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ABSTRACT

We report the results of investigationsin acoustic modeling,
language modeling and decoding techniques, for DARPA
Communicator, a speaker-independent, tel ephone-based di-
alog system. By a combination of methods, including
enlarging the acoustic model, augmenting the recognizer
vocabulary, conditioning the language model upon dialog
state, and applying a post-processing decoding method, we
lowered the overall word error rate from 21.9% to 15.0%, a
gain of 6.9% absolute and 31.5% relative.

1. INTRODUCTION

In this paper we report on experiments with the speech
recognition modul e of a DARPA Communicator system. The
aim of the Communicator project is to construct a com-
puter system that plays the role of a travel agent speaking
by phone with a customer. Ideally, this system will function
just as a human would: conversing with the user to deter-
mine the outline of the desired itinerary, querying airline
data bases to establish flight availability, reporting suitable
flights to the user, answering questions to resolve uncer-
tainties or misunderstandings, and finally booking the trip.
More information about thistask can be foundin[1, 2, 3].

The system described here was not the one fielded by
IBM in evaluations organized by the Nationa Institute of
Standards and Technology (NIST). Our objective was to
serve as a prototyping platform for ideas under considera-
tion for the fielded system.

We begin this paper by describing our experimental
setup. Then we discuss our modifications to the acoustic
portion of our system, notably the enlargement of our acous-
tic model, and theinclusion of more training data. Next we
describe changes to the language model. We give resultsfor
an improvement in decoding technol ogy, implemented here
as a post-processing step on lattices generated by our famil-
iar stack decoder architecture. Finally we apply some tun-
ing and performance tweaks. By applying together al the

techniques discussed in this paper, we succeeded in achiev-
ing significant reductionsin the word error rate (WER). We
close with some speculation on why these methods worked.

2. ARCHITECTURE AND EXPERIMENTAL SETUP

The architecture of IBM’s DARPA Communicator system
appearsin Figure 1. It is similar to the one described in [4],
though modified to be Galaxy-Il compliant [5].
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Fig. 1: bDARPA Communicator Architecture

This paper concerns only the speech recognition module.
But it isimportant to note that the dialog manager maintains
anotion of current dialog state, and suppliesthis state to the
recognition module on each conversation turn. This permits
us to condition the language model (used in decoding the
next user utterance) upon this state.

We used two test sets in our experiments. Both were
collected from travel-domain human-computer interactions
conducted viatelephone. However, they were recorded un-
der different conditions, and so we have treated them sep-
arately. (However, the performance figures in the abstract
aggregate these two sets.) Since they differ by size as well,
wewill refer tothem simply as SMALL and LARGE through-
out. We made no attempt to identify or adapt to individual
speakers or speaker clusters.



Test Set Size OOV by Voc
Sents/ Words | Small | Big

SMALL 686/2932 | 1.59% | 1.31%

LARGE 2082/8256 | 1.41% | 1.08%

Table 1: Test Set Characteristics

3. ACOUSTIC MODELING

We experimented with four different acoustic models. All
of them model 24-dimensional mel cepstra, and all were
estimated from a common body of 600 hours of telephone-
bandwidth (8 KHZz) training data. However, as detailed be-
low one model made use of an additional 20 hours of acous-
tic data for adaptation. The performance of these models
is summarized in Figure 2; these results are for language
model LM1, discussed below.

Our baseline model, denoted 40k, contained some
40,000 distinct Gaussians, with phone context determined
by a decision tree conditioned on the five adjacent phones
to the left and to the right. Although it was trained using
telephone bandwidth data, this decision tree was built from
wideband dictation data.

We felt that this mismatch of the data used to determine
the tree structure and that used to train the system might
be a source of errors, and a so that 40,000 Gaussians might
not adequately capture the large popul ation of speakers and
channel conditions present in our training set. For thisrea-
son, our first project was to rebuild the decision tree on 8
KHz data, and then use thistree to train a model containing
70,000 prototypes, and denoted 70k. Thisyielded a signif-
icant improvement on the small test set, and a barely mea-
surable degradation on the large test set. We proceeded to-
build a third model in exactly the same way, but containing
280,000 prototypes, denoted 280k. This model achieved
significant gains on both test sets.

