 
answer was the question whether or not the location of the peak 
of a digital stable all-pass filter lies in [0, 2p-1], where p is the 
order of the all-pass filter. In this paper we construct numerous 
counter-examples, prove a new theorem stating that there is at 
least an upper bound on the order of p3/2 for the location of the 
peak, and discuss the algebraic structure of all-pass filters and 
their impulse responses. The paper is heavily based on an 
experimental approach. 
 

1. INTRODUCTION 
 
Let X(z) be a digital all-pass filter of order p with real 
coefficients.  
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The zeros of the polynomial A(z) are strictly inside the unit 

circle, i.e. X(z) is a stable digital filter. Let m be a value for the 
index n for which the impulse response x[n] of X(z) has its 
maximum amplitude. In [1, 2, 3] Makhoul conjectured that 
0<m<2p-1.  
 
(2) For a1 = a2 = … = ap = 0 we have  X(z) = z-p 
 
which results in m=p. This equation can be generalized. To 
understand this, it can be shown that 
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for any all-pass filter (1), where h[n] is the filter’s impulse 
response. Furthermore,  
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Based on (3) and (4) Makhoul and Steinhardt [2] proved that 
 

(A) The minimal absolute value hp of the peak of a stable 
all-pass filter of order p satisfies the inequality 

12/1 +≤ php . 

(B) The maximum possible location of the signal peak is 
on the order of p(p+3)/2. 

 
The proofs deal with the more general case of causal signals 

with given average delay but the results are in particular valid for 

the impulse responses of stable all-pass filters. It was very 
unlikely that impulse responses of stable all-pass filters can even 
come close to these bounds (A) and (B) because these numbers 
are valid for a much broader class of signals. This gave rise to the 
mentioned conjecture that the maximum possible location of the 
impulse response peak of a stable all-pass filter lies in [0, 2p-1] 
where p is the order. The IEEE Signal Processing Magazine 
published this “Makhoul Conjecture Challenge” in the May 2000 
issue. Either a proof or a counter-example was regarded as a 
complete solution. The conjecture itself was also based on 
numerical experiments, where orders less than 6 were 
investigated extensively. It was highly unlikely that a counter-
example could be found in this region. 

Our approach is as follows. We start with some known 
results regarding the phase behavior of stable all-pass filters (1) 
and derive a new upper bound for the magnitude of impulse 
response signals. Based on this, we show that (B) can be replaced 
with a better upper bound, namely: 
 
(B’) The maximum possible location of the impulse response 

peak of a stable all-pass filter is on the order of 12 +pp . 

 
We present some observations resulting from computer 

experiments. Among them we demonstrate that Makhoul’s 
conjecture for p>5 is false. We also present construction schemes 
for stable all-pass filters that produce peak locations far beyond 
the original 2p bound. All experiments are based on the graphical 
language LabVIEW. 

There are also interesting algebraic and group theoretical 
properties of all-pass filters. These could, at least in principle, be 
used to construct new all-pass filters based on given structures. 
We finish the paper with open questions and suggestions. The 
field of all-pass filters offers many challenges for both 
computational and theoretical approaches. 
 

2. PROPERTIES OF ALL-PASS SYSTEMS 
 
A stable system function of the form (see for this and the 
following formulas [4]) 
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where a is a complex number with magnitude less than 1 and 
a*  the complex conjugate of a, has a frequency response 
magnitude that is independent of the underlying frequency. 
Figure 1 depicts the phase response, distribution of zeros, and 
group delay of a filter composed of 15 such systems. Depending 
on the a-value, the peaks of the phase response are more or less 
pronounced. The phase response of (5) is 
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where a=rejω. The phase response of a second order real all-pass 
system with poles at z=rejθ and z=re-jθ is 
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The group delay of a first order complex all-pass filter with pole 
at z=rejθ is: 
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The group delay of a pth order stable all-pass filter is simply the 
sum of components presented in (8). In particular, (8) is a 
positive function, i.e. the phase response is always negative and 
monotone decreasing. 
 

 
 
Figure 1: Group delay , phase response, and distribution of zeros 
of a typical real all-pass filter. 
 
 

3. A NEW UPPER BOUND FOR THE MAXIMUM 
LOCATION OF COMPLEX ALL-PASS FILTERS 

 
In this section we develop a new upper bound for the maximum 
location of complex all-pass filters.  
 
Lemma 1: Let f: [0, 2π] -> [0, 2π] be a continuous real function 
with f(0)=0 and f(2π)=2π. Let f furthermore be monotone. The 
complex coefficients 
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satisfy the inequalities 

n
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1
][ ≤  for n = 1, 2, … 

Proof:  All proofs are omitted due to space constraints. Please 
contact authors for proofs. A. El-Jaroudi [5] provided us with a 
simplified version of our original proof. 

