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ABSTRACT

In this paper we investigatevariousmethodof classifyingtime—
varyingsignals.In particular we areinterestedn detectingacous-
tic emissionghat may occurin concretestructureduring immi-

nentfailure. This importantclassificationproblemwill resultin

detectingand separatinghe distresssignalfrom other naturalor
man madeacousticsignals. Due to the time—varying natureof

the signals,we emplg several time—frequeng basedclassifica-
tion methodsproposedn the literature. We also proposea new

automaticclassificatiormethodthatis basedon thematchingpur

suitalgorithm,andwe demonstratés superiomperformancaising
realdata.

1. INTRODUCTION AND IMPOR TANCE

There are numerousreasonswhy it is desirableto ascertainthe
condition of a structureto determineif failure is imminent. For
example failureof astructuremayresultin lossof usewhich usu-
ally implieslossof revenue.In addition,repaircostsresultingfrom
thefailure of a structureusuallyfar exceedthe costof preventive
maintenanceepair Moreover, failureof certainstructuresnayre-
sultin collateralcoststhatcouldconcevably exceedthe costof the
structureitself. Althoughfailure of a structuremay seemsudden
to the uninformedobserer, therefrequentlyare numerouswarn-
ing signswhich precedecatastrophidailure. In orderto perform
preventive repairsit is necessaryo not only look for thesewarn-
ing signs, but to detectand interpretthem. Concretestructures
containingreinforcingmetal,in particular lendthemselesnicely
to thistype of diagnostidesting.

Whena concretestructureis underdistressdueto corrosionof
the reinforcing metal, acousticemissionsmay occurwhich indi-
catethepresencef thiscondition. Theseemissionsnaybecaused
by crackingof the concretdtself, or by breakageand/orslippage
of the reinforcing metal. Acoustic monitoring of suchstructures
is onetechniquewhich addressethe issueof actuallylooking for
thedistressIn additionto that, classificatiorof any suchrecorded
eventcanbe a dauntingtask. Whenperformingacousticmonitor
ing, mary acousticeventscanoccur mostof whichareundesirable
anddo not containary informationasto the statusof thestructure
undertest. Theseemissionscanresultfor examplefrom passing
workers, birds, animals,machinery automobilesor rain. In prac-
tical situations far lessthanonepercenf all recordedemissions
will be of diagnosticvalue. Without someautomatednethodof
separatindhe valuableeventsfrom the clutter, thearduoustaskof
manualclassificatiorbecomesnandatory

In this paper we proposean automatednethodof classifying
acousticemissiongo assistn thediagnosisof concretestructures.

Dueto thetime—aryingnatureof thesesignalswe have usedvar
ious time—frequeng basedmethodsas well as matchingpursuit
algorithmsfor their automaticclassification After briefly explain-
ing someof theseclassificatiormethodswe compareheir perfor
manceusingeightdifferentacousticavents.Our mainobjective is
to extracttheacousticsignalsdueto distressn concretestructures
sothat the statusof the structurecanbe ascertainedNote, how-
ever, thatalthoughit is highly desirableto identify this oneclass
of signals,we do notwish to combineall remainingclassesnto a
singleclass.This is the casebecausehereoften areseveral other
classezapableof providing secondargliagnostianformation.

2. CLASSIFICATION METHODS

Thereexist mary classificatiormethodswhich dependon the na-
ture of thesignals.In thefollowing two sectionswe discusssome
methodghatcanbeusedfor theclassificatiorof acousticeventsof
an acousticmonitoring system. The effectivenessof the methods
areinvestigatedby usingthemto classify eight differenttypesof
acousticsignals.Figure1 shavs the spectrogranfl] of acharac-
teristic samplesignalof theseeight differenttypesof signals. As
seenfrom thefigure,only classl andclass3 have high frequeng
componentsvhereasll otherclassesonsisiof low frequeng sig-
nals. Thesekind of signalsarechoserbecausén anacoustianon-
itoring systemJow frequeng signalsik e machineryhumanvoice
or automobilenoiseswill be quite oftenrecorded.Empiricaldata
indicategthatclassl is thewarningsignalwhich usuallyprecedes
acatastrophidailure,andthusmustbe classifiedaccurately

