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ABSTRACT

Despite the great popularity of critically-decimated filter
banks, oversampled filter banks are useful in applications
where data expansion is not a problem. We studied oversam-
pled filter banks and showed that for some popular classes of
filter banks it is not possible to obtain perfect reconstruc-
tion with rational (non-integer) oversampling ratios. Never-
theless, it is always possible to oversample the analysis filter
bank by an integer factor, i.e. there will be a similar synthesis
bank which would provide perfect reconstruction. The anal-
ysis is carried within a time-aliasing framework developed to
analyze non-critically decimated filter banks.

1. INTRODUCTION

The theory of oversampled filter banks was extensively ex-
plored in [1]–[4]; however, uniform filter banks with non in-
teger oversampling ratios were not clearly addressed in the
literature. In this paper we use a time-domain approach to re-
veal more specific insights into the properties and constraints
of uniform filter banks with a non integer oversampling ratio
and perfect reconstruction. We consider particularly the case
of filter banks used in lapped transforms [5].
Using the time-domain representation, we show that time

alias is a limiting factor for the use of a non integer oversam-
pling ratio; however, the use of redundant structures over-
comes this problem. Fig. 1 shows an M -band filter bank
decimated by a factor N . The term oversampled refers to
filter banks where the number of bands is greater than the
decimation factor, that is, M > N . For M = N , we have
the critically sampled case. We also consider the use of two
structures in parallel, each one critically sampled or oversam-
pled. The term redundant is used to refer to the use of these
structures in parallel.
The interest in oversampled filter banks is due to some

improvements over critically decimated filter banks, such as,
additional design flexibility, improved frequency selectivity,
and improved noise immunity [3]. These improvements come,
of course, at the expense of an increase in the computational
cost caused by the need to process a larger number of sub-
band signal samples per unit of time [6]. Thus, oversam-
pled filter banks allowing an efficient implementation, such
as oversampled lapped transforms, are of particular interest.
The case of rational oversampled filter banks has been more

emphasized when using complex transforms like the discrete
Fourier transform (DFT) or the short-time Fourier transform.
One example, related to the short-time Fourier transform,
is [7], which gave a parameterization of FIR paraunitary mod-
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ulated filter banks with arbitrary rational oversampling ra-
tios. However, with real-valued coefficient filter banks the
possibilities for the oversampling ratios are not so clear. Ex-
amples are [2], [4] and [6]. All of them established condi-
tions for perfect reconstruction using FIR filters. [4] and [6]
explored the case of cosine modulated filter banks, and [6]
looked also at linear phase filters, a property more pertinent
to applications in image processing. Linear phase is not the
case in [4] where the primary goal was application in audio
and speech. Another example of a paper in the area of over-
sampled filter banks is [8], which mentioned that biorthogo-
nal filter banks with perfect reconstruction and linear phase
properties can be designed for an arbitrary decimation ratio.
In this paper we explore lapped transforms with non inte-

ger rational oversampling ratios, since for integer ratios we
could refer to the works cited above.

Notation. Capital boldface letters are reserved for matri-
ces, while lower case ones are reserved for vectors. In partic-
ular, I and 0 are the identity and null matrices. Their sizes
may be indicated by subscripts when not clear from context.

J is the reversing matrix, for example, J3 =

[
0 0 1
0 1 0
1 0 0

]
.

2. TIME-DOMAIN REPRESENTATION

We consider an M -channel perfect reconstruction (PR) FIR
filter bank whose filters are causal with maximum length
equal to L = KM . In Fig. 1 we show a polyphase repre-
sentation of an M -channel filter bank. The analysis filter
bank is represented by the MIMO system E(z), which repre-
sents the set of M filters with impulse responses {hi[	]} for
0 ≤ i ≤ M − 1 and 0 ≤ 	 ≤ L − 1. A similar relation applies
to the synthesis MIMO system R(z) and the synthesis filters
{fi[	]}. In an alternative matrix representation the filter co-
efficients can be grouped into lapped transform matrices P
and Q of size M × L, whose entries are

pij = hi[L − 1− j], qij = fi[j]. (1)

We can also divide P and Q into M × M matrices as

P = [P0 P1 · · · PK−1], Q = [Q0 Q1 · · · QK−1]. (2)

The PR conditions [9], [10] establish that

K−1−m∑
k=0

QT
k Pk+m =

K−1−m∑
k=0

QT
k+m Pk = δ[m] IM . (3)

In this time-domain representation, the polyphase diagram
in Fig. 1 can be reformulated as in Fig. 2. Also, the L-tuple



Figure 1. Polyphase representation of an M-band
N-decimated filter bank.