 
 
Lemma 1 can be generalized. The proof must be changed only 
slightly. 
 
Lemma 2: Let f: [0, 2π] -> [0, 2πp] be a continuous real function 
with f(0)=0 and f(2πp)=2πp where p is a given natural number. 
Let f furthermore be monotone. The complex coefficients 
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3.1 Complex All-pass Filters 
 
The group delay of a first order complex all-pass filter with a 
zero at rejτ can be computed by ωτω jj erergd −−−= 1/)1()( 2 . It 

follows that the group delay of a generic complex all-pass filter 
of order p is continuous and strictly positive. The phase function 
f(ω) is a continuous and monotone decreasing function with the 
additional properties f(0) = 0 and f(2πp) = 2πp. 

Let h[n] be the impulse response of a complex all-pass filter 
of order p. Then: 
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According to Lemma 2 it follows that the magnitude of h[n] is 
bounded by p/n for all natural numbers n. 

The maximal magnitude of the peak of a signal with average 
delay p is bounded by the lower limit 12/1 +p  (John Makhoul, 

Allan O. Steinhardt, 1991, [2]). Let nmax denote this position. We 
have 
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Theorem 1: The impulse response h[n] of a complex all-pass 
filter has its maximum location in the interval ]12,0[ +pp . 

 
4. THE MAKHOUL CONJECTURE 

 
Based on modern programming systems, such as LabVIEW [6], 
a systematic investigation of the behavior of real and complex 
all-pass filters is possible. It can be verified that Makhoul’s 
conjecture regarding the maximum location of real all-pass filters 
seems to be true for p = 1, 2, 3, 4, and 5. We don’t know whether 
or not a formal proof of the conjecture for the numbers p = 3, 4, 
and 5 is known. The first counter-example we found during 
systematic investigations of all stable real all-pass filters had an 
order p = 8 and produced a peak at the position 16.  This value is 
beyond the conjectured upper bound of 2p-1. Further test runs 
showed that even in the case of p = 6 a counter-example can be 
generated. 

Table 1 gives an overview of observed locations of peaks of 
impulse responses. It is not known whether these values 
represent the maximum peak position of a given order (except 



p=1,2). In all cases, test runs on the order of some millions each 
were performed. 
 
 
order 
p 

location order 
p 

location order 
p 

location 

1 1 8 17 15 33 
2 3 9 19 16 36 
3 5 10 21 17 39 
4 7 11 23 18 43 
5 9 12 26 19 45 
6 12 13 28   
7 14 14 30   
 
Table 1: Observed locations of peaks of real and stable all-pass 
filters. 
 

As Figure 2 demonstrates, the distributions of poles of at 
least near optimal real and stable all-pass filters seem to prefer 
certain patterns. By optimality we imply a filter that tries to 
maximize the peak location. The next section further elaborates 
this observation. 
 

 
 
Figure 2: Observed peaks for p = 18 and p = 19. The 
distributions of the underlying poles suggest the investigation of 
certain patterns. See section 5 for more details. 
 
 

5. MORE SOPHISTICATED COUNTER-  
        EXAMPLES 

 
The structure of the group delay function according to formula 
(8) in combination with (9) and numerical experiments suggest 
that more pronounced peak delays can be expected when the 
filter-poles are: 
 
(I) Always in the immediate neighborhood of the border 

of the unit circle (but not too close) 
(II) Distributed in a chirp-like pattern 
(III) Approaching the border of the unit circle, i.e. at least 

some poles are extremely close to the border 
 

The second condition can be understood based on formula 
(9). This expression can be regarded as the Fourier transform of 
certain functions with a very specific structure. The goal for 
successfully generating a quasi-optimal filter is to avoid a rapidly 
vanishing set of Fourier coefficients. On the other hand, 
according to (9) the functions under consideration are smooth. 

All these arguments suggest the use of chirp-like distributions, 
implying a clustering scheme of the poles according to Figure 3. 
 

 
 

Figure 3: Distribution scheme according to (I)-(III). 
 

Experimental results ([7]) confirm this idea. Figure 4 gives 
an example of a stable and real-valued all-pass filter of order p = 
4000, where the location of the peak is far beyond 2p.  For this 
specific example it is even beyond 5p. In this case, the impulse 
response is clearly divided into a relatively early slowly decaying 
answer and a very late second peak followed by some smaller 
peaks. The signal decays rapidly after passing the peak. Figure 4 
also magnifies the critical region beyond a location of 20,000 and 
depicts the distribution of poles near the point (-1,0). The solid 
line represents the unit circle and the dotted lines stand for poles.  
 