2.1. Time-FrequencyClassification Techniques

The authorsin [2] discusssometime—frequeng (TF) techniques
thatcanbeusedfor non-stationangignalclassification They con-

sidereachTF point of a TF representatiomsa Gaussiarmandom
variablewhoseprobability distribution function is defined. Once

thedistributionis known, thenit is easyto arrive ata classification
rule [2]. Specifically usingbinary classificationponecandeduce
thatthetestsignalis in classl if!

((TFR,, TFR, (1) )) > ({TFR:, TFR,(2)))

whereTFR, is a TF representationf atestsignalz(t), TFR, )
is the averageTF representationf classy, andx(j)(t) is asignal
in classj. TheaverageTF representatiois obtainedby averaging
the TF representatiomf all the learningsignalsin classj. The
averageTFR of aclassis calculatedusing

Here, ((TFRy, TFR_(;))) definesthe two-dimensional(2-D) inner
productf [ TFRx(t, f) TFR, ;) (¢, f) dt df.
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Fig. 1. Samplespectrogranfor eightdifferentclasse®f acousticsignals.
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whereTFR ;) (t, f) is the TF representatiowf the kt* learning

signalin clagsj and.N; is the numberof learningsignalsin class
4. Specifically this rule correspondso a 2-D matchedfilter [3].

Theinnerproductbetweerthe TF representatioof thetestsignal
andtheTF representatioof theprototype/signatursignalof class
1 andclass2 areusedastheteststatistic. The testsignalwill be
assignedo the classwhose2-D correlationwith the testsignal
is maximum. We appliedthis conceptto our dataconsistingof

eight differentacousticsignals. In an 8-ary signal classification,
the classificatiorrule will be

z(t) e Cj argmax ({((TFR:, TFR,;))) )

for j = 1,...,8, whereC; is the 5" class. We first choosethe
spectrogranfl] asour TFR, andthenthereassignedpectrogram

[7].

2.2. Ambiguity Function ClassificationTechniques

Auto Ambiguity Function

ThenarravbandAmbiguity function(AF) is the2-D Fouriertrans-
form of the Wignerdistribution [1]. The AF of asignalz(t) can
bewritten ag

i2
AF . (T,v) =e L

(t—T)e P . (1)
In the AF domain,all the autotermsof a multicomponensignal
z(t) will be concentrate@roundthe origin (7,~) = (0,0), and
all the crosstermswill be awvay from the origin [1]. The AFs of
the differentsignalsto be classifiedareremarkablydifferent. For
example,Figure 2 shavs the AF of a classl signalanda class3
signal.lt is clearfrom thefigurethatthe AF of thefirst classsignal
is centeredaround(0, 0), while the AF of thethird classsignalhas
peaksall alongthe r axis. Basedon thesedistinctdifferencesywe
definedtheteststatisticas

= (( |AF(E$(T7 V)|7 |ﬁm(j)z(j)(71 V)l ))7 .] = 1) .. -78
where

N;
|AF Gy ) (T, )| = NLZ IAF @, (T, V)],

2UnIessotherWlsestatedJ|m|ts of integrationvary from —oo to +oo.

{ socoo |

{ seocoo |

{ aococo |

{ zooco |

s8o000

soo00o

aococo

z2oo00

Time. =

.02 .04 .06 .08 .1
Time, =

CLASS 1

: ? J{\
Frast M T
50— o —— 0
0 -50
frequency lag, Hz time lag, s

CLASS 3

e L

frequency lag, Hz time lag, s

Fig. 2. TheautoAF of signalsfrom two differentclasses.

|AFzs (7, v)| is the absolutevalue of the AF of the testsignal,
|AF ¢y () (1, v)| is theabsolutevalueof the AF of thekt” learn-
Ty Tk

ing signalin classj and.N; is the numberof learningsignalsin
classj. Theclassificatiorrule in this caseis

z(t) e C; < amgmax (v; ), j=1,...,8.
J

To the bestof our knowledgethis methodhasnot beenconsidered
beforein theliterature.

