
2-D MOTION ESTIMATION WITH HIERARCHICAL CONTENT-BASED MESHES

Ghassan Al-Regib and Yucel Altunbasak

Center for Signal and Image Processing
Georgia Institute of Technology

Atlanta, GA 30332-0250

ABSTRACT

Two-dimensional mesh-based models provide a good alterna-
tive to motion estimation and compensation. The estimation of
the best motion vectors at the node-point motion vectors is a chal-
lenging task. To this effect, Nakayaet al. proposed a hexagonal
matching procedure. Tokluet al. improved the hexagonal search
algorithm in terms of both motion estimation accuracy and compu-
tational complexity by employing a hierarchy of regular meshes.
Recognizing the limitations of regular meshes, Van Beeket al. ex-
tended Toklu’s work by utilizing content-based meshes. Here, we
provide an alternative hierarchical motion estimation method with
content-based meshes where hierarchical representations are em-
ployed for images as well as meshes in order to provide further
improvements in computational complexity as well as motion ac-
curacy.

1. INTRODUCTION

Two-dimensional (2-D) dense motion estimation methods can be
classified as block-based, optical-flow equation based, pel-recursive,
and Bayesian methods [1]. Although, block-based dense motion
compensation yields high peak signal-to-noise ratio (PSNR), the
corresponding dense motion field usually contains several outliers
(because of the aperture problem and lack of overall smoothness
constraints). Optical-flow equation based methods yield smoother
dense motion fields, but they do not always perform well in terms
of PSNR. Joint Bayesian motion estimation and segmentation meth-
ods have the ability to provide both piece-wise smooth motion
fields and excellent PSNR performance. However, they are gen-
erally time-consuming and parameter-dependent.

Two-dimensional mesh-based models provide a good alterna-
tive to motion estimation and compensation as reported by several
researchers [2, 3, 4]. They are simple enough for fast implemen-
tations (especially with the help of graphics cards), but powerful
enough for describing the motion content accurately.

In 2-D mesh-based methods, motion-compensation within each
mesh element (patch) is accomplished by a spatial transforma-
tion (affine, bilinear, etc.) whose parameters can be computed
from node-point motion vectors. Estimation of motion vectors
around each node independently (e.g., by block-matching or de-
formable block matching) is usually not desirable because: i) mo-
tion vectors do not represent the entire 2-D dense motion field,
and ii) motion vectors may cross each other (especially around
small patches) destroying the connectivity of the mesh. Hence,
search-based solutions to node-point motion estimation with trian-
gular and/or quadrilateral meshes and spatial transformations have
been proposed [2, 3]. In particular, Nakayaet al. [2] proposed a

hexagonal matching procedure where the motion vector at a node-
point is estimated by iterative local minimization of the prediction
error. Tokluet al. [5] extended this method by employing a hier-
archy of regular meshes such that motion estimation with a coarse
mesh provide initialization for the next (finer) level of the mesh.
However, both Nakaya and Toklu utilized regular meshes. Reg-
ular meshes are obtained by dividing the image area into equal
size triangular or rectangular elements, hence they may not have
the ability to reflect the scene content;i.e., a single mesh element
may contain multiple motions. As a result, hierarchical quad-tree
meshes are proposed, in which patches that yield high motion-
compensation error are successively subdivided. A more funda-
mental approach to overcome the problem of mesh elements with
more than one motion is to employ a content-based mesh, which
is not limited to a pseudo-regular hierarchical structure. Content-
based meshes aim to match boundaries of patches with important
scene features [3, 4]. In [4], Altunbasaket al. proposed a com-
putationally efficient algorithm for content-based 2-D triangular
mesh design. Van Beeket al. [6] extended Toklu’s work by em-
ploying coarse-to-fine content-based meshes in motion estimation.
But, although both Toklu’s and Van Beek’s work employ coarse-
to-fine meshes, the image/frame size is kept the same,i.e., number
of nodes at each level of the mesh hierarchy changes while all
meshes arestill laid on theoriginal image since no hierarchical
image representation is employed. Here, we provide an alternative
hierarchical motion estimation method with content-based meshes
that is superior to aforementioned method in terms of both perfor-
mance and complexity. A comparison among various 2-D mesh
based motion estimation methods is summarized in Table 1.

