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ABSTRACT @)

Some types of medical and topographic imaging device pro-
duce images in which the pixel values are “phase-wrapped”,
i.e, measured modulus a known scal@hase unwrapping

can be viewed as the problem of inferring the number of
shifts between each and every pair of neighboring pixels,
subject to are priori preference for smooth surfaces, and
subject to a zero curl constraint, which requires that the
shifts must sum to 0 around every loop. We formulate phase
unwrapping as a mean field inference problem in a proba-
bility model, where the prior favors the zero curl constraint.
We compare our mean field technique with the least squares
method on a synthetitD0 x 100 image, and give results on

alarger512 x 512 image. )

1. INTRODUCTION

The problem of inferring unwrapped values from phase-
wrapped measurements is a fundamental problem in signal
processing, which seems as though it should be solvable,
and yet which remains unsolved. Phase unwrapping has ap-
plications in a variety of sensory modalities, including mag-
netic resonance imaging [1] (see Fig. 1a) and interferomet-
ric synthetic aperture radar (SAR) [2] (see Fig. 1b).

In many applications, multiple phase-wrapped measure-
ments are available and thereasgriori knowledge about
the probable relationships between the pharserapped val-
ues —eg., they vary smoothly in some topology. (With-
out prior knowledge, the wrapped image itself provides an
error-free guess at the unwrapped image.) Exact inference
in a 2-dimensional topology is generally intractable because Fig. 1. Phase-wrapped images from (a) magnetic resonance
the number of distinct paths connecting two points is at leastimaging data (courtesy of Z.-P. Liang) and (b) synthetic
equal to the width of the image, and all combinations of el- aperture radar data (courtesy of Sandia National Laborato-
evations along these paths should be examined. In fact, ifries, New Mexico). Pixel values close to O are painted white,
phase unwrapping is cast as a “minimiéithnorm problem” whereas pixel values close to 1 (the wrapping wavelength)
in integer programming, it turns out to be NP-hard [3]. are painted black.

Approaches to solving the phase unwrapping problem
include least squares estimates (thesenateMMSE esti-
mates) [4, 2, 5, 1], integer programming methods [6, 3] and neighboring pixels. These integers can be combined with
branch cut techniques [7]. the observations to produce a gradient field, which can then

Inferring the unwrapped values is equivalent to inferring be integrated to reconstruct the unwrappedimage. However,
the relative number of shifts between each and every pair of only a subset of the possible configurations of these shifts
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Fig. 2. Phase measurements in small image patches. From
(a) it appears that a shift occurred between points 1,1 and
2,1. From (b), it appears that a shift probably did not occur
between points 1,1 and 2,1. (c) The phase at 2,2 can be

predicted from the phases at 2,1 and 1,2, plus the shifts a 2 1
and bl,z.

will lead to valid gradient fields. In particular, the sum of

choose a prior for the shifts that favors shifts that satisfy
the zero curl constraint:

p(a,b) o [] expl—(ai; + biji1 — aijir —bij)*/T]
'7j

To incorporate a preference for smooth surfaces, we restrict
the values of the’s andb’s to be in{—1,0, 1}.

The density of the observed phase measurements can be
formulated recursively. As shown in Fig. 2c, the phase at
2,2 can be predicted from the phases at 2,1 and 1,2, plus the
shiftsa,; andb; ». The prediction from 2,1 i85 + as;1,
while the prediction from 1,2 i®$; » + b1 2. The average
prediction is(¢21 + az1 + ¢1,2 + b1,2)/2. Assuming a

the shifts around any loop in the image must be zero. We 5, ,ssian likelihood we obtain the general form
refer to this constraint as theero curl constraint.

We formulate phase unwrapping as a mean field infer- p(dla,b) o 1‘[(6}(13[_((1,1.’j+1 — iy — ai,j)2/202]
ence problem in an relaxed probability model, where the i
prior favors shifts that satisfy the zero curl constraint. We 2 1o 2
relax the prior by introducing a temperature parameters. The ~expl—=(Git1,j — bij — bij)"/20 ])
preference for shifts that satisfy the zero curl constraint is TR, . .
weakened at high temperatures. As the temperature is de- The joint distributionp(a, b, ¢) = p(a, b)p(¢a, b} is
creased to zero (annealing), the model settles to a consistent (4, b, ¢) o H expl—(aij + biji1 — aiji1 — bij)?/T]

configuration of the shifts.

2. RELAXED GRADIENT FIELD MODEL

Let¢; ; € [0,1) be the phase value atj. (We assume that
measurements are takeodulus 1 —i.e,, the wavelength is
1.) Leta;; € 7 be the unknown shift between points/

andi, j + 1. So, the difference in the unwrapped values at

pixelsi,j + 1 andi, j is ¢; j+1 — ¢s; — aq,5. Similarly,
letd; ; € Z be the unknown shift between pointsiaj and
i+1,5.

ivj
: H(eXp[—(dh',jH — ¢ij — aij)°/207]
ivj

.eXp[_(¢i+1,j — i — bi7]~)2/20'2])

2.1. Temperature

The temperaturg&’ allows the prior to be relaxed. F@r —
00, the zero curl constraint is completely relaxed. For»
0, only shifts that satisfy the zero curl constraint have non-

Consider the two patches of image shown in Fig. 2. From vanishing probability.

