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ABSTRACT hexagonal matching procedure where the motion vector at a node-
. ) ) point is estimated by iterative local minimization of the prediction
_ Two-dimensional mesh-based models provide a good altema-grror. Tokluet al. [5] extended this method by employing a hier-
tive to motion estimation and compensation. The estimation of grchy of regular meshes such that motion estimation with a coarse
the best motion vectors at the node-point motion vectors is a chal-mesh provide initialization for the next (finer) level of the mesh.
lenging task. To this effect, Nakaya al. proposed a hexagonal  owever, both Nakaya and Toklu utilized regular meshes. Reg-
matching procedure. Toklet al. improved the hexagonal search j3r meshes are obtained by dividing the image area into equal
algorithm in terms of both motion estimation accuracy and compu- gjze triangular or rectangular elements, hence they may not have
tational complexity by employing a hierarchy of regular meshes. ihe gapjlity to reflect the scene content, a single mesh element
Recognizing ’the limitations of regular meshes, Van Betek. ex- may contain multiple motions. As a result, hierarchical quad-tree
tended Toklu's work by utilizing content-based meshes. Here, we meghes are proposed, in which patches that yield high motion-
provide an alternative hlerarchlcgl motlt_)n estimation m_ethod with compensation error are successively subdivided. A more funda-
content-baged meshes where hlerarchl_cal representatl_ons are eMsental approach to overcome the problem of mesh elements with
ployed for images as well as meshes in order to prowde_furtherrnore than one motion is to employ a content-based mesh, which
improvements in computational complexity as well as motion ac- jg ot jimited to a pseudo-regular hierarchical structure. Content-
curacy. based meshes aim to match boundaries of patches with important
scene features [3, 4]. In [4], Altunbasakal. proposed a com-
1. INTRODUCTION putationally efficient algorithm for content-based 2-D triangular
mesh design. Van Beedt al. [6] extended Toklu’'s work by em-
Two-dimensional (2-D) dense motion estimation methods can bePloying coarse-to-fine content-based meshes in motion estimation.
classified as block-based, optical-flow equation based, pel-recursivBUt, although both Toklu's and Van Beek’s work employ coarse-
and Bayesian methods [1]. Although, block-based dense motionto-fine meshes, the image/frame size is kept the saeagumber
Compensation y|e|ds h|gh peak Signa|_to_noise ratio (PSNR)‘ theof nodes at each level of the mesh hlerarchy Changes while all
corresponding dense motion field usually contains several outliersmeshes aretill laid on theoriginal image since no hierarchical
(because of the aperture problem and lack of overall smoothneséMage representation is employed. Here, we provide an alternative
dense motion fields, but they do not always perform well in terms that is superior to aforementioned method in terms of both perfor-
of PSNR. Joint Bayesian motion estimation and segmentation methhance and complexity. A comparison among various 2-D mesh
ods have the ab|||ty to provide both piece_wise smooth motion based motion estimation methOdS IS Summanzed n Table 1.

fields and exce”enF PSNR performance' HOWeVer, they are gen| Method [ MotionEst. | Mesh-Type [ Mesh Hierarchy T Image Size/Hierarchy |

erally time-consuming and parameter-dependent. Nakayadt . [2] Search Regular None WA
Two-dimensional mesh-based models provide a good alterna{ s s ar T Coseriom | Conontbassd | None R

I 1 1 H H Tokluet al. [5 S h R [ C -to-fi Constant si:

tive to motion estimation and compensation as reported by severalgrE 8 m— < Contenthased| Coarse-tofine | Constantaize

researchers [2l 3’ 4] They are S|mp|e enough for fast |mp|emen- Proposed Search Content-based | Hierarchical Var. size/Gaus. Pyr.

tations (especially with the help of graphics cards), but powerful ) ) ) ]

enough for describing the motion content accurately. Table 1. Comparison of various 2-D mesh-based motion estima-

In 2-D mesh-based methods, motion-compensation within eactiion algorithms.

mesh element (patch) is accomplished by a spatial transforma-

tion (affine, bilinear, etc.) whose parameters can be computed ~ Section 2 describes the hierarchical method proposed by [6]
from node-point motion vectors. Estimation of motion vectors While the proposed method are described in section 3. Section
around each node independentég(, by block-matching or de- 4 describes the coarse-to-fine and fine-to-coarse mesh generation
formable block matching) is usually not desirable because: i) mo- algorithms employed in the two implementations of the proposed
tion vectors do not represent the entire 2-D dense motion field, method, respectively. The results are discussed in section 5.