Method Motion Est. Mesh-Type Mesh Hierarchy Image Size/Hierarchy

Nakayaet al. [2] Search Regular None N/A
Wanget al. [3] Optimization Content-based None N/A
Altunbasaket al. [4] Closed-form Content-based None N/A
Toklu et al. [5] Search Regular Coarse-to-fine Constant size
Van Beeket al. [6] Search Content-based Coarse-to-fine Constant size
Proposed Search Content-based Hierarchical Var. size/Gaus. Pyr.

Table 1. Comparison of various 2-D mesh-based motion estima-
tion algorithms.

Section 2 describes the hierarchical method proposed by [6]
while the proposed method are described in section 3. Section
4 describes the coarse-to-fine and fine-to-coarse mesh generation
algorithms employed in the two implementations of the proposed
method, respectively. The results are discussed in section 5.

2. BACKGROUND

The hierarchical content-based motion estimation method proposed
by Van Beeket al. [6] is especially relevant within the context of



this paper, hence, it will be briefly described. This method in-
herits its hierarchical nature from the process of generating a fine
mesh from a coarse mesh. The fine mesh represents the scene
motion more accurately since new nodes are introduced. This is
illustrated in Figure 1 where the mesh on the left,Ml+1, repre-
sents the coarse mesh, while the one on the right,Ml, denotes the
fine mesh. InMl+1 there are nine node-points labeled asn0:::n8
that are retained inMl with more node-points introduced by the
mesh refinement algorithm. These new node-points are shown in
a gray-color dots whereas the new edges appear as dash lines. The
motion vectors calculated by the generalized polygonal search pro-
cedure [2] at the node-points of the coarse meshMl+1 are used in
initializing newly added node-points in the fine meshMl. In the
rest of the paper, this method is referred to as method-I.

n0 n1 n2

n3

n4

n5

n6 n7 n8

n0 n1 n2

n3

n4

n5

n6 n7 n8

n

n
n

nnn

Fig. 1. Generating a fine 2-D mesh from a coarse mesh while the
image is kept spatially at the same size.

3. METHODOLOGY

Although the above method outperforms the single-level tracking
in terms of motion vector accuracy and computational complex-
ity, it still incurs high computational load. To further reduce the
computation time, the proposed method constructs a hierarchi-
cal/pyramid representation for both the images and the correspond-
ing meshes. Accordingly, the image at each level will be a blurred
and downsampled version of the image in the previous level. Simi-
larly, the 2-D mesh at each level will be a coarse version of the one
in the previous level. As a result, the computation time is signifi-
cantly reduced since the patches and the search ranges are small in
size at the coarsest level of the pyramid. Another advantage raises
from the fact that motion estimation algorithms are less prone to
be trapped at the local minima when applied to coarse images.

In this paper, two different implementations of this method are
proposed. They differ in the level of hierarchy at which the mesh is
designed as well as the method of constructing mesh levels. These
two implementations are discussed in the following two subsec-
tions, respectively.

3.1. Implementation I

As mentioned earlier, the proposed method constructs a hierarchi-
cal representation for both the image and the 2-D mesh. This is
valid in both implementations. However, in the first implementa-
tion, the 2-D mesh is designed at the coarsest level. Then, the 2-D
mesh in the next finer level is constructed from the coarser mesh
by a coarse-to-fine mesh generation algorithm that is described in
section 4.1.

Figure 2 illustrates this implementation for a specific example
of two-level hierarchy for simplicity, though it can easily be gener-
alized for any number of levels. An outline of this implementation
is as follows:

1. Generate a coarse image,I1, by blurring and downsampling
the original image,I0.

2. Design a mesh, M1, for the coarse image,I1.

3. Compute the motion vectors at the node-points inM1.

4. Generate a fine mesh,M0, by refining M1 using the coarse-
to-fine mesh generation algorithm.

After this step, the motion vectors for the node-points inM0

needs to be initialized by the node-point motion vectors estimated
at level1. Assume that we are interested in finding the motion
vectors for a node-point with coordinates(x,y) in I0. This can be
achieved as follows:

1. Find the corresponding coordinates of the node-point inI1,
which are equal to(x

2
; y
2
).