Our final experiment was to try to take advantage of an
additional 20 hours of telephone-bandwidth acoustic data,
all of it comprising utterances within the domain of airline
travel reservations. Wefelt that simply adjoiningthisdatato
our 600 hour training set would have little or no effect. In-
stead we treated it asif it were a body of adaptation data for
asinglespeaker (infact it contains alarge number of speak-
ers), and used it as such when applying the MLLR speaker
adaptation technique [6]. Here the base model adapted by
MLLR was a 40,000 prototype system built using the 8 KHz
decision tree described above. The resulting model, named
40K MLLR, yielded afurther improvement on the small test
set, but the worst performance of all on the large test set.

4. LANGUAGE MODELING

We employed a variety of techniques to enhance our sys-
tem’s language model, including augmentation of vocabu-
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Fig. 2: Acoustic Model Performance.

lary and training data, conditioning upon dialog state, and
the introduction of compound words. Some but not al of
these methods yielded accuracy improvements, aswe detail
bel ow.

The starting point for our experiments was a conventional
linearly interpolated trigram language model [7, Chapter 4],
built on a vocabulary of 2987 words comprising 4439 dis-
tinct baseforms, and trained on a corpus of 89,585 sentences
comprising 646,012 words, plus another 300K words of
synthetic data, to cover sparsely-represented place names.
The training corpus was tokenized by a natural language
understanding classer as described in [8]. We will refer to
thismodel as LM1; decoding results appear in Figure 2

This vocabulary had out-of-vocabulary (OOV) rates of
1.59% and 1.41% on the SMALL and LARGE data sets re-
spectively. Our next step was to enlarge the vocabulary,
through the addition of selected airlines, airports and ge-
ographic locations. This yielded a vocabulary of 18866
words comprising 24913 baseforms, and reduced the OOV
ratesto 1.31% and 1.08% respectively.

Because the large number of proper names had very
sparse representation in our training data (most did not ap-
pear at al), and we felt synthetic data was an inefficient
means of dealing with this problem, we elected to build a
class-based model, factoring the nomina language model
probability as p(w | A) = p(w | ch)p(c|h). Here w is
the predicted word, ¢ is the word's class, and 4 is a bi-
gram of history. We then estimated p(c | ) as a con-
ventional ngram model, placing regular words into single-
ton classes. But we placed &l place names into one of
six classes. For each class set p(w | ¢) = 0.25/|¢c| +
0-25pynigram(w) + 0-5Ppopul ationivolume(w), Where [c|
wastheclass size, Punigram Wasaraw unigram model, and
Ppopul ation/volume estimated its probability from popula-
tion or flight volume information. This gave us our second
language model, LM 2.



Prior experience had demonstrated to us the value of
adapting the language model to the domain of discourse.
Moreover the system'’s language generation module main-
tains a notion of the state of discourse, which corresponds
to the nature of the utterance that is generated and ultimately
played back to the user. The complete list of dialog states
appearsin Table 2 below.

| State | Meaning |
NEWCALL | initial state
TIMES departure or arrival time
DATES departure or arrival date
PLACES departure or arrival city or airport
YN yes/ no question
LIST list of choices
NONE unknown or uncommitted state
DONE itinerary complete

Table 2: System States and Putative Meanings

By conditioning the language model upon this state, we
could achieve some degree of dependence upon the re-
sponse likely to be triggered by the system’s output. How-
ever, we were |oathe to narrowly restrict the user utterances
that would receive a non-zero language model probability,
lest the user say something contrary to our expectations.
Therefore our approach was to build a state-dependent lan-
guage model p, (w | k) for each distinct state s, and inter-
polate each model with our baseline p, y2(w|k), yielding a
final model p,, y2 = Asps + AspL w2 fOr each state. We then
decode with interpolated model p,, 2 after the system has
issued an output in a given state s.

