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ABSTRACT

We address the problem of on-line order determination for
communications and show that penalized partial likelihood
criterion provides a suitable likelihood framework for the
problem by allowing correlations among samples and on-
line processing ability. An on-line, efficient order selection
scheme is developed assuming that the observations can be
modeled by a finite normal mixture model without impos-
ing any additional conditions on the unknown system, such
as linearity. Channel equalization by finite normal mixtures
is considered as an example for which correct order deter-
mination is critical and examples are presented to show the
application and effectiveness of the approach.

1. INTRODUCTION

On-line order selection is a difficult and important problem
for real-time applications which has not been well studied.
A truly on-line order estimation scheme which updates the
order estimate as new samples arrive is highly desirable for
real time communications as it can save training time, in-
crease information transmission rate, and reduce the stor-
age requirement and computational cost significantly. Very
few publications in statistical estimation theory has dealt
with this subject. In [4], a sequential Bayes learning and
model selection approach is proposed and applied to radial
basis function (RBF) networks. However, it is computa-
tionally intensive and the performance depends on selection
of diffusion parameters. In [7], a minimal resource alloca-
tion network algorithm is used to grow and prune the RBF
network’s hidden neurons on-line. Again, selection of train-
ing parameters and thresholds is very critical to the perfor-
mance.

Information theoretic criteria determine an optimal mo-
del order for a parameterized model such that a suitable cri-
terion is minimized (or maximized). Use of information the-
oretic criteria [3, 11, 12, 13] for model selection eliminates
the need for subjective judgment on the selection of thresh-
old levels and hence has been very popular. The two most
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widely used information criteria are the Akaike’s informa-
tion criterion (AIC) [3] and the minimum description length
(MDL) [11, 12]. Both criteria can be regarded as penal-
ized maximum likelihood (ML) criteria and assume inde-
pendent and identically distributed (i.i.d.) samples in their
derivations, not a realistic assumption for most practical ap-
plications as correlations among samples typically do exist,
which is also the case in most communications and signal
processing applications. Moreover, on-line implementation
of AIC or MDL is a difficult problem that has not been par-
ticularly addressed.

Partial likelihood (PL) [5, 14] allows for inclusion of
dependent observations and sequential processing in a like-
lihood framework, hence it allows development of order se-
lection schemes for real time signal processing using infor-
mation theoretic criteria. In [10], we derived penalized par-
tial likelihood (PPL) as the information theoretic criterion
for order selection and proposed a sequential order selection
scheme which increases the order estimate gradually. How-
ever, the procedure uses all past data samples to calculate
the maximum PL values, increasing the storage requirement
which is not desirable in real-time implementations. In this
paper, we develop a new formulation of PPL that eliminates
this need and hence is suitable for on-line implementation
and show its successful application.

2. PL FORMULATION FOR FNM MODELS

Given a time series {z,},n =1,2,-- -, and its time-depen-
dent covariates {y,, }, when the objective is to estimate the
distribution of y,, given all the available information upto
time n, we can define 7,1 = o{1,[zn, -, 1], [Yn—1,
--+,¥1]} as the o-field generated by all relevant events upto
time n and choose a suitable probability model with pa-
rameter @ to model the conditional distribution of y,, given
Fn-1, po(¥n|Fn_1). Then by a factorization of the likeli-
hood [14], we can write the PL function relative to 6, F,
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Note that the formulation above does not require the i.i.d.
assumption that is typically invoked to write the likelihood
in the product form. Also, the formulation does not assume
conditioning on future samples which might be required
for some conditional likelihood (CL) formulations again for
characterization in the product form. These two properties
in particular render PL particularly suitable for developing
likelihood approaches for real-time signal processing [1].
However it is important to note that it is a generalization of
ML and might coincide with ML or CL for special cases
[1, 2]. Also, large sample optimality properties of PL such
as consistency and asymptotic normality can be established
under mild regularity conditions for the general case of de-
pendent observations [1], which allows adaptive-structure
and robust classifier designs by using modified likelihood
functions and information-theoretic criteria. Next, we give
the PL formulation for density estimation by the finite nor-
mal mixtures (FNM) model.