2. Locate the patch,Pi, in I1 where the point(x
2
; y
2
) lies in.

3. Calculate the affine parameters (forPi ) from the motion
vectors of the vertices of the patchPi.

4. Compute the motion vector for the point(x
2
; y
2
) from the

affine parameters estimated in step 3. To calculate the mo-
tion vector for the node-point(x; y) in M0, scale the com-
puted motion vectors by a factor of2 to compensate for the
downsampling effect.

n0 n1 n2

n3 n4

n5 n6 n7

n0 n1 n2

n3 n4

n5
n6

n7

Im
ag

e
D

ow
ns

am
pl

in
g

by
2

M
esh

R
efinem

ent

Fig. 2. Illustration of the implementation-I for a 2-level hierarchy.

3.2. Implementation II

While the first implementation designs the 2-D mesh at the coars-
est level, this implementation designs the mesh at the finest level.
Similar to the first implementation, the tracking algorithm still is
applied on the coarsest level. However, while a coarse-to-finemesh
generation algorithm is needed for the first implementation, here a
fine-to-coarsemesh reduction algorithm is employed.

The process of getting a coarse mesh from a fine one is mod-
ified from progressive-mesh methods, which are commonly em-
ployed in 3-D computer graphics [7]. This technique will be dis-
cussed in details in section 4.2. Figure 3 illustrates this implemen-
tation for a specific example of2-level hierarchy. The outline of
this implementation is as follows:

1. Generate a coarse image,I1, by blurring and downsampling
the original image,I0.

2. Design a 2-D mesh, M0, for the original image,I0.

3. Construct a coarse meshM1 fromM0 by applying the fine-
to-coarse mesh reduction algorithm. This is indicated by
the right-hand arrow that heads up the hierarchy in Figure 3,
while in the first implementation this arrow heads down the
hierarchy as in Figure 2.



n0 n1 n2

n3 n4

n5 n6 n7

n0 n1 n2

n3 n4

n5
n6

n7

Im
ag

e
D

ow
ns

am
pl

in
g

by
2

F
ine-to-C

oarse
m

esh
C

onversion

Fig. 3. Illustration of the implementation-II for a 2-level hierarchy.

4. MESH CONSTRUCTION

As mentioned earlier, the two implementations of the proposed
method differ in the level of hierarchy at which the mesh is de-
signed as well as the method of constructing mesh levels. While
the first implementation employs a mesh refining algorithm, the
second one uses a fine-to-coarse mesh generation algorithm. These
two algorithms are described in this section.

4.1. Coarse-to-fine mesh construction

Here, we modify the 2-D content-based triangular mesh design
previously proposed by Altunbasaket al. [4]. The algorithm re-
tains the selected node points from the coarser mesh level, and fur-
ther selects non-uniformly spaced node-points at each level. The
procedure also aims to partition the image into triangles in such
a way that a predefined function of the displaced frame difference
(DFD) within each patch attains approximately the same value. An
outline of the algorithm is as follows:

1. Generate anL level Gaussian image pyramid by blurring
and down-sampling the original image pair. Letl = 0 ::: L�
1 denote levels of the hierarchy, wherel = 0 represents the
original images. Setl = L� 1.

2. Label all pixels as “unmarked.”

3. Scale the locations of all node-points selected at the level
l + 1 by a factor of 2. Include these points in the list of
selected node points at the levell.

4. Compute the average displaced frame differenceDFDavg[l]
given by

DFDavg[l] =

P
(x;y)DFD(x; y)

K[l]
(1)

where the summation is over all the image pixels at the level
l, andK[l] is the number of node points at that level.

5. Grow a region about all selected node points until
P

DFD(x; y)
in this region is greater thanDFDavg[l]. Label all pixels
within this region as “marked.”

6. If the number of retained nodes (from the coarser level of
the hierarchy) is less thanK[l], then select more node-
points as follows:

(a) Compute a cost functionC(x; y) associated with each
unmarked pixel as a predefined function of spatio-
temporal intensity gradients [4]. The cost function
includes terms that are functions of both spatial and
temporal intensity gradients so that selected node points,
hence the boundaries of the patches, coincide with
spatial edges and motion edges.

(b) Find the unmarked pixel with the highestC(x; y)
which is not closer to any other previously selected
node point than a prespecified distance. Label this
point as a node point.

