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ABSTRACT

In this paper, we investigatevariousmethodsof classifyingtime–
varyingsignals.In particular, weareinterestedin detectingacous-
tic emissionsthat may occurin concretestructuresduring immi-
nent failure. This importantclassificationproblemwill result in
detectingandseparatingthe distresssignal from othernaturalor
man madeacousticsignals. Due to the time–varying natureof
the signals,we employ several time–frequency basedclassifica-
tion methodsproposedin the literature. We alsoproposea new
automaticclassificationmethodthatis basedon thematchingpur-
suitalgorithm,andwedemonstrateits superiorperformanceusing
realdata.

1. INTR ODUCTION AND IMPORTANCE

Thereare numerousreasonswhy it is desirableto ascertainthe
conditionof a structureto determineif failure is imminent. For
example,failureof astructuremayresultin lossof usewhichusu-
ally implieslossof revenue.In addition,repaircostsresultingfrom
the failureof a structureusuallyfar exceedthecostof preventive
maintenancerepair. Moreover, failureof certainstructuresmayre-
sult in collateralcoststhatcouldconceivablyexceedthecostof the
structureitself. Although failureof a structuremay seemsudden
to the uninformedobserver, therefrequentlyarenumerouswarn-
ing signswhich precedecatastrophicfailure. In orderto perform
preventive repairsit is necessaryto not only look for thesewarn-
ing signs,but to detectand interpretthem. Concretestructures
containingreinforcingmetal,in particular, lendthemselvesnicely
to this typeof diagnostictesting.

Whena concretestructureis underdistressdueto corrosionof
the reinforcingmetal,acousticemissionsmay occurwhich indi-
catethepresenceof thiscondition.Theseemissionsmaybecaused
by crackingof theconcreteitself, or by breakageand/orslippage
of the reinforcingmetal. Acousticmonitoringof suchstructures
is onetechniquewhich addressestheissueof actuallylooking for
thedistress.In additionto that,classificationof any suchrecorded
eventcanbea dauntingtask.Whenperformingacousticmonitor-
ing,many acousticeventscanoccur, mostof whichareundesirable
anddonotcontainany informationasto thestatusof thestructure
undertest. Theseemissionscanresult for examplefrom passing
workers,birds,animals,machinery, automobilesor rain. In prac-
tical situations,far lessthanonepercentof all recordedemissions
will be of diagnosticvalue. Without someautomatedmethodof
separatingthevaluableeventsfrom theclutter, thearduoustaskof
manualclassificationbecomesmandatory.

In this paper, we proposeanautomatedmethodof classifying
acousticemissionsto assistin thediagnosisof concretestructures.

Dueto thetime–varyingnatureof thesesignals,wehaveusedvar-
ious time–frequency basedmethodsas well as matchingpursuit
algorithmsfor theirautomaticclassification.After briefly explain-
ing someof theseclassificationmethods,wecomparetheirperfor-
manceusingeightdifferentacousticevents.Our mainobjective is
to extracttheacousticsignalsdueto distressin concretestructures
so that thestatusof the structurecanbeascertained.Note,how-
ever, thatalthoughit is highly desirableto identify this oneclass
of signals,we do not wish to combineall remainingclassesinto a
singleclass.This is thecasebecausethereoftenareseveralother
classescapableof providing secondarydiagnosticinformation.

2. CLASSIFICA TION METHODS

Thereexist many classificationmethodswhich dependon thena-
tureof thesignals.In thefollowing two sections,wediscusssome
methodsthatcanbeusedfor theclassificationof acousticeventsof
anacousticmonitoringsystem.Theeffectivenessof themethods
areinvestigatedby usingthemto classifyeightdifferenttypesof
acousticsignals.Figure1 shows thespectrogram[1] of a charac-
teristic samplesignalof theseeightdifferenttypesof signals.As
seenfrom thefigure,only class1 andclass3 have high frequency
componentswhereasall otherclassesconsistof low frequency sig-
nals.Thesekind of signalsarechosenbecausein anacousticmon-
itoring system,low frequency signalslikemachinery, humanvoice
or automobilenoiseswill bequiteoftenrecorded.Empiricaldata
indicatesthatclass1 is thewarningsignalwhich usuallyprecedes
a catastrophicfailure,andthusmustbeclassifiedaccurately.

