Refractivity Estimation from Radar Clutter by Sequential Importance
Sampling with a Markov Model for Microwave Propagation

Sathyanarayanan Vasudevan and Jeffrey L. Krolik
Department of Electrical and Computer Engineering
Duke University, Box 90291, Durham, NC 27708

Abstract

This paper addresses the problem of estimating range-
varying parameters of the height-dependent index of
refraction over the sea surface in order to predict ducted
microwave propagation loss. Refractivity estimation is
performed using a Markov model for microwave radar
clutter returns from the sea surface. Specifically, the
parabolic approximation for numerical solution of the
wave equation is used to formulate the problem within a
non-linear  recursive  Bayesian  state  estimation
framework. Solution for the conditional expectation of
range-varying refractivity, given log-amplitude clutter
versus range data, is achieved using a sequential
importance sampling technique. Simulation results are
presented which demonstrate the ability of this approach
to synoptically estimate range-varying refractivity
parameters by “through-the-sensor” remote sensing.

1. INTRODUCTION

The refractivity structure associated with the capping
inversion of the marine atmospheric boundary layer often
causes ducted microwave propagation [1], [2]. Synoptic
monitoring of ducting conditions by direct measurement
of the three-dimensional humidity and temperature
profiles, which determine refractivity, is difficult and
expensive [3]. Thus this paper addresses the problem of
estimating refractivity from clutter (RFC). In previous
work, simple global parameterizations of the range and
height dependent refractivity profile have been fitted to
clutter returns, producing some promising real data results
in several instances [4]. However, in more complex
range-varying scenarios, the number of global parameters
required becomes too large to handle efficiently. In this
paper, the parabolic approximation for numerical solution
of the wave equation is used to formulate the more
general range-varying refractivity estimation problem
within a non-linear recursive Bayesian state estimation
framework. The potential advantage of this state-space
formulation of RFC is that it can be solved efficiently
using sequential importance sampling methods. This
recursive Bayesian approach also imposes smoothness
constraints on physically-realizable refractivity
parameters. As with other RFC methods, the final

objective is to predict propagation loss as a function of
range and height which can be achieved by numerical
solution of the wave equation using the estimated
refractivity profile. Such propagation loss predictions are
known as “coverage diagrams” and are often used as
tactical decision aids to naval radar operators.

2. MODEL FORMULATION

Numerical solution for the electromagnetic field at
range, x, and height, z, due to ducted propagation in
inhomogeneous tropospheric conditions is commonly
performed by wusing the parabolic equation (PE)
approximation of the wave equation. In particular, the
split-step Fourier PE solution [5] recursively computes the
field, u(x;,1,z), at range, x;,; =x; +0x, as a function
of height, z, given the solution at range, x, using a linear
transformation given by:
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which amounts to assuming Fresnel diffraction through a
thin phase-screen at each range step. The height-
dependent refractivity profile between x; and x; +68x, is

(1)

denoted, n, which enters into the phase screen term,
which is the first complex exponential in (1). Other
symbols in (1) are the radius of the earth, a,, and the
spatial Fourier transform operator, F, taken with respect to
height, z. Consider now the case where the refractivity
profile, 1n(z,x;,g;), is modeled as being a non-linear

function of an uncertain random parameter vector, g ,
whose range dependence is Markovian, i.e.
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where the known transition matrix A constrains the
smoothness of the parameter variation across small range
steps and the independent random vectors, w; , model
uncertain variations between ranges. Now defining the
vector of complex field values over height,



u;, :[u(zl,xk),...u(zN,xk)]T, at range step k, equation

(1) can be written as:
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where the vector-valued function f(-,) represents the
split-step Fourier solution for the field. Putting
u, and g; of (2) and (3) into a single state vector,

X :[gk,uk]T, the electromagnetic field and range-

varying refractivity parameters are constrained by a non-
linear set of equations given by:
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In this paper, wj is modeled as zero-mean, Gaussian with
covariance matrix 2>.,,. In the above formulation, the

process noise is only used in the model for the refractivity
variables. Propagation of a weak forward random
scattered field could, in principle, be handled by also
including an additive process noise component in the state
equations for u, . In the current application, the initial

condition, uy, can assumed to be known from the antenna
pattern of the radar. Historical observations and possibly
an in situ measurement of refractivity at the radar can be
used to form a prior distribution on g, .