Totrainthe family of models {p;(w|k)} we used acorpus
of 11,272 user utterances, comprising 52,217 words, col-
lected from IBM-interna experiments. Each utterance was
labeled with the system state that provoked the user’s re-
sponse. The interpolation weights A; were varied for each
state s, but as we found this had little effect upon perfor-
mance, we set A, = 0.5 uniformly. We will refer the
theresulting family of state-dependent, linearly interpolated
models as sLM2. Figure 3 compares decoding results with
modelsLM1, LM2 and sSLM2.

A final round of experiments revolved around the use of
compound words. We had noticed early on that the word
pair to fly, was frequently confused with the pair a flight.
Althoughthisconfusionisharmless, there being littlediffer-
ence in meaning between 1'd like to fly to Parisand I'd like
a flight to Paris, our experience with voicemail transcrip-
tion[9] led us to believe there might be some advantage in
treating some word pairs as a single unit.

We tried three figures of merit for selecting word pairs
z y to treat as compound words, as follows

my(x,y) = log (p(z,y)/p(x)p(y))
ma(z,y) = h(p(z,y)) — p(z)h(p(ylz)) — p(v)h(p(zly))

ma(z,y) = log (p(fc, y)/\/p(ﬁ)p(y))
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Fig. 3: LanguageModel: LM1, LM2 and SLM2.

may(z,y) 1S the mutual information between words z and
y; not to be confused with the average mutual informa-
tion between random variables X and Y [7, Section 7.7].
ma(z,y) can be shown to be the perplexity gain (reduction
in perplexity) that obtains for an empirical unigram model
by treating the pair z y as a single word throughout the
training corpus. Here 4 is the binomial entropy function,
h(a) = —aloga—(1—a)log(l—c). ms(z, y) hasnosim-
ple interpretation, but it was found to be effective in prior
studies of selection of compound words[9].

We selected the 50 most beneficial word pairs accord-
ing to each of these criteria, then built standard linearly-
interpolated trigram language models, where the selected
word pairs were counted as single words throughout the
training corpus. We then interpolated the resulting mod-
els with the standard language model, experimenting with
weightsof A = 0.5 and 0.75 for the compound word mode!.
Unfortunately, these experiments yielded either small wer
gainsornogainsat all.

5. DECODING TECHNOLOGY

We aso experimented with a post-processing technique
known as consensus decoding. The consensus decoding
scheme processes word lattices, determined by a familiar
stack decoder. (Formally the stack decoder produces a tree
of hypotheses; branches of thetree are extended and merged
toyield alattice.)) The consensus scheme performs further
surgery upon the lattice supplied as input, until itstopology
is series of branchpoints connected by parallel arcs; at each
branchpoint the word with the maximal posterior probabil -
ity is selected for output. More detail on this method can be
found in reference [10].

We found that including consensus decoding further re-
duced the error rate significantly. Figure 4 shows the effect



of applying consensus decoding to lattices generated with
language model sLM2. We refer to the consensus results
obtained thisway as sLM2+C.

6. ADDITIONAL TECHNIQUES

We experimented with two additional techniques. First, we
added explicit acoustic models to cover mumble phonemes,
which we expected to appear frequently in spontaneous
speech. Second, we expanded the scope of the search that
takes place in the initial phase of acoustic modeling, so that
approximately twice as many hmm output densities would
be examined for each frame of speech. Results for these
techniques, labeled sLM2+c+MX, appear in Figure 4.
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7. SUMMARY

We have achieved a substantial reduction in word error rate
on test utterances for a telephone-based dialog system. We
believe that most of these gains are reflections of two spe-
cia characteristics of dialog systems. First, recognition is
performed within the context of a dialog, in which the user
responds to known prompts or queries. Second, responses
are likely to contain the usua flora and fauna of hesita-
tions, mumbles and other disfluencies found in spontaneous
speech. Thus techniques like consensus decoding (which
stitches together disparate branches of the stack decoder’s
hypothesis tree) and explicit acoustic models of disfluency
are likely to be useful.
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