CrossAmbiguity Function
Anotherclassificationrmethodwe usedis basedon the crossAF.
ThecrossAF of thesignalsz(t) andy(t) is definedas

/x(t) Yyt —Tr)e L . (2)

Whenz(t) = y(t), thecrossAF is theautoAF in (1). Usingthis
basicargument,we caninfer thatwhenz(t) andy(t) arehighly
correlatedthenit is not unreasonabl® expecta maximumvalue
at (r,v) = (0,0) in the AF plane. This is because¢he maximum
valueof theautoAF occursattheorigin [1].

In this paper we have madeuseof the above simplereasoning
for signalclassificationLetx(t) bethetestsignal,anddefine

—(J) — (J)
(t) = N Z x;

7 k=1

j2nTy
AFg (T, v) =€ 2

,j=1,....,8 3)

wherez?) (t) is thetime averagedearningsignalof classy, :z:(])(t)
denoteghetime sampleof the k" learningsignalin classj, and
N; is thenumberof learningsignalsin classj. We definethetest
statisticas

v = AF 25 (0,0)], j=1,...,8 4



where7'?)(t) is the time shifted version of the averagedsignal
zY)(t) in classj in (3). The testsignalmay be the time shifted
versionof ary oneof thelearningsamplef the classwherez(t)

belongsto. We have shiftedthetime averagedprototypesignalin

orderto attaina maximumvalueat = = 0 in the AF planewhich

corresponddo the maximum possibletime correlationbetween
thetestsignalandthe prototypesignals.Notethatif we substitute
(r,v) = (0,0), (2) reducego

AF.,(0,0) = [z(t)y*(t) dt.

Thus, (4) reducedo atime-samplecorrelation. The classification
rule canbedefinedas

z(t) € C; <= amgmax (v;), j=1,...,8.
J

3. ANEW MATCHING PURSUIT BASED APPROACH

Thematchingpursuitis aniterative algorithmwhich decomposes
a signalinto a linear expansionof waveformsselectedrom are-
dundanandcompletedictionary MallatandZhangin [4] usedTF
shiftedandscaledGaussiaratomsasbasicdictionaryelementgo
decomposea given signal. In acousticsignalclassification,a lot
of iterationsareneededo decomposa signalinto basicGaussian
atoms. The authorsin [5] suggesthatit is also possibleto use
more thanonetype of basicatomin the dictionary We modify
the matchingpursuitsoasto useit in classifyingacousticsignals.
The differencein our approachfrom the approachn [4] is in the
formationof thedictionary Insteadof usingTF shiftedandscaled
GaussiaratomsasdictionaryelementsTF shiftedversionsof the
learningsamplesof eachclassconstituteour dictionary elements
asshavn in Figure3.

Main Dictionary

CLASS 1
CLASS 7
CLASS 2
CLASS 8

CLASS 6
CLASS 3

CLASS 5

.E CLASS 4 .E

Fig. 3. Thedictionaryelementsfor the matchingpursuitarethe
TF shiftedversionsof the learningsamplesn eachclass(shavn
in dark).

First,we startforming our dictionaryby frequeng shifting the
learning samplesof eachclass. Looking at the spectrogranof
differentclassesn Figure 1, the rangeof frequeny shifts of the
learningsignalsof eachclassis limited. If we usea higherrange
of frequeny shifts, thenthe misclassificatiomate may be higher
After this initial step,the following stepsarefollowedto classify
ary giventestsignal.

Stepl1: Projectthetestsignalontoall thedictionaryelements.
Step2: Selectthedictionaryelementwhosecrosscorrelationwith
the testsignalis maximum. Note that herewe usea correlation
andnot aninner productin orderto incorporatetime shiftsin the
dictionaryelementsaswell asfrequeng shifts.

