
 
 Abstract 

This paper addresses the problem of estimating range-
varying parameters of the height-dependent index of 
refraction over the sea surface in order to predict ducted 
microwave propagation loss. Refractivity estimation is 
performed using a Markov model for microwave radar 
clutter returns from the sea surface.  Specifically, the 
parabolic approximation for numerical solution of the 
wave equation is used to formulate the problem within a 
non-linear recursive Bayesian state estimation 
framework.  Solution for the conditional expectation of 
range-varying refractivity, given log-amplitude clutter 
versus range data, is achieved using a sequential 
importance sampling technique.  Simulation results are 
presented which demonstrate the ability of this approach 
to synoptically estimate range-varying refractivity 
parameters by “through-the-sensor” remote sensing. 

1. INTRODUCTION 
The refractivity structure associated with the capping 

inversion of the marine atmospheric boundary layer often 
causes ducted microwave propagation [1], [2]. Synoptic 
monitoring of ducting conditions by direct measurement 
of the three-dimensional humidity and temperature 
profiles, which determine refractivity, is difficult and 
expensive [3].  Thus this paper addresses the problem of 
estimating refractivity from clutter (RFC). In previous 
work, simple global parameterizations of the range and 
height dependent refractivity profile have been fitted to 
clutter returns, producing some promising real data results 
in several instances [4].  However, in more complex 
range-varying scenarios, the number of global parameters 
required becomes too large to handle efficiently.  In this 
paper, the parabolic approximation for numerical solution 
of the wave equation is used to formulate the more 
general range-varying refractivity estimation problem 
within a non-linear recursive Bayesian state estimation 
framework.  The potential advantage of this state-space 
formulation of RFC is that it can be solved efficiently 
using sequential importance sampling methods.  This 
recursive Bayesian approach also imposes smoothness 
constraints on physically-realizable refractivity 
parameters. As with other RFC methods, the final 

objective is to predict propagation loss as a function of 
range and height which can be achieved by numerical 
solution of the wave equation using the estimated 
refractivity profile.  Such propagation loss predictions are 
known as “coverage diagrams” and are often used as 
tactical decision aids to naval radar operators. 

2. MODEL FORMULATION  
Numerical solution for the electromagnetic field at 

range, x, and height, z, due to ducted propagation in 
inhomogeneous tropospheric conditions is commonly 
performed by using the parabolic equation (PE) 
approximation of the wave equation. In particular, the 
split-step Fourier PE solution [5] recursively computes the 
field, 1( , )ku x z+ , at range, 1k kx x xδ+ = + , as a function 
of  height, z, given the solution at range, x, using a linear 
transformation given by:      
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which amounts to assuming Fresnel diffraction through a 
thin phase-screen at each range step. The height-
dependent refractivity profile between  and k kx x xδ+ , is 
denoted, η , which enters into the phase screen term, 
which is the first complex exponential in (1). Other 
symbols in (1) are the radius of the earth, ae , and the 
spatial Fourier transform operator, F, taken with respect to 
height, z.  Consider now the case where the refractivity 
profile, ( , , )k kz xη g , is modeled as being a non-linear 
function of an uncertain random parameter vector, kg , 
whose range dependence is Markovian, i.e. 

 1k k k+g = Ag + w   (2) 

where the known transition matrix A constrains the 
smoothness of the parameter variation across small range 
steps and the independent random vectors, kw , model 
uncertain variations between ranges. Now defining the 
vector of complex field values over height, 
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1[ ( , ),... ( , )]Tk k N ku z x u z x=u , at range step k, equation 
(1) can be written as: 

 1 ( , )k k k+ =u f u g    (3) 

where the vector-valued function f ( , )⋅ ⋅  represents the 
split-step Fourier solution for the field.  Putting 

 and k ku g of (2) and (3) into a single state vector, 

[ ], T
k k k=x g u , the electromagnetic field and range-

varying refractivity parameters are constrained by a non-
linear set of equations given by: 
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In this paper, wk  is modeled as zero-mean, Gaussian with 
covariance matrix ∑w . In the above formulation, the 
process noise is only used in the model for the refractivity 
variables. Propagation of a weak forward random 
scattered field could, in principle, be handled by also 
including an additive process noise component in the state 
equations for ku . In the current application, the initial 
condition, 0u , can assumed to be known from the antenna 
pattern of the radar.  Historical observations and possibly 
an in situ measurement of refractivity at the radar can be 
used to form a prior distribution on og . 