Let the d-dimensional observation vector y,, be written

aS ¥Yn = [YnsYn—1,"",Yn—as1]’ where y, is the system
output at time n. For a channel of memory L, we have
Yn = [(Tn,Tn—1,"--,Tn_1) + nn Where f(-) is a linear

or nonlinear mapping and 1, is the additive white system
noise. Obviously the distribution of y,, is only dependent
on X, = [Tn,Tn_1,""*,Tn_L_d+1]7. We can thus write
Do (Yn|Fn-1) = po(¥n|Xs). Then PL function becomes
£5(8) = TTo_, Po(¥n|xn).

When z,, takes a value from a finite alphabet of size M,
we can map x,, to a discrete variable z,, which takes val-
ues {1,---, K} where K = ML+ When 5, is normally
distributed with variance o2, we have

K
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where 0y (z,) = 1 when z,, = k and 0 otherwise, and
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where my, is the noiseless channel observation vector when
zn, = kand || - || denotes the Euclidean distance. This is
a special case of the FNM model with discrete variable z,
in [9] as here we impose the constraint that the mixtures
have a common covariance matrix ¥ = ¢2l, a condition
typically satisfied for the channel equalization example that
we consider.

Maximum PL estimation of the FNM model parameter
vector 8 = [m7,---,m%,02]T is shown to be very effi-
cient, when the FNM model provides a good match to the
data generation mechanism (see e.g. [9]). This is the case
in channel equalization where the distribution of the output
of a multipath channel corrupted by additive noise is a per-
fect match to the FNM model. Correct order determination
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for the FNM model, however, is very important as the effi-
ciency of the algorithm is primarily due to the match of the
model with the inherent structure of the data. This is possi-
ble only if the number of mixtures is correctly determined to
be MT+4 i.e., only if the channel order L is correctly esti-
mated. In the next section, we introduce an on-line channel
order selection procedure that uses penalized partial likeli-
hood as the information theoretic criterion.

3. ON-LINE ORDER SELECTION BY PENALIZED
PARTIAL LIKELIHOOD

We use penalized partial likelihood criterion for order selec-
tion in real-time processing [10]:

PPL(i) = In 22, (6%) — K; 2N

(4)
where 8 is the maximum PL (MPL) estimate of the model
parameter and K; is the number of independently adjusted
parameters for the sth model. The optimal model order is
the one which maximizes the PPL criterion.

In [10], we followed Schwarz’s approach [12] to derive
the PPL criterion, while Rissanen [11] arrived at the same
expression, the MDL criterion, from a totally different view-
point, reformulating the problem as an information coding
problem. The main difference of PPL criterion is that in its
derivation, partial likelihood is used and hence it provides a
more general formulation that allows for dependent obser-
vations.

In this section, we study on-line implementation of or-
der detection using the PPL criterion given in (4). The im-
plementation of equation (4) requires the use of all past data
samples to calculate the maximum PL value, a situation un-
desirable in real-time implementations. Here, we obtain a
new formulation of PPL that eliminates this need. Using
the FNM model given in (2), we write
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Maximizing (5) with respect to 0, i.e., solving the equations
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Expectation-maximization (EM) algorithm [6] and its ex-
tensions have been widely used to compute the maximum
likelihood parameter estimates by first obtaining current pa-
rameter estimates (E-step) and then updating these by gen-
eralized mean ergodic theorems (M-step). Since, we con-
sider supervised learning, o (z,) is known, and hence the
observations can be split into K classes depending on the
value of z,, and the parameters of each class can be esti-
mated separately. For the FNM model given in (2), the MPL
parameter estimates are the corresponding sample mean vec-
tors and a pooled sample covariance that combines the sam-
ple covariances for the K classes, as given in (7).

We can derive an on-line version of the estimates given
in equation (7), by initializing the parameters, i.e., setting
6 = 0 att = 0, and performing the updates:
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where c ) is the counter for class z, = k at time ¢t and is
also mmahzed to 0.

Hence, the updates in (8) satisfy equation (7) for any
N. In on-line implementation, it is desirable to keep the
sample size N as small as possible while making sure that
it is large enough to ensure desirable large sample prop-
erties of MPL estimation. In a practical implementation,
starting with an initially small sample size and letting N in-
crease proportionally with the number of model parameters
can ensure reasonable parameter convergence and system
performance, which has been verified by our simulation re-
sults. We include some of those results in the next section
and discuss the effect of sample size in [10]. For the FNM
model in (2), the number of parameters for channel order

iis K; = d M 4+ 1. Thus the data sample size should
increase exponentially with the order estimate and the prac-
tical rule of having samples 10-20 times the number of free
parameters (K; in this case) provides satisfactory perfor-
mance.