Figure 2. Block diagram of a general signal pro-
cessing system using an M-band N-decimated lapped
transform.

xm can be defined as

xm = [ x[m N ] x[mN + 1] · · · x[mN + L − 1] ]T, (4)

so that
ym = P xm, (5)

where ym is the vector with the M subband samples at each
sampling instant, that is,

ym = [ y0[m] y1[m] · · · yM−1[m] ]
T
. (6)

It is obvious that one cannot recover xm from ym. If
x̂m = QT ym, PR of xm occurs because of the accumula-
tion of all xn which overlap with xm. When the decimation
N is different from the number of bands M , the PR equation
can be devised as ∑

n=kN, −L<n<L

Zn(Q
T P)ZT

n = IL, (7)

where k is an integer, and Zn is an L × L matrix defined by

[Zn]i,j = δ[n − i+ j], (8)

for i = 0, 1, . . . , L − 1, and j = 0, 1, . . . , L − 1, where
[Zn]i,j means the element at the ith row and jth column of
the matrix Zn, and δ[n] is the unit impulse sequence [11].
For example, with L = 4 and n = 1,

Z1 = ZT
−1 =


 0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


 . (9)

Note that the product with Zn and ZT
n , in the left side of (7),

shifts the matrix QT P down along the main diagonal, for n
positive, and up along the main diagonal, for n negative. One
should also note that in (7) the conditions for PR can appear
repeated.

Figure 3. Illustration of a lapped transform process-
ing with L = 2N .

We can use the example shown in Fig. 3 to better visualize
the general idea behind (7). In this example L = 2N , so
that the product QT P is superposed with two of its blocks
of order N×N . To have PR this superposition must be equal
to an identity matrix of order L × L.
Now we will use the time domain notation introduced

above to determine the conditions for perfect reconstruction
in a filter bank with non integer oversampling ratio. We will
focus our attention on a few lapped transforms.

3. LINEAR PHASE FILTER BANKS

In the case that the filters have linear phase, that
is, the transform bases are either symmetric or anti-
symmetric [12], [13], there are many more degrees of freedom
than cosine modulated filter banks. However, it is still pos-
sible to explore properties of oversampled linear phase filter
banks. For this, we will limit ourselves to analyze a short-
length L = 2M system of even bands, i.e. a system with the
following factorization

P =
[

U 0
0 V

] [
De − Do (De − Do)J
De − Do −(De − Do)J

]
(10)

where (i) De is anM/2×M matrix with the even-symmetric
basis functions; (ii) Do is a matrix of the same size with odd-
symmetric bases; (iii) D = [DT

e DT
o ]

T is non-singular; and
(iv) U and V are M/2 × M/2 biorthogonal matrices. Note
that this factorization is general and capable of implementing
every critically-decimated FIR filter bank with linear phase
filters with the same length and L = 2M . In the GenLOT
case [12], D is chosen as the DCT. The inverse transform is
given by

Q =

[
U−1 0

0 V−1

]T [
De − Do (De − Do)J
De − Do −(De − Do)J

]
. (11)

The degrees of freedom are the non-singular matrices U and
V. From (10) and (11) we find

QT P =
[

I − A 0
0 I+A

]
. (12)

whereA = DT
e Do+DT

o De has orderM×M , and represents
the time domain alias. Note that time aliasing is independent
of U and V. Furthermore, if integer oversampling ratios are
used one can easily check that the PR conditions in (7) are
always satisfied regardless of A in (12). Observe that we
may have to adjust the gain of the transforms, according to
the oversampling ratio, such that the overall gain is made
equal to one. Also, using (7) it is possible to show that PR
is not possible with a non integer oversampling ratio using
non-trivial choices of De and Do.



4. COSINE MODULATED TRANSFORMS

In this section we show that a representative class of cosine
modulated filter banks does not admit a non integer oversam-
pling ratio. It is in fact based on a biorthogonal extension of
the extended lapped transform (ELT) [14], [5] or the ELBT.
The conditions for PR with non integer oversampling ratio
impose that some coefficients of the prototype window have
to be made equal to zero. Certainly, this is a non satisfac-
tory solution since it removes the overlapping of the basis
functions, and, hence, the nice properties that come from it.
The basis functions of the ELBT have lengths equal to

L = KM = 2Ko M , where Ko is the overlapping factor. It
can be written as

Pi = ΦT
i HiQi = ΦT

i Fi, (13)

for i = 0, 1, . . . , K − 1, where Hi and Fi are the ith blocks
of the prototype windows in the analysis and synthesis, re-
spectively, such that,