2.1. Time-FrequencyClassificationTechniques

The authorsin [2] discusssometime–frequency (TF) techniques
thatcanbeusedfor non-stationarysignalclassification.They con-
sidereachTF point of a TF representationasa Gaussianrandom
variablewhoseprobability distribution function is defined.Once
thedistribution is known, thenit is easyto arriveataclassification
rule [2]. Specifically, usingbinary classification,onecandeduce
thatthetestsignalis in class1 if 1���

TFR��� TFR�����
	�����
 ���
TFR��� TFR������	����

whereTFR� is a TF representationof a testsignal ������� , TFR� � ��	
is theaverageTF representationof class� , and ��� � �!����� is a signal
in class� . TheaverageTF representationis obtainedby averaging
the TF representationof all the learningsignalsin class� . The
averageTFRof a classis calculatedusing

1Here, "�" TFR��# TFR� �$��	!%�% definesthe two-dimensional(2-D) inner

product &'& TFR��(�)*#�+-, TFR.� �$��	 (/)*#*+-,102)304+65
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Fig. 1. Samplespectrogramfor eightdifferentclassesof acousticsignals.

TFR��� ��	 ���7�!89�;:=<> � > �?@ A < TFR� � ��	B ���7�!89�7�C�D:FEG��H
whereTFR� � ��	B ���7�!89� is the TF representationof the I�J4K learning

signalin class� and L � is thenumberof learningsignalsin class� . Specifically, this rule correspondsto a 2-D matchedfilter [3].
TheinnerproductbetweentheTF representationof thetestsignal
andtheTF representationof theprototype/signaturesignalof class
1 andclass2 areusedasthe teststatistic. The testsignalwill be
assignedto the classwhose2-D correlationwith the test signal
is maximum. We appliedthis conceptto our dataconsistingof
eight differentacousticsignals. In an 8-ary signalclassification,
theclassificationrule will be�������NMPO �RQCS arg TVU�W� � ��� TFR��� TFR� �$��	 ��� �
for j = 1,.. . ,8, where O � is the �6J4K class. We first choosethe
spectrogram[1] asour TFR,andthenthereassignedspectrogram
[7].

2.2. Ambiguity Function ClassificationTechniques

Auto Ambiguity Function
ThenarrowbandAmbiguity function(AF) is the2-D Fouriertrans-
form of theWignerdistribution [1]. TheAF of a signal ������� can
bewritten as2

AF �2���4X���Y1�Z:R[ �
��\^]`_�ba �������N� . ����cdX3�*[6e � f*gGh J�i �kj (1)

In the AF domain,all theautotermsof a multicomponentsignal������� will be concentratedaroundthe origin �4Xl��Y3�D:m�on-��n6� , and
all the crosstermswill be away from the origin [1]. The AFs of
thedifferentsignalsto beclassifiedareremarkablydifferent. For
example,Figure2 shows theAF of a class1 signalanda class3
signal.It is clearfrom thefigurethattheAF of thefirst classsignal
is centeredaround�onl��nG� , while theAF of thethird classsignalhas
peaksall alongthe X axis.Basedon thesedistinctdifferences,we
definedtheteststatisticasp � : ����q

AF �2�1�4X���Y1� q � q
AF ���$��	
���$��	 �4X���Y1� q ��� �C�r:FEG�2j`j j`��s

whereq
AF ��� ��	���� ��	 �4X���Y3� q : <> � > �?@ A < q

AF � �$��	Bt� � ��	B �4Xl��Y3� q �
2Unlessotherwisestated,limits of integrationvary from u;v to wxv .
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Fig. 2. TheautoAF of signalsfrom two differentclasses.q
AF �2� �4X���Y1� q is the absolutevalue of the AF of the test signal,q
AF � � ��	By� � ��	B �4Xl��Y3� q is theabsolutevalueof theAF of the I J4K learn-

ing signal in class� and L � is the numberof learningsignalsin
class� . Theclassificationrule in this caseis�������zMkO �RQCS arg TVU�W� � p � �7�{�D:FE|�2j`j`j`��s-j
To thebestof ourknowledgethis methodhasnotbeenconsidered
beforein theliterature.