Clutter returns from the sea surface can be expressd 
in terms of kx  by letting the matched-filtered radar return 

of the nth  pulse at the k th slant range, denoted by f kn ( ) , 
be expressed as: 

 ( ) ( ) ( ) ( )n n k nf k a k L kν= +x   (5) 

where a kn ( ) is a complex, zero-mean, white Gaussian 

process with variance, σ a k2 ( ) , representing local surface 
backscatter and ( )kL x is the magnitude of the field 
calculated at a nominal sea surface height.  The receiver 
noise, ( )nv k , is modeled here as additional zero-mean 

complex white Gaussian noise process with variance, 2
vσ .  

In effect, (5) models the clutter return as the propagation 
loss modulated by a random “speckle noise”, whose 
variance is the backscatter cross-section of the sea surface, 
in additive noise. In the forward problem, the range-
dependent refractivity parameter sequence, kg , could be 
used as input to a PE propagation model to compute the 
propagation loss. The goal here, however, is to estimate 
the sequence of refractivity parameters, kg , given an 
observation of microwave radar clutter return statistics. 

A common statistic of the received data that is 
available in many radars is the pulse-position indicator 
(PPI) output, ky .  The PPI is typically formed in the radar 
by averaging N matched-filtered, log-amplitude pulses 

such that  
1

20 log ( )
N

k n
n

y f k
N =

= ∑ .  For the model of (5), it 

can be shown [4] that the PPI output for large N, 
conditioned on kx , is approximately Gaussian distributed 

with mean 2 210 log ( ) ( ) 0.116a k vk Lσ σ + + x  and 

variance, which is a known constant, 2
yσ .  Thus using (5) 

and noting that 1 1( ) H H
k k kL =x e x x e  where 

1 [1,0,...,0]T=e ,  the PPI clutter return can be modeled as: 

 ( )k k ky β ε= +x    (6) 

where
( ) ( )2

1 1
10( ) ln ( ) .

ln 10
H H

k k k a vk constβ σ σ= + −x e x x e  

and the kε are Gaussian random variables with constant 

variance, 2
yσ .  Given the non-linear state-space 

formulation of (4) and (6), the objective is now to estimate 
the sequence of refractivity parameters, kg , given an 
observation of microwave radar returns, ky .  

3. SIS ESTIMATION OF REFRACTIVITY 
A classical solution to the non-linear RFC state 

estimation problem would  involve linearization of 
equations (4) and (6) and solution using the extended 
Kalman filter (EKF).  Unfortunately, however, the 
appearance of η  in the complex exponential of (1) makes 
the linearized model prone to instability.  In this paper, 
therefore, the minimum mean-square error (MMSE) 
estimate of range-dependent refractivity is computed 
using a sequential importance sampling (SIS) approach.  
The basic idea behind SIS is that the posterior distribution 
of the state given the data can be represented by a set of 
random realizations (or “particles”) instead of a 
continuous high-dimensional function. This approach was 
originally developed in Bayesian statistics literature [6, 7], 
but is beginning to receive attention in the signal 
processing literature [8,9].   

To describe the SIS approach taken here, suppose at 
range step, k, random realizations, 1( ),  1,...,k i i M− =x , are 
available from probability density, 1 1 1( | ,..., )k kp x y y− − .  