Step3: Subtracthechoserdictionaryelementrom thetestsignal
andstoretheclassnumberof thechoserdictionaryelement At the
nyp, iteration,

[ ClassNo. | No. of Learning Signals | No. of TestSignals |

CLASS1 50 342
CLASS?2 13 32
CLASS3 10 30
CLASS4 9 30
CLASSS 11 14
CLASS6 11 31
CLASS7 13 37
CLASSS8 13 30

Table 1. Numberof learningandtestsignalsin eachclass.
Tn(t) = Tn_1(t) — P dP(t)

where,z, (t) is the residualsignal at the n** iteration,dgf)(t) is
the bestmatchedictionaryelementat the ny, iterationandit be-
longstoclassj. Thecorrelationcoeficienta ) atthen'™ iteration
thatbelongsto classj is givenby

aff) = (zpa, d).

Step 4: The procedurds repeateduntil the remainingsignalen-
emgy is only asmallpercentagef theoverall signalenegy or after
performinga certainprescribechumberof iterations.In our study
we setthe enegy thresholdat 15% of the testsignalenegy and
we useda maximumnumberof teniterations.

Step5: Whenthealgorithmconverges,the netcontritution of the
coeficientsal’ in classj canbeusedastheteststatistic. Specif-

ically,

X .
%=X |ai,

wheremy, is the iteration numberin which classj was chosen

duringtheiterations,and K is the numberof timesthattheclassj

waschosen. Finally, the unknavn testsignalwill be classifiedin

classj as,

z(t) € C; <= agmax (), j=1,...,8.  (5)
J

For example,for a testsignal,if the matchingpursuityields the
following correlationcoeficients after 8 iterations,agl) = 0.9,
oV =08, a0 =07, a0 =06, a® =05, Y =04,
o = 0.3, ol = 0.2, thenthe teststatisticswill be,v; =
0.9+08+07=24,v =06,v3 =05, v =04, = 0.3,
v6 = 02,77 = 0,7 = 0. Recallthatagl) is the correlation
coeficientfrom thethird iterationthatbelongsto classl and~; is
theteststatisticfor classl. Basedon theclassificatiorrulein (5),
theabove exampletestsignalwill beclassifiedn classl.

4. REAL DATA ANALYSIS AND COMPARISON

Theclassificatiorperformancef theabove discussednethodsare
comparedisingour empiricalresults.We alwaysclassifya given
testsignalinto oneof the eightdifferentclasses.

All thetestsignalswe have usedare sampledat the rateof 20
kHz. Thedurationof thetestsignalsis 0.1024second$2048time
samples).Table1 shawvs the numberof learningsignalsandthe
testsignalsusedfor eachclass.We have configuredclassl to be
the major classof interestandthe othereventsto be the undesir
able events. For example,in an acousticmonitoring system,the
desiredevent could be the precursorwarning signsthat precede
catastrophidailures, and the undesiredevents could be passing
workers,birds,animals,machineryautomobilesor rain.



[ ClassNo. [ SPEC | RSPEC | AF | CAF [ MP |

1 13 14 [ 13] 28 | 3
2 4 3 2 | 1 2
3 0 0 0| 0 1
4 0 0 1] 0 | 0
5 0 0 3] 3 | 0
6 6 6 7] 9 | 5
7 1 1 5 4 | 3
8 0 0 T 1 |0
[NoofFA] 0 | 1 [28] 0 [ 2 |

Table 2. Numberof misclassifiedestsignalsin eachmethod.

[ ClassNo. | SPEC | RSPEC | AF | CAF [ MP |

0.81 0.81 0.77| 0.71 | 0.84
0.97 0.97 0.87| 0.89 | 0.92
1 1 0.97| 0.97 1

1 0.96 0.96 0.96| 0.92 | 0.99
2 0.88 0.91 094 | 0.97 | 0.94
3 1 1 1 1 0.97
4 1 1 1 1 1
5 1 1 0.79 | 0.79 1
6

7

8

Table 3. Probabilityof correctclassification.