We can write the PPL criterion for on-line estimation
using equations (7) and (5) as follows:
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Using (9), dividing (4) by N, excluding the term constant
with respect to 4, and finally using indexed NV; instead of N
to indicate the fact that the sample size varies with ¢ in our
on-line parameter updates, we obtain the on-line version of
PPL (OPPL) criterion as:

In N,
2N;

d
OPPL(i) = —7 In(210*%) — K; (10)
Note that only the MPL parameter estimates are used
to evaluate equation (10), and the previous samples do not
need to enter the computation. Hence order detection by

OPPL criterion can be implemented on-line.

For on-line implementation, we start with d = 1 for
efficiency as explained in [10] and an initial order estimate,
estimate the MPL parameters on-line, calculate the value
of (10) after the parameters converge and check if (10) is
maximized. If not, increase the order estimate and repeat
the above procedure until the optimal order is found. The
on-line channel order detection scheme we propose can be
summarized as:

1. Initialize L, = 1.

2. Using (8), on-line update the model parameters for
channel order estimate L. (and L. — 1 if this step is
executed the first time).

3. After the parameter estimates converge, calculate OPPL
for L. using (10).

4. 1f OPPL(L,) < OPPL(L, — 1), the channel order is
estimated as L., — 1. Stop.
Else, OPPL(L, — 1) + OPPL(L.), L, «+ L. + 1,
and go to step 2.

4. SIMULATION RESULTS

We studied the properties of the OPPL criterion at different
signal-to-noise ratio (SNR) levels for a number of channels.
The OPPL criterion yielded satisfactory performance on a
variety of channels. OPPL curves for two of these chan-
nels in shown in Figures 1 and 2 where the number of data
samples for order L. is chosen as Ny, = 40 - 2F< 4+ 20
in these cases. We can observe that, for the channel in
Figure 1, the OPPL criterion gives the correct channel or-
der L = 2 at all tested SNR levels. For the channel in
Figure 2, the correct order L = 5 is determined at high



SNRs, and there is slight underestimation at low SNRs. Itis
also worth noting the effect of noise as a function of the
lowest multipath component. When the noise is compa-
rable to the power of the lowest multipath component, ig-
noring this component does not significantly degrade the
BER performance, as expected. We also tested the on-
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line order selection introduced for nonlinear channels as
well as channels that are minimum phase and non-minimum
phase. The correct channel order is obtained for most chan-
nels. For example, at all SNR levels, our scheme gives
L, = 1 for the linear channel y,, = x,, + 0.52,—1 + 7
within 100 samples, L. = 2 for the nonlinear channel y,, =
Ynl — 0-23/7%1 + 1, Where y,; = x,, + 0.5z, 1 + 0.32,,_2,
within 300 samples, and L, = 2 for the non-minimum
phase nonlinear channel y, = yn — 0.2y2;, + 1, where
yn = 0.3482z,, + 0.87042,,_1 + 0.3482x,,_», within 300
samples. For a channel with longer memory y,, = z,, +
0.52p,-1+0.4xp_2+0.3z,-3+0.22,_4 +0.12_5 + 1y,
our scheme gives L, = 5 within 3100 samples when SNR
is greater than or equal to 10 dB, and L. = 4 within 1500

samples when SNR is less than 10 dB. The number of sam-
ples used is increase exponentially with the channel order L
as discussed in the previous section.

Another point to note is that with the increase of the sys-
tem memory L, the complexity of the FNM model and the
number of required samples increase substantially, and the
use of a posterior type modeling using logistic regression
type models [1, 2] can be more attractive for these cases.
An efficient subspace approach for estimation of effective
channel order is given in [8] and is noted to be more robust
to variations in SNR and number of data samples compared
to the information theoretic criteria. The inherent assump-
tion in the subspace decomposition approach is the linear-
ity of the channel which is relaxed in the application of the
FNM equalizer we introduced. The tradeoffs involved be-
tween these two approaches needs further study.
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