Hi = diag{h[i M ], h[i M + 1], . . . , h[i M +M − 1]}, (14)
Fi = diag{f [i M ], f [i M + 1], . . . , f [i M +M − 1]}. (15)
The analysis and synthesis prototype windows are sym-

metric, that is, J HK−1−i J = Hi, and J FK−1−i J = Fi.
The other matrix in the product within (13), Φi, is the ith
block of the cosine modulation matrix, defined by

[Φi]n,k =

√
2

M
cos

[(
n+ i M +

M + 1

2

)(
k +

1

2

)
π

M

]
(16)

where [Φi]n,k means the element at the nth row and kth col-
umn of the matrixΦi. The submatricesΦi have the following
properties:

Φi ΦT
i+2� = (−1)�

[
I+ (−1)i+1J

]
,

Φi ΦT
i+2�+1 = 0,

(17)

for 	 an integer.
The product QT P is used to examine the conditions for

perfect reconstruction with N-fold decimators and N-fold ex-
panders. From the equations above we write

QT P = D+A, (18)

where D is a K M ×K M diagonal matrix with submatrices

Di,j =
{

Fi Hi, for i = j
0, otherwise

(19)

for i = 0, 1, . . . , K − 1, and j = 0, 1, . . . , K − 1. The
component A is a K M × K M matrix with submatrices

Ai,j=




0, for i − j odd
(−1)i+1FiJHi, for i = j

(−1) i−j
2 FiHj−(−1)

i+j
2 FiJHj , otherwise

(20)

for i = 0, 1, . . . , K − 1, and j = 0, 1, . . . , K − 1. After
the appropriate overlapping of the blocks, the resulting main
diagonal matrix, obtained from D, must be made equal to an
identity matrix, as illustrated in the scheme of Fig. 3. The
terms outside the main diagonal, related toA, represent time
alias and must be made equal to zero.
It is easy to show that the condition for perfect reconstruc-

tion with non integer oversampling ratio M/N imposes coef-
ficients of the analysis and synthesis windows equal to zero.

Table 1. Number of constraints for an 8-band ELBT.

N 8 7 6 5 4 3 2 1
Ko = 1 8 12 11 11 6 10 5 5
Ko = 2 24 43 37 40 18 33 15 14
Ko = 3 40 90 67 81 30 60 25 23
Ko = 4 56 149 97 126 42 87 35 32

For this purpose, let us start with (−1)Ko FK−2 J H0 and
(−1)Ko+1 FK−1 J H1 in submatricesAK−2,0 andAK−1,1, re-
spectively. With N-folders at the input and output blocks
of the lapped transform, we implement the overlap shifting
those two reverse diagonal matrices according to Equation 7.
It is evident that (−1)Ko FK−2 J H0 will superpose the com-
ponent (−1)Ko FK−2 J H0, and consequently allow us to mu-
tually cancel the two components, if and only if M/N is
an integer. Otherwise, for a non integer oversampling ra-
tio M/N , but perfect reconstruction, we would have to make
the two components equal to zero. This would imply that
M coefficients in (−1)Ko FK−2 J H0 and M distinct coeffi-
cients in (−1)Ko+1 FK−1 J H1 should be made equal to zero.
Following the same reasoning for all the remaining blocks
with reverse diagonal matrices of the alias component, one
would find out that the prototype windows, and, therefore,
the length of the transforms, would have to be reduced from
an initial length K M to M , by zeroing their coefficients,
resulting in a short diagonal matrix on D. Therefore, to re-
move all the time alias we would have to reduce drastically
the length of the lapped transform.
Table 1 shows the number of constraints for an 8-band

ELBT filter bank. For an integer oversampling ratio M/N ,
the number of constraints can be determined by (K−1)(M+
N) +M/2 + �N/2�. This table also shows an increase in the
number of constraints for a non integer oversampling ratio.
In fact, one can check that many of these constraints will
impose coefficients of the prototype windows equal to zero.
It is easy to show that if, on the other hand, the oversampling
ratio is an integer, not only time aliasing is always canceled,
but there are always enough degrees of freedom to design
non trivial prototype windows ({h[n]} and {f [n]}) such that
(7) is satisfied. In conclusion, for this representative class of
cosine modulated filter banks there is an inverse if and only
if M/N is an integer.