Clutter returns from the sea surface can be expressd
in terms of x; by letting the matched-filtered radar return

of the n™ pulse at the k™ slant range, denoted by £, (k),
be expressed as:

fn(k) zan(k)L(xk)+vn(k) (5)
where a,,(k) is a complex, zero-mean, white Gaussian

process with variance, G?l (k), representing local surface
backscatter and L(xj)is the magnitude of the field
calculated at a nominal sea surface height. The receiver
noise, v,(k), is modeled here as additional zero-mean

complex white Gaussian noise process with variance, sz .

In effect, (5) models the clutter return as the propagation
loss modulated by a random “speckle noise”, whose
variance is the backscatter cross-section of the sea surface,
in additive noise. In the forward problem, the range-
dependent refractivity parameter sequence, g; , could be
used as input to a PE propagation model to compute the
propagation loss. The goal here, however, is to estimate
the sequence of refractivity parameters, g;, given an
observation of microwave radar clutter return statistics.

A common statistic of the received data that is
available in many radars is the pulse-position indicator
(PPI) output, y; . The PPl is typically formed in the radar

by averaging N matched-filtered, log-amplitude pulses
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such that y; = N Z log|fn (k)| . For the model of (5), it
n=l1

can be shown [4] that the PPI output for large N,

conditioned on Xy , is approximately Gaussian distributed

with  mean lOlog[crg(k)L(xk)+crv2J+0.l16 and
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variance, which is a known constant, o

3 - Thus using (5)

and  noting  that L(x;)= efL] X kx,[;[el where

e = [l,O,...,O]T , the PPI clutter return can be modeled as:

Vi = B(Xp)+&; (6)
where [(x )=lln(eHx xilec (k)+o-2)—const
k ln(lO) 1 22 Y194a v :

and the ¢; are Gaussian random variables with constant

variance, o2 Given the non-linear state-space

Y-
formulation of (4) and (6), the objective is now to estimate
the sequence of refractivity parameters, g, , given an

observation of microwave radar returns, yj .

3. SIS ESTIMATION OF REFRACTIVITY

A classical solution to the non-linear RFC state
estimation problem would involve linearization of
equations (4) and (6) and solution using the extended
Kalman filter (EKF). Unfortunately, however, the
appearance of 1 in the complex exponential of (1) makes

the linearized model prone to instability. In this paper,
therefore, the minimum mean-square error (MMSE)
estimate of range-dependent refractivity is computed
using a sequential importance sampling (SIS) approach.
The basic idea behind SIS is that the posterior distribution
of the state given the data can be represented by a set of
random realizations (or “particles”) instead of a
continuous high-dimensional function. This approach was
originally developed in Bayesian statistics literature [6, 7],
but is beginning to receive attention in the signal
processing literature [8,9].

To describe the SIS approach taken here, suppose at
range step, k, random realizations, X;_1 (i), i =1,...,M , are

available from probability density, p(xj_j | 1se-r Vi—1) -

Then  realizations or  particles, xz (i), from
P(Xg | Y15 Vi—1) can be obtained by using each of these

particles as input to the state equation of (4) together with



random samples w; (i) drawn from the Normal
distribution, N(0,Z,,).

Vi » at range bin, k, is then used to update the prior for

The PPI clutter measurement,

the current range cell by evaluating the likelihood of each
particle:
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which is a discrete approximation to the a posteriori
probability density, p(xy |y;,...yx), i.e. the probability

mass at the sample points, xz (i). Samples from

p(X; | ¥1,...y;) can now be approximated by bootstrap
resampling M times from this discrete distribution such
that Pr{x; ( j)=xz (i)} =¢q; [6]. For the RFC problem
formulation:
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since the log-amplitude PPI data is nearly Gaussian for
large N. State prediction and update are repeated for each
range-step in the PPI data resulting in a recursive
Bayesian estimate of p(xy | y,...y;), albeit in the form

of discrete particles with approximate probability masses.
Calculation of the conditional mean estimate of the
refractivity parameters at range k£ is obtained by taking:

N
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where g, (i) are the refractivity components of x (i) .