and ii) motion vectors may cross each other (especially around

small patches) destroying the connectivity of the mesh. Hence, 2. BACKGROUND

search-based solutions to node-point motion estimation with trian-

gular and/or quadrilateral meshes and spatial transformations hav@he hierarchical content-based motion estimation method proposed
been proposed [2, 3]. In particular, Nakasteal. [2] proposed a by Van Beeket al. [6] is especially relevant within the context of



this paper, hence, it will be briefly described. This method in- 2. Design amesh, M;, for the coarse imagd;.
herits its hierarchical nature from the process of generating a fine
mesh from a coarse mesh. The fine mesh represents the scene
motion more accurately since new nodes are introduced. Thisis 4. Generate afine meshio, by refining M using the coarse-
illustrated in Figure 1 where the mesh on the léff;,,, repre- to-fine mesh generation algorithm.

sents the coarse mesh, while the one on the rightdenotes the

fine mesh. InM; 4, there are nine node-points labeledras..ng A . ; .
that are retained i/; with more node-points introduced by the needs to be initialized by the node-point motion vectors estimated
at level 1. Assume that we are interested in finding the motion

mesh refinement algorithm. These new node-points are shown in ¢ d . ith di in I.. Thi b
a gray-color dots whereas the new edges appear as dash lines. THECLOrs for a node-point with coor inatésy) in Io. This can be

motion vectors calculated by the generalized polygonal search pro-aCh'eVEd as follows:

cedure [2] at the node-points of the coarse mesh, are used in 1. Find the corresponding coordinates of the node-poiit,in
initializing newly added node-points in the fine megh. In the which are equal t¢Z, ).
rest of the paper, this method is referred to as method-I. 202

3. Compute the motion vectors at the node-pointa/in

After this step, the motion vectors for the node-pointsiin

2. Locate the patch®;, in I, where the point$, %) lies in.

3. Calculate the affine parameters (#Br) from the motion
vectors of the vertices of the patéh.

no n

nz ns.

4. Compute the motion vector for the poif§, ¥) from the
affine parameters estimated in step 3. To calculate the mo-
tion vector for the node-poir(tr, y) in M, scale the com-
puted motion vectors by a factor 2fto compensate for the
downsampling effect.
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Fig. 1. Generating a fine 2-D mesh from a coarse mesh while the
image is kept spatially at the same size.

3. METHODOLOGY

Although the above method outperforms the single-level tracking
in terms of motion vector accuracy and computational complex- " o o vnz
ity, it still incurs high computational load. To further reduce the J.mr{‘.'é}°
computation time, the proposed method constructs a hierarchi- o 'QM/
cal/pyramid representation for both the images and the correspond- “"’\%’

ing meshes. Accordingly, the image at each level will be a blurred n @ o—n

and downsampled version of the image in the previous level. Simi-

larly, the 2-D mesh at each level will be a coarse version of the oneFig. 2. lllustration of the implementation-I for a 2-level hierarchy.
in the previous level. As a result, the computation time is signifi-

cantly reduced since the patches and the search ranges are small in

size at the coarsest level of the pyramid. Another advantage raises )

from the fact that motion estimation algorithms are less prone to 3-2 |mplementation I1

be trapped at the local minima when applied to coarse images.  \ypjje the first implementation designs the 2-D mesh at the coars-
In this paper, two different implementations of this method are gt jeyel, this implementation designs the mesh at the finest level.
proposed. They differ in the level of hierarchy at which the meshiis gjnijar to the first implementation, the tracking algorithm still is

designed as well as the method of constructing mesh levels. Thes%pplied on the coarsest level. However. while a coarse-taiisa
two implementations are discussed in the following two Subsec- generation algorithm is needed for the first implementation, here a
tions, respectively. fine-to-coarsenesh reduction algorithm is employed.

) The process of getting a coarse mesh from a fine one is mod-
3.1. Implementation | ified from progressive-mesh methods, which are commonly em-

As mentioned earlier, the proposed method constructs a hierarchiployed in 3-D computer graphics [7]. This technique will be dis-

cal representation for both the image and the 2-D mesh. This iscussed in details in section 4.2. Figure 3 illustrates this implemen-
valid in both implementations. However, in the first implementa- tﬁit'soir:nfol;;:E;:gﬁ ?Sx:;nfrgﬁoﬁggvel hierarchy. The outline of
tion, the 2-D mesh is designed at the coarsest level. Then, the 2-DI P :

mesh in the next finer level is constructed from the coarser mesh 1. Generate a coarse imade, by blurring and downsampling

Image Downsampling by 2
JWBUBUIRY U

by a coarse-to-fine mesh generation algorithm that is described in the original image/o.
section 4.1. . L

Figure 2 illustrates this implementation for a specific example 2. Designa 2-D mesn, My, for the original image/o.
of two-level hierarchy for simplicity, though it can easily be gener- 3. Construct a coarse mesh M; from Mo by applying the fine-
alized for any number of levels. An outline of this implementation to-coarse mesh reduction algorithm. This is indicated by
is as follows: the right-hand arrow that heads up the hierarchy in Figure 3,

while in the firstimplementation this arrow heads down the

1. Generate a coarse imade, by blurring and downsampling hierarchy as in Figure 2.

the original image/o.