5. COMPLEX MODULATED TRANSFORMS

There is an interesting case of modulated filter banks where
the entries are allowed to be complex numbers. Such a struc-
ture was presented in [15] for example. Basically, it consists
of a 2 times redundant ELBT. We show that with this struc-
ture the alias component is diagonal and the oversampling
ratio can be made integer or non integer.
The basis functions are defined by cosine and sine modula-

tion of the analysis and synthesis windows. The cosine mod-
ulation submatrices were introduced already in (16). The

sine modulation submatrix, Φ̂i, is defined by

[Φ̂i]n,k =

√
2

M
sin

[(
n+ i M +

M + 1

2

)(
k +

1

2

)
π

M

]
. (21)

These submatrices Φ̂i have the following properties:

Φ̂i Φ̂T
i+2� = (−1)�

[
I+ (−1)iJ

]
,

Φ̂i Φ̂T
i+2�+1 = 0,

(22)



Table 2. Number of constraints for an 8-band com-
plex ELBT.

N 8 7 6 5 4 3 2 1
Ko = 1 4 4 3 3 2 2 1 1
Ko = 2 12 11 9 8 6 5 3 2
Ko = 3 20 18 15 13 10 8 5 3
Ko = 4 28 25 21 18 14 11 7 4

for 	 integer. Comparing the properties above with the ones
for the cosine modulation, in (17), we observe the change of
signal in the reverse identity matrix part, that is, (−1)i+1 J
in (17), and (−1)i J in (22). Now, with two ELBT structures
in parallel, one modulated in cosine and the other in sine,
when we cascade the direct and inverse transform matrices,
without modifying the transform coefficients, we obtain

QT P = D+A (23)

where D is a KM × KM diagonal matrix with submatrices

Di,j =
{
2Fi Hi, for i = j
0, otherwise

(24)

for i = 0, 1, . . . , K − 1, and j = 0, 1, . . . , K − 1. Note that
D in (24) is not identical to D in (19). Now, for M = N we
already have a 2 times redundant ELBT. The component A
is a KM × KM matrix with submatrices

Ai,j =

{
0, for i − j odd or i = j

(−1) i−j
2 2Fi Hj , otherwise

(25)

This alias component is quite different from the ELBT, for
which the alias component has reverse diagonal blocks. Now
the reverse diagonal time-domain aliasing terms are canceled
when the overlapped blocks are superimposed, and the com-
plex case allows integer or non integer oversampling ratios.
Table 2 shows the number of constraints for an 8-band

complex ELBT filter bank. For an oversampling ratio M/N ,
integer or non integer, the number of constraints can be de-
termined by (K−1)N+�N/2�. Now, in contrast with the re-
sult of the previous section, it is possible to design prototype
windows satisfying the constraints but without necessarily
zeroing the coefficients.

6. CONCLUSIONS

Recent studies of oversampled filter banks have produced
some improvements over the well studied critically decimated
filter banks, but designs presented in the literature have been
limited to integer oversampling ratios. For some popular
classes of filter banks we have shown that it is not possi-
ble in general to oversample analysis FIR filter banks by non
integer factors and expect to find another FIR synthesis bank
of the same length to yield PR. The converse is true for in-
teger factors, i.e. one can always oversample the filter bank
by an integer factor and expect to find a synthesis bank with
similar characteristics. We have investigated the possibility
of using non integer oversampling ratios in a structure of
two filter banks in parallel. The analysis is carried within a
time-aliasing framework developed to analyze non-critically
decimated filter banks. We have not been successful in de-
termining the solution for the problem for the general case.
However, we have analyzed a few interesting classes of fil-
ter banks. As an ongoing project, further research will be
undertaken to explore more general solutions.
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[2] Z. Cvetković and M. Vetterli, “Oversampled fil-
ter banks,” IEEE Transactions on Signal Processing,
vol. 46, pp. 1245–1255, May 1998.

[3] H. Bölcskei, Oversampled filter banks and predictive sub-
band coders. PhD thesis, Vienna Univ. Technology, Vi-
enna, Austria, Nov. 1997.

[4] J. Kliewer and A. Mertins, “Oversampled cosine-
modulated filter banks with arbitrary system de-
lay,” IEEE Transactions on Signal Processing, vol. 46,
pp. 941–955, Apr. 1998.

[5] H. Malvar, Signal processing with lapped transforms.
Norwood, MA: Artech House, 1992.

[6] H. Bölcskei and F. Hlawatsch, “Oversampled cosine
modulated filter banks with perfect reconstruction.,”
IEEE Trans. on Circuts and Systems-II: Analog and
Digital Signal Processing, vol. 45, pp. 1057–1071, Aug.
1998.
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