The SIS method described above was originally
referred to by [6] as the bootstrap filter. It is used here as
a simple recursive method for approximating the
conditional mean refractivity estimator. A difficulty with
bootstrap filters, however, is that they are generally not
the most efficient with respect to the number of particles
which must be used. More efficient SIS methods are
described in [8,9] and involve sampling from an
importance function of the form:

(x| X1 ¥5) = PO | X1 Vi) (10)

designed to ensure the majority of particles are samples
from non-zero regions of the posterior distribution. For
the model of (4) and (6), which does not include a random
forward scattering term for the field, it can be shown that

(x| Xp—1, &) = p(x; | x4,—;) which in turn results in an
SIS method equivalent to the bootstrap filter.

4. RESULTS USING SIMULATED PPI DATA

To test the proposed refractivity estimation method,
simulated PPI clutter data was generated assuming a
shipboard radar operating at 2.85 GHz. with an antenna at
a height of approximately 30 meters. The elements of g,

to be estimated were, respectively, the so-called base-
height and M-deficit of a standard tri-linear refractivity
profile commonly used to model refractivity [cf. e.g. 4].
The g; were range-varying over dx =200 m. increments

according to (4). The simulated PPI clutter return, y,

versus range with N=/28 snapshots is shown as the solid
line in Figure 1. Ducting over the sea is responsible for
the significant clutter observed at ranges beyond 20 km.
The prior distribution for the base-height in SIS RFC was
a Gaussian distribution centered at 35 with standard
deviation of 5m. The prior for the M-deficit was also
Gaussian with mean 25 M-units and standard deviation of
5 M-units. These priors are intended to model the scenario
where a single noisy refractivity profile measurement is
available at the ship. The backscatter cross-section is
assumed to be constant and known over the entire range
of interest. The transition matrix, A, in (2) is the identity
with process noise covariance, X,, = diag([1,0.5]) so as

to be able to track base height changes of a couple of
meters per range step. In this simulation example, the true
base-height and M-deficit profiles are illustrated by the
solid lines in Figures 2 and 3, respectively. SIS RFC
estimation of (9) was performed using simulated clutter
data and M=2000 particles, resulting in base height and
M-deficit estimates represented by the dashed lines in
Figures 2 and 3, respectively. Note the estimates closely
track the true values. The clutter estimate computed
using, g, is shown to compare favorably with clutter

generated using the true, g, , in Figure 1. Finally, the

predicted propagation loss versus range and height,
obtained using the SIS RFC estimate is illustrated in
Figure 4. Ducted propagation is clearly evident by the
low loss near the sea surface and this agrees very well
with a coverage diagram produced using the true range-
varying tri-linear refractivity profile.

5. CONCLUSION

This paper has shown how sequential importance
sampling can be coupled with the parabolic equation
method for solving the wave equation in order to estimate
range-varying refractivity from clutter. Although
simulation results show promise, further work is required
to evaluate the performance of the method with real
clutter data.
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Figure 1: Plot of measured and estimated clutter

Plot of True Base-height vs. Estimated Base—Height
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Figure 2: Plot of estimated and true height

Plot of True Mdeficit vs. Estimated Mdeficit

100

801

Mdeficit [Munits]

20

60 -

401

= = Estimated Mdeficit
- True Mdeficit

I‘ '“' ',-Iﬂ

‘ Yi ‘
N iv ’ L7 )
/ ,"l *,,' . o ]

20 40 60
Range [kms]

Figure 3: Plot of estimated and true Mdeficit
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Figure 4: Plot of Propagation Loss corresponding to

estimated profile.
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