CrossAmbiguity Function
Anotherclassificationmethodwe usedis basedon the crossAF.
ThecrossAF of thesignals������� and } ����� is definedas

AF �2~l�4Xl��Y3�P:R[ ����\^]`_�ba ������� } . ����c�X3�*[6e � f*gGh J�i �kj (2)

When ������� = } ����� , thecrossAF is theautoAF in (1). Using this
basicargument,we caninfer that when ������� and } ����� arehighly
correlated,thenit is not unreasonableto expecta maximumvalue
at �4X���Y1�x:��on-�!n6� in theAF plane.This is becausethemaximum
valueof theautoAF occursat theorigin [1].

In this paper, we have madeuseof theabove simplereasoning
for signalclassification.Let ������� bethetestsignal,anddefine

� � � � ������: EL �
> �?@ A < � � � �@ �����7�{�D:FEG�2j j`j`��s (3)

where��� � ������� is thetimeaveragedlearningsignalof class� , � � � �@ �����
denotesthetime samplesof the IlJ4K learningsignalin class� , andL � is thenumberof learningsignalsin class� . We definethetest
statisticas p � : q

AF � ~ � ��	 �on-��n6� q �C�D:FE|�2j`j`j`�!s (4)



where }9� � � ����� is the time shifted versionof the averagedsignal� � �7� ����� in class� in �o�6� . The testsignalmay be the time shifted
versionof any oneof thelearningsamplesof theclasswhere�������
belongsto. We have shiftedthetime averagedprototypesignalin
orderto attaina maximumvalueat X�:�n in theAF planewhich
correspondsto the maximumpossibletime correlationbetween
thetestsignalandtheprototypesignals.Notethatif we substitute�4X���Y3�P:��onl��nG� , (2) reducesto

AF �2~-�onl�!nG�Z:��D������� } . ����� i �7j
Thus,(4) reducesto a time-samplecorrelation.Theclassification
rule canbedefinedas�������zM�O �RQCS arg TVU�W� � p � �7�{�D:FE|�`j2j`j`��s-j

3. A NEW MATCHING PURSUIT BASED APPROACH

Thematchingpursuitis aniterative algorithmwhich decomposes
a signalinto a linearexpansionof waveformsselectedfrom a re-
dundantandcompletedictionary. Mallat andZhangin [4] usedTF
shiftedandscaledGaussianatomsasbasicdictionaryelementsto
decomposea given signal. In acousticsignalclassification,a lot
of iterationsareneededto decomposeasignalinto basicGaussian
atoms. The authorsin [5] suggestthat it is alsopossibleto use
more thanone type of basicatom in the dictionary. We modify
thematchingpursuitsoasto useit in classifyingacousticsignals.
Thedifferencein our approachfrom theapproachin [4] is in the
formationof thedictionary. Insteadof usingTF shiftedandscaled
Gaussianatomsasdictionaryelements,TF shiftedversionsof the
learningsamplesof eachclassconstituteour dictionaryelements
asshown in Figure3.
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Fig. 3. The dictionaryelementsfor the matchingpursuitarethe
TF shiftedversionsof the learningsamplesin eachclass(shown
in dark).

First,westartforming ourdictionaryby frequency shifting the
learningsamplesof eachclass. Looking at the spectrogramof
differentclassesin Figure1, the rangeof frequency shifts of the
learningsignalsof eachclassis limited. If we usea higherrange
of frequency shifts, thenthemisclassificationratemaybehigher.
After this initial step,the following stepsarefollowed to classify
any giventestsignal.
Step1 : Projectthetestsignalontoall thedictionaryelements.
Step2: Selectthedictionaryelementwhosecrosscorrelationwith
the testsignal is maximum. Note that herewe usea correlation
andnot an innerproductin orderto incorporatetime shifts in the
dictionaryelementsaswell asfrequency shifts.
Step3: Subtractthechosendictionaryelementfrom thetestsignal
andstoretheclassnumberof thechosendictionaryelement.At the� J4K iteration,

