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ABSTRACT

Some types of medical and topographic imaging device pro-
duce images in which the pixel values are “phase-wrapped”,
i.e., measured modulus a known scalar.Phase unwrapping
can be viewed as the problem of inferring the number of
shifts between each and every pair of neighboring pixels,
subject to ana priori preference for smooth surfaces, and
subject to a zero curl constraint, which requires that the
shifts must sum to 0 around every loop. We formulate phase
unwrapping as a mean field inference problem in a proba-
bility model, where the prior favors the zero curl constraint.
We compare our mean field technique with the least squares
method on a synthetic100� 100 image, and give results on
a larger512� 512 image.

1. INTRODUCTION

The problem of inferring unwrapped values from phase-
wrapped measurements is a fundamental problem in signal
processing, which seems as though it should be solvable,
and yet which remains unsolved. Phase unwrapping has ap-
plications in a variety of sensory modalities, including mag-
netic resonance imaging [1] (see Fig. 1a) and interferomet-
ric synthetic aperture radar (SAR) [2] (see Fig. 1b).

In many applications, multiple phase-wrapped measure-
ments are available and there isa priori knowledge about
the probable relationships between the phase-unwrapped val-
ues –e.g., they vary smoothly in some topology. (With-
out prior knowledge, the wrapped image itself provides an
error-free guess at the unwrapped image.) Exact inference
in a 2-dimensional topology is generally intractable because
the number of distinct paths connecting two points is at least
equal to the width of the image, and all combinations of el-
evations along these paths should be examined. In fact, if
phase unwrapping is cast as a “minimumL0 norm problem”
in integer programming, it turns out to be NP-hard [3].

Approaches to solving the phase unwrapping problem
include least squares estimates (these arenot MMSE esti-
mates) [4, 2, 5, 1], integer programming methods [6, 3] and
branch cut techniques [7].

Inferring the unwrapped values is equivalent to inferring
the relative number of shifts between each and every pair of
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Fig. 1. Phase-wrapped images from (a) magnetic resonance
imaging data (courtesy of Z.-P. Liang) and (b) synthetic
aperture radar data (courtesy of Sandia National Laborato-
ries, New Mexico). Pixel values close to 0 are painted white,
whereas pixel values close to 1 (the wrapping wavelength)
are painted black.

neighboring pixels. These integers can be combined with
the observations to produce a gradient field, which can then
be integrated to reconstruct the unwrapped image. However,
only a subset of the possible configurations of these shifts
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Fig. 2. Phase measurements in small image patches. From
(a) it appears that a shift occurred between points 1; 1 and
2; 1. From (b), it appears that a shift probably did not occur
between points 1; 1 and 2; 1. (c) The phase at 2,2 can be
predicted from the phases at 2,1 and 1,2, plus the shifts a 2;1

and b1;2.

will lead to valid gradient fields. In particular, the sum of
the shifts around any loop in the image must be zero. We
refer to this constraint as thezero curl constraint.

We formulate phase unwrapping as a mean field infer-
ence problem in an relaxed probability model, where the
prior favors shifts that satisfy the zero curl constraint. We
relax the prior by introducing a temperature parameters. The
preference for shifts that satisfy the zero curl constraint is
weakened at high temperatures. As the temperature is de-
creased to zero (annealing), the model settles to a consistent
configuration of the shifts.

2. RELAXED GRADIENT FIELD MODEL

Let �i;j 2 [0; 1) be the phase value ati; j. (We assume that
measurements are takenmodulus 1 – i.e., the wavelength is
1.) Let ai;j 2 I be the unknown shift between pointsi; j
andi; j + 1. So, the difference in the unwrapped values at
pixels i; j + 1 and i; j is �i;j+1 � �i;j � ai;j . Similarly,
let bi;j 2 I be the unknown shift between points ati; j and
i+ 1; j.

Consider the two patches of image shown in Fig. 2. From
Fig. 2a, the difference in the unwrapped values at1; 1 and
2; 1 is 0:8 � 0:2 � a1;1. Assuming the values are more
likely to be closer together than further apart, we decide that
a1;1 = 1, so that0:8�0:2�a1;1 is as close to0 as possible.

We can make these local decisions for every neighbor-
ing pair of points in a large image, but the resulting set
of shifts will not satisfy the constraint of summing to zero
around every loop. If we make local decisions for the patch
in Fig. 2b, then we decide thata1;1 = 1, b1;2 = 0, a2;1 = 0

andb1;1 = 0. The sum of these shifts around a counter-
clockwise loop isa1;1+b1;2�a2;1�b1;1 = 1, giving acurl
violation. We can fix this curl violation by changing one or
more of the shifts, at the cost of not keeping the unwrapped
pixel differences as close to zero as possible.

Notice that if the the sum of the shifts around every2�2

loop is zero, then the sum of the shifts around any loop is
zero. So, the2 � 2 loops provide a sufficient set of con-
straints.

To choose the form of the above cost, we develop a prob-
ability model of the shifts and the observed phases. We

choose a prior for the shifts that favors shifts that satisfy
the zero curl constraint:

p(a; b) /
Y
i;j

exp[�(ai;j + bi;j+1 � ai;j+1 � bi;j)
2=T ]

To incorporate a preference for smooth surfaces, we restrict
the values of thea’s andb’s to be inf�1; 0; 1g.