(a) Compute a cost functiafi(z, y) associated with each
unmarked pixel as a predefined function of spatio-
temporal intensity gradients [4]. The cost function
includes terms that are functions of both spatial and
temporal intensity gradients so that selected node points,
hence the boundaries of the patches, coincide with
spatial edges and motion edges.

ns T (b) Find the unmarked pixel with the highe€t(z,y)
which is not closer to any other previously selected
node point than a prespecified distance. Label this
point as a node point.

(c) Grow aregion about this node point udfil DF D(x, y)
in this region is greater thabF' D,.4[l]. Label all
pixels within this region as “marked.”
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Fig. 3. lllustration of the implementation-II for a 2-level hierarchy.

4. MESH CONSTRUCTION

As mentioned earlier, the two implementations of the proposed

method differ in the level of hierarchy at which the mesh is de-

signed as well as the method of constructing mesh levels. While

the first implementation employs a mesh refining algorithm, the

second one uses a fine-to-coarse mesh generation algorithm. These 7. Given the selected node points at the ldyedpply a tri-

two algorithms are described in this section. angulation procedure (e.g., Delauney triangulation [8]) to
obtain a content-based mesh.

(d) Go to 6(c) until a desired number of node points,
K]l], are selected.

4.1. Coarse-to-fine mesh construction
8. Decreaséby 1. Unlesd < 0 go to step 2.

Here, we modify the 2-D content-based triangular mesh design
previously proposed by Altunbasakal. [4]. The algorithm re- 4.2 Fine-to-coar se mesh construction
tains the selected node points from the coarser mesh level, and fur-
ther selects non-uniformly spaced node-points at each level. Thelhe fine mesh construction algorithm used in the second imple-
procedure also aims to partition the image into triangles in such mentation depends on two related operations: node-split and edge-
a way that a predefined function of the displaced frame difference collapse, which are shown in Figure 4. These two operations are
(DFD) within each patch attains approximately the same value. An the 2-D mesh equivalent operations to the 3-D mesh ones, which
outline of the algorithm is as follows: are called: vertex-split and edge collapse, respectively. Practically,
a series of node-split operations will produce a fine mesh from a
1. Generate ail, level Gaussian image pyramid by blurring coarse one while a series of edge-collapse operations will result in
and down-sampling the original image pair. Let 0 ... L— a coarse mesh from a fine mesh. The following algorithm outlines
1 denote levels of the hierarchy, where- 0 represents the  the main steps in constructing levels of coarse meshes from a fine
original images. Sdt= L — 1. one.

1. Start with a fine mesh/,.

2. Apply the edge-collapse transformyol;(ns, n:), on the
edge connecting the nodes andn., wheren, andn; are
internal nodes of the mesh. A node is internal if it does not
lie on the frame/image edges. The indei ecol; indi-
cates the level at which this edge-collapse command is tak-
ing place. Such collapse results in vanishing the adjacent
patches (faces)ns, nt, n; } and{n¢, ns, n, }.

3. The choice of the edge as well as the new location of the
new node, with connectivitys and A scalar attributes, de-
(1) pends on minimizing the following energy function:

2. Label all pixels as “unmarked.”

3. Scale the locations of all node-points selected at the level
[ + 1 by a factor of 2. Include these points in the list of
selected node points at the level

4. Compute the average displaced frame differdBé&D, . [{]
given by

DF Dy, l] = X gf;]D(ff,y)

. i . . Ex = ml}} Edist(N) + Espring (N) + Escalar(N; A)
where the summation is over all the image pixels at the level N,

I, andK[l] is the number of node points at that level. where, E,;s; measures the total distance of all the new

points from the mesh¥;,.in4 is used to regularize this op-

5. Grow aregion about all selected node points QntiD F'D(z, y)
in this region is greater thaD F'D,.4[l]. Label all pixels
within this region as “marked.”