Fig. 2a, the difference in the unwrapped values,dt and
2,1is 0.8 — 0.2 — a;,;. Assuming the values are more

likely to be closer together than further apart, we decide that Exactinferencedg., computing(

a1 = 1,sothat).8 —0.2 — a4 1 is as close td as possible.

We can make these local decisions for every neighbor-
ing pair of points in a large image, but the resulting set
of shifts will not satisfy the constraint of summing to zero
around every loop. If we make local decisions for the patch

in Flg 2b, then we decide thatm =1, b172 =0, a1 = 0

andb; 1 = 0. The sum of these shifts around a counter-

clockwise loopisiy 1 4+ b1 2 —a2,1 —b1,1 = 1, giving acurl
violation. We can fix this curl violation by changing one or

more of the shifts, at the cost of not keeping the unwrapped

pixel differences as close to zero as possible.
Notice that if the the sum of the shifts around ever?2

loop is zero, then the sum of the shifts around any loop is

zero. So, the x 2 loops provide a sufficient set of con-
straints.

To choose the form of the above cost, we develop a prob-
ability model of the shifts and the observed phases. We

3. MEAN FIELD INFERENCE

a; ;|¢)) inthe above model
is intractable. So, we use a mean field approximation (c.f.
(8]).

We approximate(a, b|¢) with a factorized distribution,

q(a,b) = Hq(ai,j)Q(bi,j)- 1)
i,
We parameterize thg-distribution as follows:
qaij = k) = aijr, qlbij =k)=Bijr, (2

where we requir@k:_1 a;j,x = landsoon. The's and
B’s arevariational parameters (c.f. [8]).

To bringq “close” to p, we would like to minimize the
relative entropy,

b

D= Y alab)log A% 3)
a,b

p(a,blp)’



However, this quantity containga, b|¢) for which we do (@)
not have a simple, closed form expression.

Subtractindog p(¢) (which does not depend on the vari-
ational parameters) from the above relative entropy, we ob-
tain a cost function thatan be easily minimized:

F =D —logp(¢)

_ " q(a, b)
= 2 dleDlos 505

1 1
= Z( > aijrlogaije+ > Bijw logﬂi,j,k)

ij k=—1 k=—1

1
t7 D0 i kBigiriijmBijn(k+l—m—n)?

i,j k,l,m,n

1 .
+ 2}7 Z( Z i gk (Bijr1 — Gij — k)? s o L / .

ij k=—1

(b)

1 - "h.,____‘_
+ > Bigk(irr; — iy — k)2)- 4) ' N 7/
k=—1 H H"‘\..
For the results presented below, we use a conjugate gra- ol "
dient optimizer (including Langrangian constraints to en- -

sure thafy>,_ | e, jx = 1 and so on).

(©
4. RESULTS

We present results on two images. In the first case, we
synthesized the original image (surface), so we know the
“ground truth” and can easily compare our method with the
standard least squares technique [4, 2, 5, 1]. In the second
case, we present results on unwrapping the Sandia image.

4.1. Synthetic data L

Fig. 3a shows the phase-wrapped image produced from our_. :
synthetic data. After minimizindg” using 20 iterations of Fig. 3. () A100 x 100 wrapped image. (b) Unwrapped sur-

conjugate gradients, while annealing the temperature from face produced by our mean field technique. (c) Unwrapped

a high value to a low value, we obtained a set of shift prob- surface produced by the least squares method.

abilities @'s andg’s from above). For each pair of pixels,

we picked the shift that had highest probability. The result- 42 Sandiadata

ing set of shifts satisfied the zero curl constraint. From the

shifts, we obtained a gradient field and integrated it to ob- After minimizing F' using as input thé12 x 512 phase-

tain the surface shown in Fig. 3b. This surface matches thewrapped image from the Sandia National Laboratories, New

original surface perfectly. Mexico (Fig. 1b), we found that there were still some zero
We applied the least squares method to the wrapped datacurl violations. Using the shifts to produce a “gradient field”

in Fig. 3a and obtained the surface shown in Fig. 3b. In produces a “gradient field” that violates the zero curl con-

contrast to our mean field method, the least squares methodstraint. So, we used our method as a preprocessor for the

produces ridge-like artifacts. least squares method, obtaining the surface shown in Fig. 4



Fig. 4. Unwrapped surface produced by our mean field method applied & the 512 Sandia data shown in Fig. 1b.

5. CONCLUSIONS

We introduced a relaxed mean field technique for phase un-
wrapping and we illustrated that it can perform better than

the least squares technique oh0f x 100 image.

From our results on the Sandia data, it appears the mearf4]
field method leave some some of the zero curl constraints
violated. To overcome the ensuing problem of trying to
integrate an invalid gradient field, we used the mean field
technigue as a preprocessor for the least squares method. 5]
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