(c) Grow a region about this node point until
P

DFD(x; y)
in this region is greater thanDFDavg [l]. Label all
pixels within this region as “marked.”

(d) Go to 6(c) until a desired number of node points,
K[l], are selected.

7. Given the selected node points at the levell, apply a tri-
angulation procedure (e.g., Delauney triangulation [8]) to
obtain a content-based mesh.

8. Decreasel by 1. Unlessl < 0 go to step 2.

4.2. Fine-to-coarse mesh construction

The fine mesh construction algorithm used in the second imple-
mentation depends on two related operations: node-split and edge-
collapse, which are shown in Figure 4. These two operations are
the 2-D mesh equivalent operations to the 3-D mesh ones, which
are called: vertex-split and edge collapse, respectively. Practically,
a series of node-split operations will produce a fine mesh from a
coarse one while a series of edge-collapse operations will result in
a coarse mesh from a fine mesh. The following algorithm outlines
the main steps in constructing levels of coarse meshes from a fine
one.

1. Start with a fine meshM0.

2. Apply the edge-collapse transform,ecoli(ns; nt), on the
edge connecting the nodesns andnt, wherens andnt are
internal nodes of the mesh. A node is internal if it does not
lie on the frame/image edges. The indexi in ecoli indi-
cates the level at which this edge-collapse command is tak-
ing place. Such collapse results in vanishing the adjacent
patches (faces)fns; nt; nlg andfnt; ns; nrg.

3. The choice of the edge as well as the new location of the
new node, with connectivity-K andA scalar attributes, de-
pends on minimizing the following energy function:

EK = min
N;A

Edist(N) +Espring(N) +Escalar(N;A)

where,Edist measures the total distance of all the new
points from the mesh,Espring is used to regularize this op-
timization problem andEscalar(N;A) measures the accu-
racy of the scalar attributes such as intensity.Escalar(N;A)
calculates the cost in terms of attributes of the new vertices
(intensity and motion vector). This energy function is min-
imized over all edges and the edge with the minimumE
is collapsed at thisecoli transform. The reader is referred
to [7] for more information on this energy function mini-
mization for 3-D meshes.



4. If the total number of nodes > number of external nodes in
Mi, then repeat step2 for another set of nodes. Otherwise,
stop the algorithm and the resulting mesh is the coarsest
mesh.

nt

ns

n
Edge Collapse

Node Split

nl
nr

Fig. 4. Constructing fine meshes from a given coarse mesh and
visa versa.

5. COMPARISON AND RESULTS

We have designed experiments to compare the proposed method
(method II) with the algorithm in [6] (method I) with the video
sequence ”Flower&Garden” . The results are documented in Ta-
ble 2. The parameters used in these experiments are also tabulated
in the same table. The number of nodes at each level of hierarchy
is provided in the fifth column where the first number in the array
represents the number of nodes at the finest level while the last
number in the array represents the number of nodes at the coars-
est level. The number of nodes at each level is kept the same for
both methods. The search size in method I is increased by a fac-
tor of 2 in both horizontal and vertical directions at each level of
the hierarchy since it does not utilize an image pyramid represen-
tation. Without increasing the search size, method I would be at a
disadvantage. The PSNR of the motion compensated frame differ-
ence is calculated and tabulated in the second column for a pair of
frames in each sequence. The PSNR before motion compensation
is 11.31. The execution time is given in the third column. No ef-
fort has been directed to optimize algorithms in terms of execution
speed.

The theoretical computational complexity for both methods is
given in Table 3, where N by N is the original image size, P is the
number of nodes at the finest level, R by R is the search range at
the finest mesh level, I is the number of iterations at the hexagonal
matching procedure, S is the search step size at the finest mesh
level, and L is the number of levels. This table provides approxi-
mate number of addition operations involved in the motion estima-
tion stage. Since the affine warping operations along a horizontal
line can be computed using additions, the multiplication operations
is negligible. In the calculation for Method-I, the search range R
is assumed to be increased at each level by a factor of 2. Simi-
larly, the step size S is increased by the same ratio. The number
of nodes P is reduced by 4 at each level for both methods. This
table assumes a regular mesh as opposed to content-based mesh
to make the calculations tractable. From the results in Table ??
and the comparisons in Table 3, we can claim that the proposed
method performs equally or slightly better in terms of PSNR and
runs significantly faster. The latter is a direct consequence of pyra-
mid image representation.