The density of the observed phase measurements can be
formulated recursively. As shown in Fig. 2c, the phase at
2,2 can be predicted from the phases at 2,1 and 1,2, plus the
shiftsa2;1 andb1;2. The prediction from 2,1 is�2;1 + a2;1,
while the prediction from 1,2 is�1;2 + b1;2. The average
prediction is(�2;1 + a2;1 + �1;2 + b1;2)=2. Assuming a
Gaussian likelihood we obtain the general form

p(�ja; b) /
Y
i;j

�
exp[�(�i;j+1 � �i;j � ai;j)

2=2�2]

� exp[�(�i+1;j � �i;j � bi;j)
2=2�2]

�

The joint distributionp(a; b; �) = p(a; b)p(�ja; b) is

p(a; b; �) /
Y
i;j

exp[�(ai;j + bi;j+1 � ai;j+1 � bi;j)
2=T ]

�

Y
i;j

�
exp[�(�i;j+1 � �i;j � ai;j)

2=2�2]

� exp[�(�i+1;j � �i;j � bi;j)
2=2�2]

�

2.1. Temperature

The temperatureT allows the prior to be relaxed. ForT !

1, the zero curl constraint is completely relaxed. ForT !

0, only shifts that satisfy the zero curl constraint have non-
vanishing probability.

3. MEAN FIELD INFERENCE

Exact inference (e.g., computingp(a i;j j�)) in the above model
is intractable. So, we use a mean field approximation (c.f.
[8]).

We approximatep(a; bj�) with a factorized distribution,

q(a; b) =
Y
i;j

q(ai;j)q(bi;j): (1)

We parameterize theq-distribution as follows:

q(ai;j = k) = �i;j;k; q(bi;j = k) = �i;j;k; (2)

where we require
P1

k=�1 �i;j;k = 1 and so on. The�’s and
�’s arevariational parameters (c.f. [8]).

To bringq “close” to p, we would like to minimize the
relative entropy,

D =
X
a;b

q(a; b) log
q(a; b)

p(a; bj�)
: (3)



However, this quantity containsp(a; bj�) for which we do
not have a simple, closed form expression.

Subtractinglog p(�) (which does not depend on the vari-
ational parameters) from the above relative entropy, we ob-
tain a cost function thatcan be easily minimized:

F = D � log p(�)

=
X
a;b

q(a; b) log
q(a; b)

p(a; b; �)

= : : :

=
X
i;j

� 1X
k=�1

�i;j;k log�i;j;k +

1X
k=�1

�i;j;k log�i;j;k

�

+
1

T

X
i;j

X
k;l;m;n

�i;j;k�i;j+1;l�i+1;j;m�i;j;n(k+l�m�n)2

+
1

2�2

X
i;j

� 1X
k=�1

�i;j;k(�i;j+1 � �i;j � k)2

+

1X
k=�1

�i;j;k(�i+1;j � �i;j � k)2
�
: (4)

For the results presented below, we use a conjugate gra-
dient optimizer (including Langrangian constraints to en-
sure that

P1

k=�1 �i;j;k = 1 and so on).

4. RESULTS

We present results on two images. In the first case, we
synthesized the original image (surface), so we know the
“ground truth” and can easily compare our method with the
standard least squares technique [4, 2, 5, 1]. In the second
case, we present results on unwrapping the Sandia image.

4.1. Synthetic data

Fig. 3a shows the phase-wrapped image produced from our
synthetic data. After minimizingF using 20 iterations of
conjugate gradients, while annealing the temperature from
a high value to a low value, we obtained a set of shift prob-
abilities (�’s and�’s from above). For each pair of pixels,
we picked the shift that had highest probability. The result-
ing set of shifts satisfied the zero curl constraint. From the
shifts, we obtained a gradient field and integrated it to ob-
tain the surface shown in Fig. 3b. This surface matches the
original surface perfectly.

We applied the least squares method to the wrapped data
in Fig. 3a and obtained the surface shown in Fig. 3b. In
contrast to our mean field method, the least squares method
produces ridge-like artifacts.

(a)

(b)

(c)

Fig. 3. (a) A100�100wrapped image. (b) Unwrapped sur-
face produced by our mean field technique. (c) Unwrapped
surface produced by the least squares method.

4.2. Sandia data

After minimizing F using as input the512 � 512 phase-
wrapped image from the Sandia National Laboratories, New
Mexico (Fig. 1b), we found that there were still some zero
curl violations. Using the shifts to produce a “gradient field”
produces a “gradient field” that violates the zero curl con-
straint. So, we used our method as a preprocessor for the
least squares method, obtaining the surface shown in Fig. 4



Fig. 4. Unwrapped surface produced by our mean field method applied to the512� 512 Sandia data shown in Fig. 1b.

5. CONCLUSIONS

We introduced a relaxed mean field technique for phase un-
wrapping and we illustrated that it can perform better than
the least squares technique on a100� 100 image.

From our results on the Sandia data, it appears the mean
field method leave some some of the zero curl constraints
violated. To overcome the ensuing problem of trying to
integrate an invalid gradient field, we used the mean field
technique as a preprocessor for the least squares method.
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