 
 
Figure 4: This example breaks the 5p limit ([7]). It is based on 
the scheme (I)-(III). The parameters controlling (I)-(III) must be 
chosen with care. 

 
We don’t know whether better strategies can be found. The 

same is true for the more general case of complex-valued stable 
all-pass filters.  

The computation of the power spectrum of the impulse 
response according to Figure 4 reveals that the different active 
zones (i.e. absolute response values beyond a small number) 
represent different spectral regions. This might be a clue on how 
to construct even more impressive peak delays. 

The behavior of these counter-examples is interesting. A 
stable real all-pass filter of order p delays exp-functions no more 
than 2p time steps. To a certain extent, an impulse response, 
though a linear combination of these exp-functions, behaves very 
differently. The nonlinear character of the phase response leads 
to distortions and can help in moving the peak farther away. 
 



6. ADDITIONAL ALGEBRAIC AND GROUP 
THEORETICAL PROPERTIES 

 
We discuss further results that could be useful to gain a 

better understanding of extreme locations of real or complex 
stable all-pass filters. (For proofs please contact the authors).  
 
Theorem 2: Let h[0], h[1], h[2], … be the impulse response of a 
real stable all-pass filter of order p. Then the following equations 
hold true for all natural numbers k = 0, 1, 2, … 
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where 1=kδ  if and only if k = 0 and 0=kδ  in all the other 

cases. 
A similar theorem can be formulated for complex stable all-

pass filters. Makhoul’s and Steinhardt’s results in [2] are based 
on Theorem 2 where only k=0 was used, cf. also (3) and (4). It 
might be an advantage to consider the use of Theorem 2 for all 
k. See also (c) and (h) in section 7. 

A systematic search for extreme peak location behavior of 
stable all-pass filters could be based on appropriate combinations 
of given all-pass filters. To demonstrate this idea, let  
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be the algebraic representation of two all-pass filters of order 1 
each according to (5) where the magnitudes of a and b are less 
than 1 and z-1 is replaced with z. It turns out that the 
concatenation Ga(Gb(z)) has a specific form, namely, 
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Ignoring the leading phase shift of 
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group theoretical formula 
*1 ab
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+
+=⊗  can be derived, i.e. 

baba GGG ⊗=)( . For all-pass filter orders beyond 1 the 

situation is more complicated and the pure group theoretical 
background cannot be maintained. It can be shown that the 
following theorem holds true. 
 
Theorem 3: Let be given two stable complex all-pass filters 
H1(z) and H2(z) of order p and q, respectively. Then H1(H2(z)) is 
a stable complex all-pass filter of order pq. 
 

There is another more obvious algebraic operation that 
produces stable all-pass filters as long as the operands are stable 
all-pass filters.  

 
Theorem 4: Let be given two stable complex all-pass filters 
H1(z) and H2(z) of order p and q, respectively. Then H1(z)H2(z) is 
a stable complex all-pass filter of order p+q. 

It remains to be seen whether the resulting algebraic 
structures can be used to construct specific all-pass filters with 
large peak delays based on given all-pass filters with the same 
behavior.  
 

7. REMARKS AND OPEN QUESTIONS 
We simply list here some remarks and open questions that could 
be of interest for further investigations. 
a) Which of the numbers in Table 1 represent the real upper 

bounds? 
b) Is the situation different when complex filters are 

considered? Surprisingly, the new degrees of freedom 
offered by complex coefficients in (1) don’t seem to 
produce much better maximum location values. 

c) The results in [2] are based on some specific algebraic 
properties mentioned in section 6. Can one find sharper 
bounds when the whole set of algebraic relationships 
according to Theorem 2 is used? 

d) Are there real stable all-pass filters generating maximum 
peak locations beyond c*p where c is an arbitrary but fixed 
natural number? According to the results in section 5 one 
can at least choose c = 5. Furthermore, is an expression on 
the order of log(p)*p a (sharp) upper bound for this 
location? 

e) Can one use the spectral decomposition mentioned in 
section 5 to generate even more impressive examples? 

f) Are there potential applications for stable implementations 
of these extreme real all-pass filters? 

g) Relating to (f), is it possible to use such filters for 
information storage purposes?  

h) Do the algebraic formulas (10) and (11) characterize the 
impulse responses of stable all-pass filters completely? 

i) Is Makhoul’s conjecture true if the peak value of the all-pass 
filter is also being minimized ([2])? 

Again, the field of all-pass filters offers many challenges for both 
computational and theoretical approaches. 
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