ClassNo. No. of Learning Signals No. of TestSignals
CLASS1 50 342
CLASS2 13 32
CLASS3 10 30
CLASS4 9 30
CLASS5 11 14
CLASS6 11 31
CLASS7 13 37
CLASS8 13 30

Table1. Numberof learningandtestsignalsin eachclass.�9�������P:��9� e < ������cd� � � �� i � � �� �����
where, � � ����� is the residualsignalat the � J�K iteration, i � � �� ����� is
thebestmatcheddictionaryelementat the � J4K iterationandit be-
longstoclass� . Thecorrelationcoefficient � � � �� atthe � J4K iteration
thatbelongsto class� is givenby� � �7���: � �9� e < � i � � �� � j
Step 4: The procedureis repeateduntil the remainingsignalen-
ergy is only asmallpercentageof theoverallsignalenergy or after
performingacertainprescribednumberof iterations.In ourstudy,
we set the energy thresholdat 15% of the testsignalenergy and
we useda maximumnumberof teniterations.
Step5: Whenthealgorithmconverges,thenetcontribution of the
coefficients � � � �� in class� canbeusedastheteststatistic.Specif-
ically, p � :����@ A < q � � �7�� B q
where � @

is the iteration numberin which class � was chosen
duringtheiterations,and � is thenumberof timesthattheclass�
waschosen. Finally, theunknown testsignalwill beclassifiedin
class� as,�������zMkO �RQCS arg TVU�W� � p � �7�{�r:�E|�2j`j`j`��slj (5)

For example,for a testsignal, if the matchingpursuityields the
following correlationcoefficients after 8 iterations, � � < �< :mnlj � ,� � < �f :�n-j s , � � < �� :�n-j � , � ��f��� :�n-j � , � � � �� :�nlj � , � � � �� :�nlj   ,� � � �¡ :¢n-j � , � � � �£ :¢nlj H , then the test statisticswill be, p < :nlj �¥¤¦nlj s§¤¦n-j �D:¨H-j   , p f :¨n-j � , p � :©n-j � , p � :©nlj   , p � :©nlj � ,p � :ªnlj H , p ¡ :«n , p £ :«n . Recall that � � < �� is the correlation
coefficient from thethird iterationthatbelongsto class1 and p < is
theteststatisticfor class1. Basedon theclassificationrule in (5),
theabove exampletestsignalwill beclassifiedin class1.

4. REAL DATA ANALYSIS AND COMPARISON

Theclassificationperformanceof theabovediscussedmethodsare
comparedusingour empiricalresults.We alwaysclassifya given
testsignalinto oneof theeightdifferentclasses.

All the testsignalswe have usedaresampledat therateof 20
kHz. Thedurationof thetestsignalsis 0.1024seconds(2048time
samples).Table1 shows the numberof learningsignalsandthe
testsignalsusedfor eachclass.We have configuredclass1 to be
the majorclassof interestandtheothereventsto be theundesir-
ableevents. For example,in an acousticmonitoringsystem,the
desiredevent could be the precursorwarningsignsthat precede
catastrophicfailures,and the undesiredeventscould be passing
workers,birds,animals,machinery, automobilesor rain.



ClassNo. SPEC RSPEC AF CAF MP
1 13 14 13 28 3
2 4 3 2 1 2
3 0 0 0 0 1
4 0 0 1 0 0
5 0 0 3 3 0
6 6 6 7 9 5
7 1 1 5 4 3
8 0 0 1 1 0

No. of FA 0 1 28 0 2

Table2. Numberof misclassifiedtestsignalsin eachmethod.

ClassNo. SPEC RSPEC AF CAF MP
1 0.96 0.96 0.96 0.92 0.99
2 0.88 0.91 0.94 0.97 0.94
3 1 1 1 1 0.97
4 1 1 1 1 1
5 1 1 0.79 0.79 1
6 0.81 0.81 0.77 0.71 0.84
7 0.97 0.97 0.87 0.89 0.92
8 1 1 0.97 0.97 1

Table 3. Probabilityof correctclassification.