Then realizations or particles, * ( )kx i , from 

1 1( | ,..., )k kp y y −x  can be obtained by using each of these 
particles as input to the state equation of (4) together with 



random samples ( )k iw  drawn from the Normal 
distribution, (0, )wN Σ .  The PPI clutter measurement, 

ky , at range bin, k , is then used to update the prior for 
the current range cell by evaluating the likelihood of each 
particle: 
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which is a discrete approximation to the a posteriori 
probability density, 1( | ,... )k kp y yx , i.e. the probability 

mass at the sample points, * ( )k ix .  Samples from 

1( | ,... )k kp y yx  can now be approximated by bootstrap 
resampling M times from this discrete distribution such 
that *Pr{ ( ) ( )}k k ix j x i q= =  [6].  For the RFC problem 
formulation: 
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since the log-amplitude PPI data is nearly Gaussian for 
large N.  State prediction and update are repeated for each 
range-step in the PPI data resulting in a recursive 
Bayesian estimate of 1( | ,... )k kp y yx , albeit in the form 
of discrete particles with approximate probability masses.  
Calculation of the conditional mean estimate of the 
refractivity parameters at range k  is  obtained by taking: 
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where ( )k ig are the refractivity components of ( )k ix . 

The SIS method described above was originally 
referred to by [6] as the bootstrap filter.  It is used here as 
a simple recursive method for approximating the 
conditional mean refractivity estimator.  A difficulty with 
bootstrap filters, however, is that they are generally not 
the most efficient with respect to the number of particles 
which must be used. More efficient SIS methods are 
described in [8,9] and involve sampling from an 
importance function of the form: 

 π ( | , ) ( | , )x x y p x x yk k k k k k− −=1 1  (10) 

designed to ensure the majority of particles are samples 
from non-zero regions of the posterior distribution.  For 
the model of (4) and (6), which does not include a random 
forward scattering term for the field, it can be shown that 

1 1( | , ) ( | )k k k k kx x y p x xπ − −=  which in turn results in an 
SIS method equivalent to the bootstrap filter.  

4. RESULTS USING SIMULATED PPI DATA 
To test the proposed refractivity estimation method, 

simulated PPI clutter data was generated assuming a 
shipboard radar operating at 2.85 GHz. with an antenna at 
a height of approximately 30 meters.  The elements of kg  
to be estimated were, respectively, the so-called base-
height and M-deficit of a standard tri-linear refractivity 
profile commonly used to model refractivity [cf. e.g. 4]. 
The kg  were range-varying over 200 m.xδ =  increments 
according to (4).  The simulated PPI clutter return, ky , 
versus range with N=128 snapshots is shown as the solid 
line in Figure 1. Ducting over the sea is responsible for 
the significant clutter observed at ranges beyond 20 km. 
The prior distribution for the base-height in SIS RFC was 
a Gaussian distribution centered at 35 with standard 
deviation of 5m. The prior for the M-deficit was also 
Gaussian with mean 25 M-units and standard deviation of 
5 M-units. These priors are intended to model the scenario 
where a single noisy refractivity profile measurement is 
available at the ship.  The backscatter cross-section is 
assumed to be constant and known over the entire range 
of interest. The transition matrix, A, in (2) is the identity 
with process noise covariance, ([1,0.5])w diagΣ =  so as 
to be able to track base height changes of a couple of 
meters per range step. In this simulation example, the true 
base-height and M-deficit profiles are illustrated by the 
solid lines in Figures 2 and 3, respectively.  SIS RFC 
estimation of (9) was performed using simulated clutter 
data and M=2000 particles, resulting in base height and 
M-deficit estimates represented by the dashed lines in 
Figures 2 and 3, respectively.  Note the estimates closely 
track the true values.  The clutter estimate computed 
using, ˆ kg , is shown to compare favorably with clutter 
generated using the true, kg , in Figure 1. Finally, the 
predicted propagation loss versus range and height, 
obtained using the SIS RFC estimate is illustrated in 
Figure 4.  Ducted propagation is clearly evident by the 
low loss near the sea surface and this agrees very well 
with a coverage diagram produced using the true range-
varying tri-linear refractivity profile. 

5. CONCLUSION 
This paper has shown how sequential importance 

sampling can be coupled with the parabolic equation 
method for solving the wave equation in order to estimate 
range-varying refractivity from clutter.  Although 
simulation results show promise, further work is required 
to evaluate the performance of the method with real 
clutter data. 
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Figure 1: Plot of measured and estimated clutter 
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Figure 2: Plot of estimated and true height 
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Figure 3: Plot of estimated and true Mdeficit 
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Figure 4: Plot of Propagation Loss corresponding to 
estimated profile. 
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