Table2 shavs the numberof misclassifiedestsignalsfor each
classusingdifferentmethods. It alsoshawvs the numberof false
alarms(FA) that correspondgo the numberof testsignalsfrom
classetherthanclassl, that are classifiedasclass1. Table3
shavs the probability of detectionof thetestsignalsfor eachclass
usingdifferentmethods Themethodsauisedare2-D matchedilter-
ing (cf. Section2.1) usingthe spectrogran{SPEC)andthe reas-
signhedspectrogranfRSPEC) Ambiguity functiontechniquegcf.
Section2.2) like auto AF (AF) andcrossAF (CAF), andfinally
matchingpursuit (cf. Section3) technique(MP). By inspection
we caninfer that the matchingpursuityields the bestresultsin
classifyingthetestsignalsbelongingto the eightclasses.

Consideringhe classificatiorresultsfor classl, the matching
pursuitmisclassifiednly threeof theclassl testsignals.Thepoor
performancef the crossAF is expected becausehe eightdiffer-
enttypesof signalsconsideredaretime-varyingin natureandthe
methodcorrespondso a 1-D correlationasshavn in (11). Since
themainobjective of theacoustianonitoringsystemis thepremo-
nition of the structuralfailuresto be followed, it may not be ad-
visableto usea classifierwhich missesbetweenl3 and15 of 342
testsignalsof classl (seeTable1). Thus,the matchingpursuit
methodappeargpromisingfor acousticmonitoringsystems.The
misclassificatiorof the two testsignalsof classl in the matching
pursuitmethodis attributedto the presencef moredominantiow
frequeny componentalongwith the componenbf classl. As
expectedthe matchingpursuitclassifieghesetestsignalsin class
8 which hasmorelow frequeng componentsThenumberof false
alarmsarequitelargein the caseof the AF method.Therearetwo
falsealarmsin the matchingpursuitmethod.However, thisis not
a major dravback of the matchingpursuitmethodsincea false
alarmdoesnotmeanthata precursomwarningeventis overlooked,
whichis the casein misclassification.

If we comparethe various methodsby processingime, the
matchingpursuitrankslast. In the matchingpursuit, for eachit-
eration, it is necessaryo find the inner productbetweenthe test

signaland eachelementof the dictionary As aresult,it is com-
putationallyintensize. Theprocessindgime increasesinearly with
thenumberof dictionaryelementsWe canalsoinfer from there-
sultsthatthe reassignmenspectrogranperformssimilarly to the
spectrogranfor the classificatiorof our signals.

5. CONCLUSION

Marny papersuggesvariousmethoddgor classifyingnon-stationary
signals.We have usedsomeof thesemethodsaswell assomenen
techniquego classifyacousticsignals. This classificationis very
importantin diagnostictestingof concretestructures.A method
notdiscussedh this paperusesTF representatiotog deviation [2]
asateststatisticto classifysignals.Anotherteststatisticis usedin
[6] which dependsipontheinverseof the TF pointsof a TF repre-
sentationNotethatit is very difficult to usethesetwo methodsn
signalclassificationvhenthesignalsto beclassifiechave nocom-
monnon-zerovaluesin abandof frequencieswhichis exactly the
casein the eightclasseghatare usedin this paper Moreover, the
log deviation methodlimits thetype of TF representatiorhecause
only positive TF representationkk e the spectrogranfil] or there-
assignedpectrogran7] canbeused.For signalssimilarto those
of our eight classesthe matchingpursuitprovides promisingre-
sultsfor signalclassification We have demonstratedith realdata
thatthe matchingpursuitmethodperformsbetterwhencompared
with theothermethodsiscussedn the paper Furtherstudiescan
be madeon the possibilitiesandthe efficacy of preprocessinghe
databeforeclassifyingit usingthe matchingpursuitmethod.This
will causethe algorithmto corverge quickly, which in turn will
reducethe processingime.
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