In conclusion, the theoretical discussion as well as the exper-
imental results show that the proposed method has three main ad-
vantages as compared to method I. These advantages are valid
in both implementations. First, the pyramid/hierarchical image
representation will reduce the computational complexity consid-
erably. Node-point motion estimation computational complexity
is mainly a function of the number of nodes, patch sizes and the

Method PSNR Time ] of ] of Search Step
in sec Lev. Nodes Size Size

I 14.23 45.16 3 [100, 16, 1] [2, 4, 8] [0.5, 1.5, 4.0]
II 14.35 35.51 3 [100, 16, 1] [2, 2, 2] [0.5, 0.75, 1.0]

I 14.34 157.75 3 [100, 16, 1] [4, 8, 16] [0.5, 1.5, 4.0]
II 15.96 125.81 3 [100, 16, 1] [4, 4, 4] [0.5, 0.75, 1.0]

I 12.94 57.84 5 [100, 64, 36, 16, 1] [2, 4, 8, 16, 32] [0.5, 1.5, 4.0, 10.0, 24.0]
II 16.96 36.13 5 [100, 64, 36, 16, 1] [2, 2, 2, 2, 2] [0.5, 0.75, 1.0, 1.25, 1.5]

I 14.72 196.20 5 [100, 64, 36, 16, 1] [4, 8, 16, 32, 64] [0.5, 1.5, 4.0, 10.0, 24.0]
II 17.19 127.52 5 [100, 64, 36, 16, 1] [4, 4, 4, 4, 4] [0.5, 0.75, 1.0, 1.25, 1.5]

Table 2. Experimental results for the sequence “Flower&Garden”
(352�240).

search range. Second, since the image is blurred and downsam-
pled at higher levels, the proposed method is likely to lock onto
more global motions at these levels, rather than being trapped by
local motions. This is reflected in the experimental results in Ta-
ble 2 where increasing the number of level from three to five in-
creases the PSNR. Third, hierarchical image representation uti-
lized in method II will decrease the execution time for content-
based mesh design/modification process at higher levels, which is
obvious from the results stated in the third column of Table 2.

N. of additions

Method I
L�1P

l=0

9N2 R2

S2
I

Method II
L�1P

l=0

9N2 R2

S2
1
2l
I

Table 3. Theoretical comparison results.

6. REFERENCES

[1] A. M. Tekalp, Digital Video Processing, Prentice Hall, 1995.

[2] Y. Nakaya and H. Harashima, “Motion compensation based
on spatial transformations,” IEEE Trans. Circ. and Syst for
Video Tech., vol. 4, pp. 339–356, June 1994.

[3] Y. Wang and O. Lee, “Active mesh - a feature seeking and
tracking image sequence representation scheme,” IEEE Trans.
Image Proc., vol. 3, pp. 610–624, Sept. 1994.

[4] Y. Altunbasak and A. M. Tekalp, “Occlusion-adaptive,
content-based 2-d mesh design and tracking for object-based
video coding,” IEEE Transactions on Image Processing, vol.
6, no. 9, pp. 1270–1280, September 1997.

[5] C. Toklu, A. T. Erdem, M. I. Sezan, and A. M. Tekalp, “Track-
ing motion and intensity variations using hierarchical 2d mesh
modeling for synthetic object transfiguration,” Graphical
models and image processing, vol. 58, no. 6, pp. 553–573,
Nov 1996.

[6] P. V. Beek, A. M. Tekalp, N. Zhuang, I. Celasun, and M. Xia,
“Hierarchical 2d mesh representation, tracking, and compres-
sion for object-based video,” IEEE transactions on circuits
and systems for video technology, vol. 9, no. 2, pp. 353–369,
Mar 1999.

[7] H. Hoppe, “Progressive meshes,” in Proceedings ACM SIG-
GRAPH’96, 1996, pp. 99–108.

[8] J. R. Shewchuk, “Triangle: Engineering a 2d quality mesh
generator and delaunay triangulators,” in Proceedings first
workshop on Applied Computational Geometry, PA, USA,
1996, pp. 124–133.