6. If the number of retained nodes (from the coarser level of
the hierarchy) is less thai[l], then select more node-
points as follows:

timization problem and@;cqiq- (N, A) measures the accu-
racy of the scalar attributes such as intendity..... (IV, A)
calculates the cost in terms of attributes of the new vertices
(intensity and motion vector). This energy function is min-
imized over all edges and the edge with the minimim

is collapsed at thigcol; transform. The reader is referred
to [7] for more information on this energy function mini-
mization for 3-D meshes.



4. If thetotal number of nodes > number of external nodesin

M;, then repeat step for another set of nodes. Otherwise,
stop the algorithm and the resulting mesh is the coarsest

mesh.

Fig. 4. Constructing fine meshes from a given coarse mesh and
visaversa

5. COMPARISON AND RESULTS

We have designed experiments to compare the proposed method
(method 11) with the algorithm in [6] (method 1) with the video
sequence " Flower& Garden”. The results are documented in Ta-
ble 2. The parameters used in these experiments are also tabulated
in the same table. The number of nodes at each level of hierarchy
is provided in the fifth column where the first number in the array
represents the number of nodes at the finest level while the last
number in the array represents the number of nodes at the coars-
est level. The number of nodes at each level is kept the same for
both methods. The search size in method | is increased by a fac-
tor of 2 in both horizontal and vertical directions at each level of
the hierarchy since it does not utilize an image pyramid represen-
tation. Without increasing the search size, method | would be at a
disadvantage. The PSNR of the motion compensated frame differ-
enceis calculated and tabulated in the second column for apair of
frames in each sequence. The PSNR before motion compensation
is11.31. The execution time is given in the third column. No ef-
fort has been directed to optimize algorithms in terms of execution
Speed.

The theoretical computational complexity for both methodsis
givenin Table 3, where NV by IV isthe original image size, P isthe
number of nodes at the finest level, R by R is the search range at
thefinest mesh level, I isthe number of iterations at the hexagonal
matching procedure, S is the search step size at the finest mesh
level, and L is the number of levels. This table provides approxi-
mate number of addition operations involved in the motion estima-
tion stage. Since the affine warping operations along a horizontal
line can be computed using additions, the multiplication operations
is negligible. In the calculation for Method-I, the search range R
is assumed to be increased at each level by a factor of 2. Simi-
larly, the step size S is increased by the same ratio. The number
of nodes P is reduced by 4 at each level for both methods. This
table assumes a regular mesh as opposed to content-based mesh
to make the calculations tractable. From the results in Table ??
and the comparisons in Table 3, we can claim that the proposed
method performs equally or dightly better in terms of PSNR and
runs significantly faster. The latter isadirect consequence of pyra-
mid image representation.

In conclusion, the theoretical discussion as well as the exper-
imental results show that the proposed method has three main ad-
vantages as compared to method |. These advantages are valid
in both implementations. First, the pyramid/hierarchical image
representation will reduce the computational complexity consid-
erably. Node-point motion estimation computational complexity
is mainly a function of the number of nodes, patch sizes and the

Method PSNR

Time H of B of Search Step

insec Lev. Nodes Size Size
[T [ 1423 | 4516 | 3 [ [100,16,1] 1248 [ 105,15 40] ]
[ [ 1435 | 351 | 3 | [100,16,1] 1222 [ 105,075, 1.0] |
[T [ 1434 [ 157756 | 3 [ [100,161] [ T4.8,16] [ 105,15 40] ]
[ [ 1596 | 12581 | 3 | [100,16,1] [ 1234 | 105,075, 1.0] |
[ [ 1294 | 5/84 | 5 [ [100,64,3616,1 | [24.8,16.32 | [05 15 40,100,240 |
[ | 1696 | 3613 | 5 | [100,64,36,16,1 | [22222 [ [05,0.75, 1.0, 1.25, 18] |
[ [ 1472 | 19620 | 5 [ [100,64,36 16,1 | [4.8,16,32,64] | [05 15 40,100,240 |
[ | 1719 | 12752 | 5 | [100,64,36,16,1] | [4.4.4.4,4] [ [05,0.75, 1.0, 1.25, 18] |

Table 2. Experimental results for the sequence “Flower& Garden”
(352 240).

search range. Second, since the image is blurred and downsam-
pled at higher levels, the proposed method is likely to lock onto
more global motions at these levels, rather than being trapped by
local motions. Thisis reflected in the experimental resultsin Te-
ble 2 where increasing the number of level from three to five in-
creases the PSNR. Third, hierarchical image representation uti-
lized in method Il will decrease the execution time for content-
based mesh design/modification process at higher levels, which is
obvious from the results stated in the third column of Table 2.

N. of additions

L—1 . 5
Method | 126 IN?E- 1

= 2 R? 1
Method 11 l;) IN“ Sz 51

Table 3. Theoretical comparison resullts.
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