Table2 shows thenumberof misclassifiedtestsignalsfor each
classusingdifferentmethods.It alsoshows the numberof false
alarms(FA) that correspondsto the numberof testsignalsfrom
classesother thanclass1, that areclassifiedasclass1. Table3
shows theprobabilityof detectionof thetestsignalsfor eachclass
usingdifferentmethods.Themethodsusedare2-D matchedfilter-
ing (cf. Section2.1) usingthespectrogram(SPEC)andthe reas-
signedspectrogram(RSPEC),Ambiguity functiontechniques(cf.
Section2.2) like autoAF (AF) andcrossAF (CAF), andfinally
matchingpursuit (cf. Section3) technique(MP). By inspection
we can infer that the matchingpursuit yields the bestresultsin
classifyingthetestsignalsbelongingto theeightclasses.

Consideringtheclassificationresultsfor class1, thematching
pursuitmisclassifiedonly threeof theclass1 testsignals.Thepoor
performanceof thecrossAF is expected,becausetheeightdiffer-
ent typesof signalsconsideredaretime-varying in natureandthe
methodcorrespondsto a 1-D correlationasshown in (11). Since
themainobjectiveof theacousticmonitoringsystemis thepremo-
nition of the structuralfailuresto be followed, it may not be ad-
visableto usea classifierwhich missesbetween13 and15 of 342
testsignalsof class1 (seeTable1). Thus, the matchingpursuit
methodappearspromisingfor acousticmonitoringsystems.The
misclassificationof thetwo testsignalsof class1 in thematching
pursuitmethodis attributedto thepresenceof moredominantlow
frequency componentsalongwith the componentof class1. As
expected,thematchingpursuitclassifiesthesetestsignalsin class
8 whichhasmorelow frequency components.Thenumberof false
alarmsarequitelargein thecaseof theAF method.Therearetwo
falsealarmsin thematchingpursuitmethod.However, this is not
a major drawback of the matchingpursuit methodsincea false
alarmdoesnotmeanthataprecursorwarningeventis overlooked,
which is thecasein misclassification.

If we comparethe variousmethodsby processingtime, the
matchingpursuitrankslast. In the matchingpursuit,for eachit-
eration,it is necessaryto find the inner productbetweenthe test

signalandeachelementof thedictionary. As a result,it is com-
putationallyintensive. Theprocessingtime increaseslinearlywith
thenumberof dictionaryelements.We canalsoinfer from there-
sultsthat the reassignmentspectrogramperformssimilarly to the
spectrogramfor theclassificationof oursignals.

5. CONCLUSION

Many paperssuggestvariousmethodsfor classifyingnon-stationary
signals.Wehaveusedsomeof thesemethodsaswell assomenew
techniquesto classifyacousticsignals.This classificationis very
importantin diagnostictestingof concretestructures.A method
notdiscussedin thispaperusesTF representationlog deviation [2]
asateststatisticto classifysignals.Anotherteststatisticis usedin
[6] whichdependsupontheinverseof theTF pointsof aTF repre-
sentation.Notethatit is verydifficult to usethesetwo methodsin
signalclassificationwhenthesignalsto beclassifiedhavenocom-
monnon-zerovaluesin abandof frequencies,which is exactly the
casein theeightclassesthatareusedin this paper. Moreover, the
log deviationmethodlimits thetypeof TF representation,because
only positiveTF representationslikethespectrogram[1] or there-
assignedspectrogram[7] canbeused.For signalssimilar to those
of our eight classes,the matchingpursuitprovidespromisingre-
sultsfor signalclassification.Wehavedemonstratedwith realdata
that thematchingpursuitmethodperformsbetterwhencompared
with theothermethodsdiscussedin thepaper. Furtherstudiescan
bemadeon thepossibilitiesandtheefficacy of preprocessingthe
databeforeclassifyingit usingthematchingpursuitmethod.This
will causethe algorithmto converge quickly, which in turn will
reducetheprocessingtime.
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